Fundamental Structures and Identities

(based on a joint work with A. Giambruno and E. Spinelli)
Advances in Group Theory and Applications 2023
Elena Pascucci (elena.pascucci@uniroma1.it) Sapienza Università di Roma

June 7th

Table of Contents

1 Introduction

- Introduction
$>$ Historical motivations
- Fundamental superalgebras
$>$ New results

Polinomial identities

1 Introduction
In what follows, fix a field F.
Some notations:

- A is an associative algebra,
- $X:=\left\{x_{1}, x_{2}, \ldots\right\}$ is a countable set,
- $F\langle X\rangle$ is the free associative algebra over F generated by X.

Definition

An element $f\left(x_{1}, \ldots, x_{n}\right)$ of $F\langle X\rangle$ is a polynomial identity (or a PI) for A if $f\left(a_{1}, \ldots, a_{n}\right)=o_{A}$ for every $a_{1}, \ldots, a_{n} \in A$.
A is a PI-algebra if A satisfies a non-trivial polynomial identity f.
Let $\operatorname{ld}(A):=\{f \mid f \in F\langle X\rangle, f$ PI for $A\}$.

Graded polynomial identities

1 Introduction
Some notations:

- A is an associative superalgebra (i.e. $A=A^{(0)} \oplus A^{(1)}$ s.t. $A^{(i)} A^{(j)} \subseteq A^{(i+j)}$ for every $i, j \in \mathbb{Z}_{2}$),
- $Y:=\left\{y_{1}, y_{2}, \ldots\right\}$ and $Z:=\left\{z_{1}, z_{2}, \ldots\right\}$ are (disjoint) countable sets,
- $F\langle Y \cup Z\rangle$ is the free associative algebra over F generated by $Y \cup Z(\sim$ structure of superalgebra: deg $y_{i}=0, \operatorname{deg} z_{i}=1$ for every $i \geq 1$).

Definition

An element $f\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)$ of $F\langle Y \cup Z\rangle$ is a \mathbb{Z}_{2}-graded polynomial identity or a superidentity ($f \equiv 0$) for $A=A^{(0)} \oplus A^{(1)}$ if $f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=o_{A}$ for every $a_{1}, \ldots, a_{m} \in A^{(\circ)}$ and $b_{1}, \ldots, b_{n} \in A^{(1)}$.

Graded polynomial identities

1 Introduction

From now on, we shall assume that F is an algebraically closed field with characteristics 0 . A central object in the theory is:

$$
\operatorname{ld}_{2}(A)
$$

the set of all \mathbb{Z}_{2}-graded polynomial identities satisfied by A

Fact

$I d_{2}(A)$ is a T_{2}-ideal (i.e. a two-sided ideal of the free superalgebra stable under every graded endomorphism of the free superalgebra), completely determined by the multilinear polynomials it contains.

Table of Contents

2 Historical motivations
> Introduction
\checkmark Historical motivations

- Fundamental superalgebras
$>$ New results

Specht problem

2 Historical motivations
One of the main questions in PI theory is

Specht Problem, 1950

A a PI-algebra $\Rightarrow \mathrm{Id}(\mathrm{A})$ is finetely generated as a T ideal?

Specht problem

2 Historical motivations
One of the main questions in PI theory is

Specht Problem, 1950

A a PI-algebra $\Rightarrow \mathrm{Id}(\mathrm{A})$ is finetely generated as a T ideal?
A positive solutions was given by Kemer in 1987.

An important step of the proof is the following

Kemer's Representability Theorem

Let A be a finitely generated superalgebra over a field F of characteristic zero. Then there exists a finite-dimensional superalgebra over a field extension of F which has the same graded polynomial identities of A.

The role of fundamental superalgebras

2 Historical motivations

One of the main tool to prove Kemer's Representability Theorem was the introduction of the so called fundamental superalgebras. The main reason lies on one of their properties.

Any finite-dimensional superalgebra has the same graded identities as a finite direct sum of fundamental superalgebras.

Table of Contents

3 Fundamental superalgebras
$>$ Introduction
$>$ Historical motivations

- Fundamental superalgebras
$>$ New results

Superindices

3 Fundamental superalgebras
Fix a finite-dimensional superalgebra A.

Wedderburn Malcev Decomposition

$$
A=A_{s s}+J(A),
$$

where $J(A)$ is the Jacobson radical (which is a homogeneous nilpotent ideal) and where $A_{s s}$ is a maximal semisimple subalgebra of A having an induced \mathbb{Z}_{2}-grading. $A_{s s}$ can be written as a direct sum of graded simple algebras: $A_{s s}=A_{1} \oplus \ldots \oplus A_{n}$.

Superindices

3 Fundamental superalgebras
Fix a finite-dimensional superalgebra A.

Wedderburn Malcev Decomposition

$$
A=A_{s s}+J(A),
$$

where $J(A)$ is the Jacobson radical (which is a homogeneous nilpotent ideal) and where $A_{s s}$ is a maximal semisimple subalgebra of A having an induced \mathbb{Z}_{2}-grading. $A_{s s}$ can be written as a direct sum of graded simple algebras: $A_{s s}=A_{1} \oplus \ldots \oplus A_{n}$.

Definition

The first algebra superindex of A is the pair $\left(t_{A, 0}, t_{A, 1}\right):=\left(\operatorname{dim}_{F} A_{S S}^{(o)}, \operatorname{dim}_{F} A_{S S}^{(1)}\right)$, whereas its second algebra superindex is s_{A}, where $s_{A}+1$ is the nilpotency index of $J(A)$. The triple $t-s_{2}(A):=\left(t_{A, 0}, t_{A, 1} ; s_{A}\right)$ is said to be the algebra superindex of A.

Superindices

3 Fundamental superalgebras
If t_{0}, t_{1}, ν are integers, an element $f \in F\langle Y \cup Z\rangle$ is said to be ν-fold $\left(t_{0}, t_{1}\right)$-alternating if, for all $i \in[1, \nu]:=\{1,2, \ldots, \nu\}$, there exist sets of variables $Y_{i} \subseteq Y$ and $Z_{i} \subseteq Z$ with $\left|Y_{i}\right|=t_{0}$ and $\left|Z_{i}\right|=t_{1}$ such that f is alternating in each Y_{i} and in each Z_{i}.

Superindices

3 Fundamental superalgebras
If t_{0}, t_{1}, ν are integers, an element $f \in F\langle Y \cup Z\rangle$ is said to be ν-fold $\left(t_{0}, t_{1}\right)$-alternating if, for all $i \in[1, \nu]:=\{1,2, \ldots, \nu\}$, there exist sets of variables $Y_{i} \subseteq Y$ and $Z_{i} \subseteq Z$ with $\left|Y_{i}\right|=t_{0}$ and $\left|Z_{i}\right|=t_{1}$ such that f is alternating in each Y_{i} and in each Z_{i}.

Definition

The first Kemer superindex of $I:=I d_{2}(A)$ is the maximum (if exists), in the lexicographic order, of the pairs of numbers $\left(t_{0}, t_{1}\right)$ such that, for all $\nu \in \mathbb{N}$, there is an element $f \in F\langle Y \cup Z\rangle \backslash /$ which is ν-fold (t_{0}, t_{1})-alternating.
If (t_{0}, t_{1}) is the first Kemer superindex of I, its second Kemer superindex is the maximum integer $s=a+b$ for which, for every integer ν, there exists a ν-fold (t_{0}, t_{1})-alternating polynomial $f \in F\langle Y \cup Z\rangle \backslash /$ which is a-fold alternating in layers of degree o variables with $t_{0}+1$ elements and b-fold alternating in layers of degree 1 variables with $t_{1}+1$ elements. The Kemer superindex of a superalgebra A is the triple $\operatorname{Ind}_{2}(A):=\left(t_{0}, t_{1} ; s\right)$.

Main Definition

3 Fundamental superalgebras

$$
\begin{gathered}
\text { Fact } \\
\operatorname{lnd}_{2}(A) \leq t-s_{2}(A)
\end{gathered}
$$

in the lexicographic order.

Definition

A is fundamental if and only if $\operatorname{Ind}_{2}(A)=t-s_{2}(A)$.

Recap on Simple Superalgebras

3 Fundamental superalgebras
A \mathbb{Z}_{2}-grading on M_{m} is called elementary if there exists an m-tuple $\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{Z}_{2}^{m}$ such that $e_{i j} \in M_{m}^{(g)}$ if, and only if, $g=g_{i}-g_{j}$. Equivalently, we can define a map $\alpha:[1, m] \longrightarrow \mathbb{Z}_{2}$ inducing a grading on M_{m} setting the degree of $e_{i j}$ equal to $\alpha(i)-\alpha(j)$.

Let A be a simple superalgebra. A is (isomorphic to) a superalgebra of the following type
(a) $M_{k, I}:=M_{k+I}$ with $k \geq I \geq 0, k \neq 0$, endowed with the grading induced by the $(k+I)$-tuple ($\underbrace{0, \ldots, o}_{k \text { times }}, \underbrace{1, \ldots, 1}_{l \text { times }})$;
(b) $M_{m}+t M_{m}$, where $t^{2}=1_{F}$, with grading $\left(M_{m}, t M_{m}\right)$. It can be realized as the homogeneous subalgebra $\left\{\left(\begin{array}{ll}C & D \\ D & C\end{array}\right)\right\}$ of the full matrix algebra $M_{2 m}$ with the grading induced by the $(2 m)$-tuple ($\underbrace{0, \ldots, 0}, \underbrace{1, \ldots, 1})$.

Examples of Fundamental Superalgebras

3 Fundamental superalgebras

Proposition

Every finite-dimensional simple superalgebra is fundamental.
Why? Just to have an idea, let us look an example.
Consider $M_{2}+t M_{2}$. It is clear that $t-s_{2}\left(M_{2}+t M_{2}\right)=(4,4 ; 0)$.

$$
e_{1,1} \tilde{e}_{1,1} e_{1,1} \tilde{e}_{1,2} e_{2,2} \tilde{e}_{2,2} e_{2,2} \tilde{e}_{2,1} e_{1,1} \ldots e_{1,1} \overline{t e_{1,1}} e_{1,1} \overline{t e_{1,2}} e_{2,2} \overline{t e_{2,2}} e_{2,2} \overline{t e_{2,1}} e_{1,1} \ldots,
$$

where we have used this notation: $\bar{x}_{1} \ldots \bar{x}_{n}:=\sum_{\sigma \in S_{n}}(-1)^{\sigma} x_{\sigma(1)} \ldots x_{\sigma(n)}$ (or with other fancy symbols).
From this product, which is obvious non-zero (equal to $e_{1,1}$), it can be built a graded polynomial, ν-fold (4, 4)-alternating, outside $I d_{2}\left(M_{2}+t M_{2}\right)$ with this non-zero evaluation.

Table of Contents

4 New results
$>$ Introduction
$>$ Historical motivations

- Fundamental superalgebras
$>$ New results

Upper block triangular matrix algebras

4 New results

Let $\left(\left(A_{1}, \alpha_{1}\right) \ldots,\left(A_{n}, \alpha_{n}\right)\right)$ be a sequence of simple superalgebras.

$$
s_{j}:=\left\{\begin{array}{ll}
k_{j}+l_{j} & \text { if } A_{j} \cong M_{k_{j}, l_{j}}, \\
2 n_{j} & \text { if } A_{j} \cong M_{n_{j}}+t M_{n_{j}}\left(\text { we say that } j \in \Gamma_{1}\right)
\end{array}, s_{j}^{\prime}:=\left\{\begin{array}{ll}
k_{j} & \text { if } A_{j} \cong M_{k_{j}, l_{j}}, \\
n_{j} & \text { if } A_{j} \cong M_{n_{j}}+t M_{n_{j}}
\end{array},\right.\right.
$$

and set $\eta_{\mathrm{o}}:=\mathrm{o}, \eta_{\mathrm{j}}:=\sum_{i=1}^{j} s_{i}$ and $B I_{j}:=\left[\eta_{j-1}+1, \eta_{j}\right]$
Let

$$
\mathbf{U}:=\left\{\left(a_{i j}\right)_{i, j \in[1, n]} \mid a_{i j} \in M_{s_{i} \times s_{j}} \text { if } 1 \leq i \leq j \leq n \text { and } a_{i j}=\mathrm{o}_{M_{s_{i} \times s_{j}}} \text { otherwise }\right\}
$$

be the the upper block triangular matrix algebra of size s_{1}, \ldots, s_{n}.

Upper block triangular matrix algebras

4 New results
Finally, let us define

$$
\begin{aligned}
& \operatorname{UT}\left(A_{1}, \ldots, A_{n}\right):=\left\{\left(a_{i j}\right) \in \mathbf{U} \left\lvert\, a_{k k}=\left(\begin{array}{cc}
C & D \\
D & C
\end{array}\right)\right., C, D \in M_{s_{k}^{\prime}} \forall k \in \Gamma_{1}\right\} . \text { Let } \\
& \alpha:\left[1, \eta_{n}\right] \longrightarrow \mathbb{Z}_{2}, i \longmapsto \alpha_{k}\left(i-\eta_{k-1}\right)
\end{aligned}
$$

and, for any n-tuple $\tilde{g}:=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}_{2}^{n}$,

$$
\alpha_{\tilde{g}}:\left[1, \eta_{n}\right] \longrightarrow \mathbb{Z}_{2}, \quad i \longmapsto g_{k}+\alpha(i),
$$

where $k \in[1, n]$ is the (unique) integer such that $i \in B l_{k}$.
Denote any such a \mathbb{Z}_{2}-graded algebra (regardless of $\left.\tilde{g}\right)$ by $U T_{\mathbb{Z}_{2}}\left(A_{1}, \ldots, A_{n}\right)$.

Theorem

The superalgebras $\cup T_{\mathbb{Z}_{2}}\left(A_{1}, \ldots, A_{n}\right)$ are fundamental.

Upper block triangular matrix algebras with identification
 4 New results

Let $\left(A_{1}, \ldots, A_{n}\right)$ be a sequence of simple superalgebras for which there exist $1 \leq i<j \leq n$ such that $A_{i} \cong A_{j}$. Consider the superalgebra $B:=U T_{\mathbb{Z}_{2}}\left(A_{1}, \ldots, A_{n}\right)$ with grading defined by the map $\alpha_{\tilde{g}}$, and its subalgebra, $A:=U T_{\mathbb{Z}_{2}}^{(i, j)}\left(A_{1}, \ldots, A_{n}\right)$, obtained from B by identifying A_{i} and A_{j}.
Note that $J(A)=J(B)$, whereas $\operatorname{dim}_{F} A_{S S}=\operatorname{dim}_{F} B_{S S}-\operatorname{dim}_{F} A_{i}$.

Theorem

The superalgebra A is fundamental if, and only if,

1. either $j \neq i+1$;
2. or $j=i+1$ and $A_{i} \cong M_{n_{i}}+t M_{n_{i}}$;
3. $\operatorname{or} j=i+1, A_{i} \cong M_{k_{i}, l_{i}}$ and $g_{i+1}=g_{i}+1$.

Cocharacters

4 New results
Let $P_{n}^{\mathbb{Z}_{2}}$ is the space of multilinear polynomials of degree n of $F\langle Y \cup Z\rangle$ in the variables $y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$.

Facts

- The hyperoctahedral group $H_{n}=\mathbb{Z}_{2}$ \{ S_{n} (namely the wreath product of \mathbb{Z}_{2} and the symmetric group S_{n}) acts on $P_{n}^{\mathbb{Z}_{2}}$,
- $P_{n}^{\mathbb{Z}_{2}} \cap \operatorname{Id}_{2}(A)$ is invariant under this action,
- the space $P_{n}^{\mathbb{Z}_{2}}(A):=\frac{P_{n}^{Z_{2}}}{P_{n}^{Z_{2}} \cap I_{2}(A)}$ has a structure of left H_{n}-module, whose character, $\chi_{n}^{\mathbb{Z}_{2}}(A)$, is called the n-th \mathbb{Z}_{2}-graded cocharacter of A,
- \{irreducible H_{n}-representations $\} / \sim \stackrel{1: 1}{\longleftrightarrow}\{(\lambda, \mu), \lambda \vdash r, \mu \vdash n-r, r \in[0, n]\}$.

A characterization through cocharacters

4 New results
So, by the previous facts, it makes sense to write:

$$
\chi_{n}^{\mathbb{Z}_{2}}(A)=\sum_{r=0}^{n} \sum_{\substack{\lambda \vdash r \\ \mu \vdash-r-r}} m_{\lambda, \mu} \chi_{\lambda, \mu} .
$$

Theorem

Let A be a finite-dimensional superalgebra with algebra superindex $\left(d_{0}, d_{1} ; s\right)$. Then A is fundamental if, and only if, for any n large enough, there exist $r \in[0, n]$, $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{t}\right) \vdash r$ and $\mu:=\left(\mu_{1}, \ldots, \mu_{u}\right) \vdash n-r$ with $\lambda_{d_{0}+1}+\cdots+\lambda_{t}=a$ and $\mu_{d_{1}+1} \cdots+\mu_{u}=b$ such that $a+b=s$ and $m_{\lambda, \mu} \neq \mathrm{o}$ in $\chi_{n}^{\mathbb{Z}_{2}}(A)$.

Work in Progress

4 New results

I'm working with A. Giambruno and D. La Mattina on a similar project in the context of algebras with involutions.
In particular,

- We also introduced a notion of fundamental $*$-algebra;
- We developed a theory for these $*$-algebras.

Thank you for listening! :D

