Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation

Marzia Mazzotta

Università del Salento

AGTA 2023

7th June 2023, Lecce

The Baxters are not the same...

Glen Earl Baxter (1930-1983) was an American mathematician. His research fields include probability theory and combinatorial analysis.

YTIC PROBLEM WHOSE SOLUTION FOLLOWS FROM A SIMPLE ALGEBRAIC IDENTITY

GLEN BAXTER

1. Introduction. It is convenient to describe the point of view of this paper in terms of a very simple example. The unique solution of $\frac{dy}{dx} = \lambda \varphi(x)y$,

Figure: Gian-Carlo Rota and G.E. Baxter

Rodney James Baxter (born in 1940) is an Australian physicist, specializing in statistical mechanics.

Figure: Chen-Ning Yang and R.J. Baxter

Marzia Mazzotta (Università del Salento) | Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation

Rota-Baxter operators and applications

Rota–Baxter operators on commutative algebras first appeared in 1960 in Baxter's probability studies and were subsequently investigated by several authors, including Rota:

G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math. 10 (1960) 731–742.

G.-C. Rota, *Baxter algebras and combinatorial identities*, I, II, Bull. Am. Math. Soc. 75 (1969) 325–329, Bull. Am. Math. Soc. 75 (1969) 330–334

Rota–Baxter operators on commutative algebras first appeared in 1960 in Baxter's probability studies and were subsequently investigated by several authors, including Rota:

G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math. 10 (1960) 731–742.

G.-C. Rota, *Baxter algebras and combinatorial identities*, I, II, Bull. Am. Math. Soc. 75 (1969) 325–329, Bull. Am. Math. Soc. 75 (1969) 330–334

They have connections with Mathematical Physics, number theory, Hopf algebras, combinatorics, et cetera, as one can see in:

L. Guo, *An Introduction to Rota-Baxter Algebra*, Surveys of Modern Mathematics, vol. 4, International Press/Higher Education Press, Somerville (MA, USA)/Beijing, 2012

The notion of Rota-Baxter on groups was studied in two papers:

L. Guo, H. Lang, Y. Sheng, *Integration and geometrization of Rota-Baxter Lie algebras*, Adv. Math. 387 (2021), Paper No. 107834, 34 pp.

V. G. Bardakov, V. Gubarev, *Rota-Baxter operators on groups*, Proc. Indian Acad. Sci. Math. Sci. 133 (2023), no. 1, Paper No. 4, 29 pp.

The notion of Rota-Baxter on groups was studied in two papers:

L. Guo, H. Lang, Y. Sheng, *Integration and geometrization of Rota-Baxter Lie algebras*, Adv. Math. 387 (2021), Paper No. 107834, 34 pp.

V. G. Bardakov, V. Gubarev, *Rota-Baxter operators on groups*, Proc. Indian Acad. Sci. Math. Sci. 133 (2023), no. 1, Paper No. 4, 29 pp.

Definition

Let (G, +) be a group. A map $\mathfrak{R} : G \to G$ is a *Rota–Baxter operator* if

 $\forall a, b \in G$ $\Re(a) + \Re(b) = \Re(a + \Re(a) + b - \Re(a)).$

Examples

1. If (G, +) is a group, $\mathfrak{E}(a) = 0$ and $\mathfrak{O}(a) = -a$, for every $a \in G$.

Examples

- 1. If (G, +) is a group, $\mathfrak{E}(a) = 0$ and $\mathfrak{O}(a) = -a$, for every $a \in G$.
- 2. If G = H + K is an exact factorization, the map $\Re(h + k) = -k$.

Examples

- 1. If (G, +) is a group, $\mathfrak{E}(a) = 0$ and $\mathfrak{O}(a) = -a$, for every $a \in G$.
- 2. If G = H + K is an exact factorization, the map $\Re(h + k) = -k$.

Proposition

Let (G, +) be a group and $\mathfrak{R} : G \to G$ an RB-operator on *G*. Then, the following are RB-operators on *G*:

- 1. $\tilde{\mathfrak{R}}(a) = -a + \mathfrak{R}(a);$
- **2.** if $\varphi \in \operatorname{Aut}(G)$, the map $\mathfrak{R}^{(\varphi)} \coloneqq \varphi^{-1}\mathfrak{R}\varphi$.

Examples

- 1. If (G, +) is a group, $\mathfrak{E}(a) = 0$ and $\mathfrak{O}(a) = -a$, for every $a \in G$.
- 2. If G = H + K is an exact factorization, the map $\Re(h + k) = -k$.

Proposition

Let (G, +) be a group and $\mathfrak{R} : G \to G$ an RB-operator on G. Then, the following are RB-operators on G:

- 1. $\tilde{\mathfrak{R}}(a) = -a + \mathfrak{R}(a);$
- **2.** if $\varphi \in \operatorname{Aut}(G)$, the map $\mathfrak{R}^{(\varphi)} \coloneqq \varphi^{-1}\mathfrak{R}\varphi$.

If *G* is abelian, RB-operators are all the endomorphisms of *G*. In general, any endomorphism $\mathfrak{R}: G \to G$ that is an RB-operator on a group *G* (not necessarily abelian) is called *RB-endomorphism* of *G*.

Idempotent Rota-Baxter endomorphisms

F. Catino, M. Mazzotta, P. Stefanelli, *Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation*, J. Algebra 622 (2023) 587–613

Theorem

Let (G, +) be a group and consider:

- $N \trianglelefteq G$ such that G/N is abelian,

- S a set of representatives of G/N that is a subgroup of G. Then, any map $\mathfrak{R}: G \to G$ such that

$\operatorname{Im} \mathfrak{R} = \mathcal{S} \qquad \& \qquad \mathfrak{R}(g) \in N + g,$

for every $g \in G$, is an idempotent RB-endomorphism of G. Moreover, every idempotent RB-endomorphism of G is of this form.

Rota-Baxter induced group

Proposition (G.L.S., 2021)

Let (G, +) be a group and \mathfrak{R} an RB-operator on G. Set

 $a \circ_{\mathfrak{R}} b \coloneqq a + \mathfrak{R}(a) + b - \mathfrak{R}(a),$

for all $a, b \in G$, then (G, \circ_{\Re}) is a group.

Rota-Baxter induced group

Proposition (G.L.S., 2021)

Let (G, +) be a group and \mathfrak{R} an RB-operator on G. Set

 $a \circ_{\mathfrak{R}} b \coloneqq a + \mathfrak{R}(a) + b - \mathfrak{R}(a),$

for all $a, b \in G$, then (G, \circ_{\Re}) is a group. Moreover,

- 1. \Re is a RB-operator on (G, \circ_{\Re}) ;
- **2.** the map $\mathfrak{R}: (G, +) \to (G, \circ_{\mathfrak{R}})$ is a homomorphism of groups.

Skew braces coming from RB-operators

V. G. Bardakov, V. Gubarev, *Rota-Baxter groups, skew left braces, and the Yang-Baxter equation*, J. Algebra 596 (2022), 328–351

Proposition (B.G., 2022)

Let (G, +) be a group and \mathfrak{R} an RB-operator on *G*. Then, $G_{\mathfrak{R}} := (G, +, \circ_{\mathfrak{R}})$ is a skew brace.

Skew braces coming from RB-operators

V. G. Bardakov, V. Gubarev, *Rota-Baxter groups, skew left braces, and the Yang-Baxter equation*, J. Algebra 596 (2022), 328–351

Proposition (B.G., 2022)

Let (G, +) be a group and \mathfrak{R} an RB-operator on G. Then, $G_{\mathfrak{R}} := (G, +, \circ_{\mathfrak{R}})$ is a skew brace.

Examples: The RB-operators $\mathfrak{E}(a) = 0$ and $\mathfrak{O}(a) = -a$ give rise to the *trivial* and *almost trivial* skew braces.

Skew braces coming from RB-operators

V. G. Bardakov, V. Gubarev, *Rota-Baxter groups, skew left braces, and the Yang-Baxter equation*, J. Algebra 596 (2022), 328–351

Proposition (B.G., 2022)

Let (G, +) be a group and \mathfrak{R} an RB-operator on G. Then, $G_{\mathfrak{R}} := (G, +, \circ_{\mathfrak{R}})$ is a skew brace.

Examples: The RB-operators $\mathfrak{E}(a) = 0$ and $\mathfrak{O}(a) = -a$ give rise to the *trivial* and *almost trivial* skew braces.

Note that not all skew braces come from RB-operators.

A. Caranti, L. Stefanello, Skew braces from Rota-Baxter operators: a cohomological characterisation and some examples, Ann. Mat. Pura Appl. (4) 202 (2023), no. 1, 1–13

Clifford semigroups

Inverse semigroup theory was initiated in the 1950s and it has been extensively studied over the years.

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

 The set E(S) of the idempotents of S is an inverse subsemigroup of S and if |E(S)| = 1, then S is a group;

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

- The set E(S) of the idempotents of S is an inverse subsemigroup of S and if |E(S)| = 1, then S is a group;
- **2.** $E(S) = \{aa^{-1}, a^{-1}a \mid a \in S\};$

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

 The set E(S) of the idempotents of S is an inverse subsemigroup of S and if |E(S)| = 1, then S is a group;

2.
$$E(S) = \{aa^{-1}, a^{-1}a \mid a \in S\}$$

3. $(ab)^{-1} = b^{-1}a^{-1}$ and $(a^{-1})^{-1} = a$, for all $a, b \in S$.

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

 The set E(S) of the idempotents of S is an inverse subsemigroup of S and if |E(S)| = 1, then S is a group;

2.
$$E(S) = \{aa^{-1}, a^{-1}a \mid a \in S\};$$

3. $(ab)^{-1} = b^{-1}a^{-1}$ and $(a^{-1})^{-1} = a$, for all $a, b \in S$.

S is a *Clifford semigroup* if it is an inverse semigroup such that, for each $a \in S$,

$$aa^{-1} = a^{-1}a.$$

RB-operators on Clifford semigroups

Definition (C., M., S., 2023)

If (S, +) is a Clifford semigroup, any map $\mathfrak{R}: S \to S$ satisfying

$$\forall a, b \in S \qquad \Re(a) + \Re(b) = \Re(a + \Re(a) + b - \Re(a))$$
$$a + \Re(a) - \Re(a) = a$$

is called *Rota–Baxter operator* on (S, +).

RB-operators on Clifford semigroups

Definition (C., M., S., 2023)

If (S, +) is a Clifford semigroup, any map $\mathfrak{R}: S \to S$ satisfying

$$\forall a, b \in S \qquad \Re(a) + \Re(b) = \Re(a + \Re(a) + b - \Re(a))$$
$$a + \Re(a) - \Re(a) = a$$

is called *Rota–Baxter operator* on (S, +).

Example

If $\varphi \in \text{End}(S)$ such that $\varphi^2 = \varphi$ and $\varphi(e) = e$, for every $e \in E(S)$, then the map $\mathfrak{R} := -\varphi$ is an RB-operator on *S*. As special cases, $\mathfrak{E}(a) = a - a$ and $\mathfrak{O}(a) = -a$, for every $a \in S$.

Rota-Baxter induced Clifford semigroup

Proposition (C., M., S., 2023)

Let \mathfrak{R} an RB-operator on a Clifford semigroup (S, +). Set

 $a \circ_{\mathfrak{R}} b \coloneqq a + \mathfrak{R}(a) + b - \mathfrak{R}(a),$

for all $a, b \in S$, then (S, \circ_{\Re}) is a Clifford semigroup.

Rota-Baxter induced Clifford semigroup

Proposition (C., M., S., 2023)

Let \mathfrak{R} an RB-operator on a Clifford semigroup (S, +). Set

 $a \circ_{\mathfrak{R}} b \coloneqq a + \mathfrak{R}(a) + b - \mathfrak{R}(a),$

for all $a, b \in S$, then (S, \circ_{\Re}) is a Clifford semigroup.

Proposition (C., M., S., 2023)

 $S_{\mathfrak{R}} \coloneqq (S, +, \circ_{\mathfrak{R}})$ is a dual weak brace.

Rota-Baxter induced Clifford semigroup

Proposition (C., M., S., 2023)

Let \mathfrak{R} an RB-operator on a Clifford semigroup (S, +). Set

 $a \circ_{\mathfrak{R}} b \coloneqq a + \mathfrak{R}(a) + b - \mathfrak{R}(a),$

for all $a, b \in S$, then (S, \circ_{\Re}) is a Clifford semigroup.

Proposition (C., M., S., 2023)

 $S_{\mathfrak{R}} \coloneqq (S, +, \circ_{\mathfrak{R}})$ is a dual weak brace.

F. Catino, M. Mazzotta, M.M. Miccoli, P. Stefanelli, *Set-theoretic solutions of the Yang-Baxter equation associated to weak braces*, Semigroup Forum 104 (2) (2022) 228–255

A *dual weak brace* is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are Clifford semigroups satisfying - $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b - a + a \circ c$, - $\forall a \in S$ $a \circ a^- = -a + a$, where -a and a^- denote the inverses of (S, +) and (S, \circ) .

A *dual weak brace* is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are Clifford semigroups satisfying - $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b - a + a \circ c$, - $\forall a \in S$ $a \circ a^- = -a + a$, where -a and a^- denote the inverses of (S, +) and (S, \circ) .

A *dual weak brace* is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are Clifford semigroups satisfying - $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b - a + a \circ c$, - $\forall a \in S$ $a \circ a^- = -a + a$, where -a and a^- denote the inverses of (S, +) and (S, \circ) .

If |E(S)| = 1, then $(S, +, \circ)$ is a skew brace.

A *dual weak brace* is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are Clifford semigroups satisfying - $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b - a + a \circ c$, - $\forall a \in S$ $a \circ a^- = -a + a$, where -a and a^- denote the inverses of (S, +) and (S, \circ) .

If |E(S)| = 1, then $(S, +, \circ)$ is a skew brace.

If $(S, +, \circ)$ is a dual weak brace, then the map

$$r_{S}(a,b) = (a \circ (a^{-} + b), (a^{-} + b)^{-} \circ b),$$

for all $a, b \in S$, is a set-theoretic solution of the YBE.

 $\phi_{\alpha,\alpha} = \mathrm{id}_{S_{\alpha}}$

Ga

 $\phi_{\alpha,\alpha\beta}$

 $\phi_{\alpha,\beta}$

 $G_{\beta} \supset \mathrm{id}_{S_{\beta}}$

 $\phi_{\beta,\alpha\beta}$

 $G_{\alpha\beta}$

id Sab

Let us consider the following:

- Y a (lower) semilattice;
- { $G_{\alpha} \mid \alpha \in Y$ } a family of disjoint groups;
- For each pair α, β of elements of Y such that α ≥ β, let φ_{α,β} : G_α → G_β be a homomorphism of groups such that

1. $\phi_{\alpha,\alpha}$ is the identical automorphism of G_{α} , for every $\alpha \in Y$;

2.
$$\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$$
 if $\alpha \ge \beta \ge \gamma$.

Marzia Mazzotta (Università del Salento) | Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation

Strong RB-operators

Theorem (C.M.S., 2023)

Let $S = [Y; G_{\alpha}; \phi\alpha, \beta]$ be a Clifford semigroup and assume that \Re_{α} is a Rota–Baxter operator on each group $(G_{\alpha}, +)$, for every $\alpha \in Y$. Then, the map $\Re : S \to S$ given by

 $\Re(a) = \Re_{\alpha}(a),$

for every $a \in G_{\alpha}$, is a RB-operator on (S, +) if and only if the condition

 $\Re_{\beta}\phi_{\alpha,\beta} = \phi_{\alpha,\beta}\Re_{\alpha},$

is satisfied, for all $\alpha, \beta \in Y$ such that $\alpha \ge \beta$.

Thank you!

Marzia Mazzotta (Università del Salento) | Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation