Skew braces and Rota-Baxter operators

Lorenzo Stefanello

Joint work with Andrea Caranti

Advances in Group Theory and Applications 2023, 7 June 2023

Definition ([Guarnieri and Vendramin, 2017])

A skew brace is a triple $(A, +, \circ)$, where (A, +) and (A, \circ) are groups such that for all $a, b, c \in A$,

$$a \circ (b + c) = (a \circ b) - a + (a \circ c).$$

Skew braces are related with

- radical rings;
- set-theoretic solutions of the Yang-Baxter equation;
- regular subgroups of holomorphs of groups;
- Hopf–Galois structures;

Lambda map

A skew brace $(A, +, \circ)$ is associated with a function

 $\lambda \colon (A, \circ) \to \operatorname{Aut}(A, +), \quad a \mapsto (b \mapsto -a + (a \circ b)).$

In particular, for all $a, b \in A$,

$$a \circ b = a + \lambda_a(b).$$

Definition

A skew brace $(A, +, \circ)$ is *inner* if $\lambda_a \in \text{Inn}(A, +)$ for all $a \in A$. This means that λ_a is equal to conjugation-by- $\psi(a)$ for some $\psi: A \to A$, and therefore we can write

$$a \circ b = a + \psi(a) + b - \psi(a).$$

Examples

Let (A, +) be a group. Here are some examples of inner skew braces $(A, +, \circ)$, where we give explicitly the map $\psi : A \to A$ such that $a \circ b = a + \psi(a) + b - \psi(a)$.

- The trivial skew brace (A, +, +); here, $\psi(a) = 0$.
- Suppose that (A, +) = B + C is an exact factorisation, and define

$$a \circ a' = (b+c) \circ a' = b+a'+c.$$

Then $(A, +, \circ)$ is an inner skew brace, with $\psi(b + c) = -c$.

 Take ψ: (A, +) → (A, +) is a homomorphism with abelian image, and define

$$a \circ b = a + \psi(a) + b - \psi(a).$$

Then $(A, +, \circ)$ is an inner skew brace; [Koch, 2021]

Let (A, +) be a group.

Definition ([Guo et al., 2021])

A *Rota–Baxter* operator on (A, +) is a map $\beta \colon A \to A$ such that

$$\beta(a + \beta(a) + b - \beta(a)) = \beta(a) + \beta(b).$$

Idea: smooth Rota–Baxter operators on Lie groups ↔ Rota–Baxter operators on Lie algebras.

Proposition ([Bardakov and Gubarev, 2022])

Let β be a Rota–Baxter operator on (A, +), and define

$$a \circ b = a + \beta(a) + b - \beta(a).$$

Then $(A, +, \circ)$ is an inner skew brace.

A characterisation

Let (A, +) be a group, and consider a map $\psi \colon A \to A$. Define

$$\mathsf{a}\circ_\psi\mathsf{b}=\mathsf{a}+\psi(\mathsf{a})+\mathsf{b}-\psi(\mathsf{a}).$$

Proposition ([Caranti and LS, 2023])

The following are equivalent:

- $(A, +, \circ_{\psi})$ is a skew brace.
- ψ satisfies

$$\psi(\mathsf{a}+\psi(\mathsf{a})+\mathsf{b}-\psi(\mathsf{a}))\equiv\psi(\mathsf{a})+\psi(\mathsf{b})\pmod{Z(A,+)}.$$

Examples of Rota–Baxter operators

Let (A, +) be a group. Some examples of inner skew braces are:

- The trivial skew brace (A, +, +); here, $\psi(a) = 0$.
- Suppose that (A, +) = B + C is an exact factorisation, and define

$$a \circ a' = (b+c) \circ a' = b+a'+c.$$

Then $(A, +, \circ)$ is an inner skew brace, with $\psi(b + c) = -c$.

 Take ψ: (A, +) → (A, +) is a homomorphism with abelian image; then by [Koch, 2021] (A, +, ∘) is an inner skew brace, where

$$a \circ b = a + \psi(a) + b - \psi(a).$$

All of these maps ψ are examples of Rota–Baxter operators!

Definition

An inner skew brace $(A, +, \circ)$ comes from a Rota-Baxter operator if there exists a Rota-Baxter operator β on (A, +) such that

$$a \circ b = a + \beta(a) + b - \beta(a).$$

Question

Do all inner skew braces $(A, +, \circ)$ come from Rota–Baxter operators?

The approach

Let $(A, +, \circ)$ be an inner skew brace. Then

$$\mathsf{a}\circ\mathsf{b}=\mathsf{a}+\psi(\mathsf{a})+\mathsf{b}-\psi(\mathsf{a}),$$

where $\psi \colon A \to A$ satisfies

$$\kappa(\mathsf{a},\mathsf{b})+\psi(\mathsf{a}\circ\mathsf{b})=\psi(\mathsf{a})+\psi(\mathsf{b})$$

for a suitable $\kappa \colon A \times A \to Z(A, +)$.

Theorem ([Caranti and LS, 2023])

- κ is a 2-cocycle for the trivial (A, ∘)-module Z(A, +), whose cohomology class in H²((A, ∘), Z(A, +)) does not depend on the choice of ψ.
- (A, +, ∘) comes from a Rota–Baxter operator if and only if the cohomology class of κ is trivial.

Let p be an odd prime, and let (A, +) be the Heisenberg group of order p^3 . For all $n \in \{0, \ldots, p-1\}$, define

$$a \circ_n b = a + na + b - na$$
.

Then $(A, +, \circ_n)$ is an inner skew brace [Caranti and LS, 2022]. Proposition ([Caranti and LS, 2023])

- If n ≠ (p − 2)⁻¹, then (A, +, ∘_n) comes from a Rota–Baxter operator, which can be computed explicitly.
- If n = (p − 2)⁻¹, then (A, +, ∘_n) does not come from a Rota-Baxter operator.

🔋 Bardakov, V. G. and Gubarev, V. (2022).

Rota—Baxter groups, skew left braces, and the Yang—Baxter equation.

J. Algebra, 596:328–351.

📑 Caranti, A. and LS (2022).

Brace blocks from bilinear maps and liftings of endomorphisms.

J. Algebra, 610:831–851.

📑 Caranti, A. and LS (2023).

Skew braces from Rota–Baxter operators: a cohomological characterisation and some examples. Ann. Mat. Pura Appl. (4), 202(1):1–13. Guarnieri, L. and Vendramin, L. (2017). Skew braces and the Yang–Baxter equation. Math. Comp., 86(307):2519–2534.

 Guo, L., Lang, H., and Sheng, Y. (2021).
Integration and geometrization of Rota-Baxter Lie algebras. *Adv. Math.*, 387:Paper No. 107834, 34.

📔 Koch, A. (2021).

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures.

Proc. Amer. Math. Soc. Ser. B, 8:189–203.