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My personal travel

Joking aside, my personal travel for the past four years was:

2019: Spectrum of a ring, of any algebraic structure.
⇓
George Janelidze: The beauty of non-associative operations (for
instance, the commutator of two normal subgroups of a group; you
understand that product of ideals in rings = commutator of normal
subgroups in groups, and explains why nilpotent 6= solvable for
groups, while solvable rings don’t exist – because
nilpotent = solvable for rings).
⇓
Agata Smoktunowicz (Graz, July 2021; Jerusalem, November
2021): The beauty of non-distributive operations (skew braces,
Leandro Vendramin)
⇓
Agata: Pre-Lie algebras
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In this talk

In this talk I will focus on pre-Lie algebras:

(1) M. Cerqua and A. Facchini, Pre-Lie algebras, their
multiplicative lattice, and idempotent endomorphisms, to appear in
Functor Categories, Module Theory, Algebraic Analysis, and
Constructive Methods, A. Martsinkovski Ed., Springer Proc. Math.
and Stat., 2023, also available at: arXiv:2301.02627.

(2) F. Azmy Ebrahim and A. Facchini, Idempotent
pre-endomorphisms of algebras, submitted for publication, 2023,
available at: arXiv:2304.05079.
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Pre-Lie algebras

What are they? Where do they come from? What was the original
problem?

For any ring R (an associative ring, possibly without an identity),
we can define the commutator [−,−] : R × R → R, setting
[x , y ] = x · y − y · x for every x , y ∈ R.

The algebra (R,+, [−,−]) turns out to be a Lie algebra:
(1) (alternativity, or anticommutativity:) [x , x ] = 0 for every
x ∈ R; and
(2) (the Jacobi identity:) [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 for
all x , y , z ∈ R.
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we can define the commutator [−,−] : R × R → R, setting
[x , y ] = x · y − y · x for every x , y ∈ R.

The algebra (R,+, [−,−]) turns out to be a Lie algebra:
(1) (alternativity, or anticommutativity:) [x , x ] = 0 for every
x ∈ R; and
(2) (the Jacobi identity:) [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 for
all x , y , z ∈ R.

(1) is trivial.
(2) is also very easy (it is a standard exercise in the first lecture of
every course of Lie algebras; 12 products of x , y , z , in all their
possible 6 orders, 6 with plus and 6 with minus, of the form
(xy)z − x(yz) say, and they pairwise cancel because the operation
· in the ring R is associative.



Associativity of · is not really necessary to prove the Jacobi
identity, something less is sufficient.



Algebras

k a commutative ring with identity.

A k-algebra is a k-module kM with a further k-bilinear operation
M ×M → M, (x , y) 7→ xy (equivalently, a k-module morphism
M ⊗k M → M).

The opposite Mop of an algebra M is defined taking as
multiplication in Mop the mapping (x , y) 7→ yx .
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Homomorphisms.

If M and M ′ are two k-algebras, a k-linear mapping ϕ : M → M ′ is
a k-algebra homomorphism if ϕ(xy) = ϕ(x)ϕ(y) for every
x , y ∈ M.

k-algebras form a variety in the sense of Universal Algebra.

If M is any k-algebra, its endomorphisms form a monoid, that is, a
semigroup with a two-sided identity, with respect to composition ◦
of mappings.
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Pre-Lie algebras

A pre-Lie k-algebra is a k-algebra (M, ·) satisfying the identity

(x · y) · z − x · (y · z) = (y · x) · z − y · (x · z) (1)

for every x , y , z ∈ M.

For any k-algebra (M, ·), defining the commutator
[x , y ] = x · y − y · x for every x , y ∈ M, the algebra (M, [−,−]) is
anticommutative (i.e., [x , y ] = −[y , x ] and [x , x ] = 0), but it is
not-necessarily a Lie algebra.

If (M, ·) is a pre-Lie algebra, one gets that (M, [−,−]) is a Lie
algebra, called the Lie algebra sub-adjacent to the pre-Lie algebra
(M, ·).
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Pre-Lie algebras

Pre-Lie algebras are also called Vinberg algebras or left-symmetric
algebras.

This last name refers to the fact that in (1) one
exchanges the first two variables on the left. A right-symmetric
algebra is an algebra in which, for every x , y , z ∈ M,
(x · y) · z − x · (y · z) = (x · z) · y − x · (z · y).

It is easily seen that the category of left-symmetric algebras and
the category of right-symmetric algebras are isomorphic (the
categorical isomorphism is given by M 7→ Mop).



Pre-Lie algebras

Pre-Lie algebras are also called Vinberg algebras or left-symmetric
algebras. This last name refers to the fact that in (1) one
exchanges the first two variables on the left.

A right-symmetric
algebra is an algebra in which, for every x , y , z ∈ M,
(x · y) · z − x · (y · z) = (x · z) · y − x · (z · y).

It is easily seen that the category of left-symmetric algebras and
the category of right-symmetric algebras are isomorphic (the
categorical isomorphism is given by M 7→ Mop).



Pre-Lie algebras

Pre-Lie algebras are also called Vinberg algebras or left-symmetric
algebras. This last name refers to the fact that in (1) one
exchanges the first two variables on the left. A right-symmetric
algebra is an algebra in which, for every x , y , z ∈ M,
(x · y) · z − x · (y · z) = (x · z) · y − x · (z · y).

It is easily seen that the category of left-symmetric algebras and
the category of right-symmetric algebras are isomorphic (the
categorical isomorphism is given by M 7→ Mop).



Pre-Lie algebras

Pre-Lie algebras are also called Vinberg algebras or left-symmetric
algebras. This last name refers to the fact that in (1) one
exchanges the first two variables on the left. A right-symmetric
algebra is an algebra in which, for every x , y , z ∈ M,
(x · y) · z − x · (y · z) = (x · z) · y − x · (z · y).

It is easily seen that the category of left-symmetric algebras and
the category of right-symmetric algebras are isomorphic (the
categorical isomorphism is given by M 7→ Mop).



Example 1. Every associative algebra is a pre-Lie algebra.

The name “pre-Lie algebras” is wrong.

A much better term would have been “pre-associative algebras”.
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A hierarchy of algebras

(1) Associative algebras.

(2) Pre-Lie algebras.

(3) Lie admissible algebras (= algebras (M, ·) for which
(M, [−,−]) is a Lie algebra).

(4) (Arbitary non-associative) algebras.



Associator. Lie admissible algebras

The associator of a k-algebra M is defined as
(x , y , z) = (xy)z − x(yz) for all x , y , z in M.

Being a pre-Lie algebra is equivalent to (x , y , z) = (y , x , z) for all
x , y , z ∈ M.

Being a Lie-admissible algebra is equivalent to

(x , y , z) + (y , z , x) + (z , x , y) = (y , x , z) + (x , z , y) + (z , y , x)

for every x , y , z ∈ M.
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Derivations on k[x1, . . . , xn]
n.

Let k be a commutative ring with identity, n ≥ 1 be an integer,
and k[x1, . . . , xn] be the ring of polynomials in the n
indeterminates x1, . . . , xn with coefficients in k . Let A be the free
k[x1, . . . , xn]-module k[x1, . . . , xn]n with free set {e1, . . . , en} of
generators. As a k-module, A is the free k-module with free set of
generators the set { x i11 . . . x inn ej | i1, . . . , in ≥ 0, j = 1, . . . , n}.

Define a multiplication on A setting, for every
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ A,

v · u = (
n∑

j=1

vj
∂u1
∂xj

, . . . ,
n∑

j=1

vj
∂un
∂xj

).

Then A is a pre-Lie k-algebra.
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Rooted trees.

Recall that a tree is an undirected graph in which any two vertices
are connected by exactly one path, or equivalently a connected
acyclic undirected graph. A rooted tree of degree n is a pair (T , r),
where T is a tree with n vertices, and its root r is a vertex of T .

Let k be a commutative ring with identity and Tn be the free
k-module with free set of generators the set of all isomorphism
classes of rooted trees of degree n. Set

T :=
⊕
n≥1
Tn.
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Rooted trees.

Define a multiplication on T setting, for every pair T1,T2 of
rooted trees,

T1 · T2 =
∑

v∈V (T2)

T1 ◦v T2,

where V (T2) is the set of vertices of T2, and T1 ◦v T2 is the
rooted tree obtained by adding to the disjoint union of T1 and T2

a further new edge joining the root vertex of T1 with the vertex v
of T2. The root of T1 ◦v T2 is defined to be the same as the root
of T2. To get a multiplication on T , extend this multiplication by
k-bilinearity.



Rooted trees.
Let us give an example. Suppose

T1 =

1

2 3

and T2 =

1

2

Then

T1 ◦1 T2 =

1

2 3

4 5

and T1 ◦2 T2 =

1

2

3

4 5

.



Rooted trees.

Therefore

T1 · T2 =

1

2 3

4 5

+

1

2

3

4 5

In this way, one gets a pre-Lie k-algebra T .



Pre-morphisms

A k-module morphism ϕ : M → M ′, where M,M ′ are arbitrary
(not-necessarily associative) k-algebras, is a pre-morphism if
ϕ(xy)− ϕ(x)ϕ(y) = ϕ(yx)− ϕ(y)ϕ(x) for every x , y ∈ M.

Lemma
(a) Every k-algebra morphism is a pre-morphism.
(b) The composite mapping of two pre-morphisms is a
pre-morphism.
(c) The inverse mapping of a bijective pre-morphism is a
pre-morphism.
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Pre-morphisms

For any (not-necessarily associative) k-algebra M, there is a
mapping λ : M → End(kM), where λ : x 7→ λx , λx : M → M, and
λx(a) = xa.

(1) The mapping λ is a k-algebra morphism if and only if M is
associative.

(2) The mapping λ is a pre-morphism if and only if M is a pre-Lie
algebra.
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Two categories

Category Algk of (not-necessarily associative) k-algebras with their
homomorphisms.

Category Algk,p of k-algebras and their pre-morphisms.

There is a functor U : Algk,p → Algk that associates with any
k-algebra (A, ·) its sub-adjacent anticommutative algebra
(A, [−,−]), where [x , y ] = xy − yx for every x , y ∈ A. It associates
with any pre-morphism f : (A, ·)→ (B, ·) in Algk , the same
mapping U(f ) = f : (A, [−,−])→ (B, [−,−]).
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Examples

(1) The center Z (A) of an associative algebra M is
Z (M) = { x ∈ M | [x ,M] = {0} }. It is a pre-ideal of M.

(2) The kernel of any pre-morphism (=the inverse image of 0) is
always a pre-ideal.



Examples
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Pre-derivations

Corresponding to the notion of pre-morphism, there is a notion of
pre-derivation. We say that a k-module endomorphism
δ : M → M, where M is an arbitrary (not-necessarily associative)
k-algebra, is a pre-derivation if

δ(xy)− δ(x)y − xδ(y) = δ(yx)− δ(y)x − yδ(x)

for every x , y ∈ M.



Modules over a pre-Lie algebra

There is a natural notion of module over a pre-Lie algebra:

A module M over a pre-Lie k-algebra (A, ·) is a k-module M with
a pre-morphism λ : (A, ·)→ (End(kM), ◦).
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Commutator of two ideals in a pre-Lie algebra

For pre-Lie algebras, Smith=Huq.

Theorem
The commutator [I , J] of two ideals I and J of a pre-Lie algebra A
is the ideal of A generated by the subset { i · j , j · i | i ∈ I , j ∈ J }.



Dorroh extension of a pre-Lie algebra

It is possible to adjoin an identity to a pre-Lie algebra.

An identity in a pre-Lie k-algebra A is an element, which we will
denote by 1A, such that a · 1A = 1A · a = a for every a ∈ A. If A
has an identity, we will say that A is unital.

An element e of A is idempotent if e2 := e · e = e. The zero of A
is always an idempotent element of A, and the identity, when it
exists, is also an idempotent element of A.
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Dorroh extension of a pre-Lie algebra

Let A be any fixed pre-Lie k-algebra.

Then the associative commutative ring k is a pre-Lie k-algebra,
and there is a one-to-one correspondence between the set of all the
pre-Lie k-algebra morphisms k → A and the set of all idempotent
elements of A.

For any idempotent element e of A the corresponding morphism
ϕe : k → A is defined by ϕe(λ) = λe for every λ ∈ k .

Conversely, for any morphism ϕ : k → A the corresponding
idempotent element of A is ϕ(1).
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Dorroh extension of a pre-Lie algebra

For any fixed pre-Lie k-algebra A it is possible to construct the
k-module direct sum A⊕ k with multiplication defined by

(x , α)(y , β) = (x · y + βx + αy , αβ)

for every (x , α), (y , β) ∈ A⊕ k.

Then A⊕ k turns out to be a pre-Lie k-algebra with identity (0, 1).

The Lie algebra sub-adjacent this pre-Lie algebra A⊕ k is the direct
sum of the Lie algebra (A, [−,−]) and the abelian Lie algebra k .

(This k-algebra A⊕ k , usually denoted A#k , is a particular case of
semidirect product of pre-Lie algebras.).
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Dorroh extension of a pre-Lie algebra

Let PreLk,1 be the category of all unital pre-Lie k-algebras. Its
objects are the pre-Lie k-algebras A with an identity. Its morphisms
f : A→ B are the k-algebra morphisms f such that f (1A) = 1B .



Dorroh extension of a pre-Lie algebra

There is also a further category involved. It is the category
PreLk,1,a of all unital pre-Lie k-algebras with an augmentation.

Its objects are all the pairs (A, εA), where A is a unital pre-Lie
k-algebra and εA : A→ k is a morphism in PreLk,1 that is a left
inverse for ϕ1A : k → A, ϕ1A : λ ∈ k → λ · 1A :

k
ϕ1A //A

εA //k .

The morphisms f : (A, εA)→ (B, εB) are the morphisms f : A→ B
in PreLk,1 such that εB f = εA. For instance, the k-algebra A#k is
clearly a unital k-algebra with augmentation: the augmentation is
the canonical projection π2 : A#k = A⊕ k → k onto the second
summand.
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Dorroh extension of a pre-Lie algebra

It is easy to see that:

Theorem
There is a category equivalence F : PreLk → PreLk,1,a that
associates with any object A of PreLk the k-algebra with
augmentation F (A) := (A#k , π2). The quasi-inverse of F is the
functor PreLk,1,a → PreLk, that associates with each unital pre-Lie
k-algebra with augmentation (A, εA) the kernel ker(εA) of the
augmentation.



Idempotent endomorphisms

Proposition

Let M be a k-algebra. There is a bijection betwee the set
E := { e ∈ Endk(M) | e is a morphism and e : M → M is
idempotent } of all idempotent endomorphisms of M and the set P
of all pairs (K ,B), where K is a ideal of M, B is a k-subalgebra of
B, and kM = K ⊕ B as a k-module.

The pair corresponding to a endomorphism e ∈ E is the pair
(ker(f ), f (M)).

Conversely, the idempotent endomorphism that corresponds to a
pair (K ,B) ∈ P is the composite mapping of the second canonical
projection π2 : kM = K ⊕ B → B and the inclusion ε2 : B ↪→ kM.
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If M is a k-algebra, K is a ideal of M, B is a k-subalgebra of B,
and kM = K ⊕ B as a k-module, there there is a pair (λ, ρ) of
k-linear mappings B → End(Ik) defined by λ(b)(i) = bi and
ρ(b)(i) = ib for every b ∈ B and i ∈ I .

In the particular case where M is a pre-Lie k-algebra, one finds
that:
(a) λ : (B, ·)→ (End(Ik), ◦) is a pre-morphism.
(b) ρa ◦ λb − λb ◦ ρa = ρa ◦ ρb − ρb·a for every a, b ∈ B.
(c) λa(i) · j − λa(i · j) = ρa(i) · j − i · λa(j) for every a ∈ B and
i , j ∈ I .
(d) ρa(i · j)− i · ρa(j) = ρa(j · i)− j · ρa(i) for every a ∈ B and
i , j ∈ I .
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Action of a pre-Lie algebra on another pre-Lie algebra

Let I and B be pre-Lie k-algebras and (λ, ρ) a pair of k-linear
mappings B → End(Ik) such that:
(a) λ : (B, ·)→ (End(Ik), ◦) is a pre-morphism.
(b) ρa ◦ λb − λb ◦ ρa = ρa ◦ ρb − ρb·a for every a, b ∈ B.
(c) λa(i) · j − λa(i · j) = ρa(i) · j − i · λa(j) for every a ∈ B and
i , j ∈ I .
(d) ρa(i · j)− i · ρa(j) = ρa(j · i)− j · ρa(i) for every a ∈ B and
i , j ∈ I .
On the k-module direct sum I ⊕ B define a multiplication ∗ setting

(i , b) ∗ (j , c) = (i · j + λb(j) + ρc(i), b · c)

for every (i , b), (j , c) ∈ I ⊕ B. Then (I ⊕ B, ∗) is a pre-Lie
k-algebra (the semidirect product).



Idempotent pre-endomorphisms

Idempotent endomorphisms of an algebra are related to
semidirect-product decompositions of the algebra.

It is possible to describe idempotent pre-endomorphisms of a
k-algebra (M, ·).

Here by idempotent pre-endomorphism e : M → M of a k-algebra
M we mean a k-linear mapping such that e2 = e and

e(xy)− e(x)e(y) = e(yx)− e(y)e(x) (2)

for every x , y ∈ M.

Recall that it is possible to associate to any k-algebra (M, ·) the
anticommutative k-algebra (M, [−,−]).
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Dualizing. Two possible ways

Our definition of pre-morphism was
ϕ(xy)− ϕ(x)ϕ(y) = ϕ(yx)− ϕ(y)ϕ(x) for every x , y ∈ M.

Can we modify/dualize this formula?

There are two very natural ways:
The first is replacing our condition with

ϕ(xy)− ϕ(x)ϕ(y) = −(ϕ(yx)− ϕ(y)ϕ(x))

and the second is replacing it with

ϕ(xy) + ϕ(x)ϕ(y) = ϕ(yx) + ϕ(y)ϕ(x).

The first possibility leads to the notion of Jordan algebras, the
second one to anti-pre-Lie algebras.
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First possible way:
ϕ(xy)− ϕ(x)ϕ(y) = −(ϕ(yx)− ϕ(y)ϕ(x)). Jordan
algebras

Jordan algebra = k-algebra for which
xy = yx (commutative algebra)
(xy)(xx) = x(y(xx)) (Jordan identity).

In a Jordan algebra powers xn of an element work well:
(1) xn = x · · · x is independent of how we parenthesize the
expression on the right.
(2) λxm ◦ λxn = λxn ◦ λxm for every pair of integers m, n ≥ 0.
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Anti-pre-Lie algebras

This is an extremely recent notion [Guilai Liu and Chengming Bai,
Anti-pre-Lie algebras, Novikov algebras and commutative
2-cocycles on Lie algebras, arXiv
https://doi.org/10.48550/arXiv.2207.06200].

Let k be a commutative ring with identity and (A, ·) be a
k-algebra. As usual, define [x , y ] := x · y − y · x for every x , y ∈ A.

The k-algebra A is an anti-pre-Lie k-algebra if

(x · y) · z + x · (y · z) = (y · x) · z + y · (x · z) (3)

and
[x , y ] · z + [y , z ] · x + [z , x ] · y = 0 (4)

for every x , y , z ∈ A.
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