Iker de las Heras

University of the Basque Country Department of Mathematics

June 2023

Iker de las Heras

Hausdorff dimension in profinite groups

June 2023 1 / 34

Let G be a countably based profinite group G and let

$$S: G = G_0 \ge G_1 \ge \cdots$$

be a filtration of G, that is, a descending chain of open normal subgroups of G such that $\bigcap_{i\geq 1} G_i = 1$.

Let G be a countably based profinite group G and let

$$S: G = G_0 \ge G_1 \ge \cdots$$

be a filtration of G, that is, a descending chain of open normal subgroups of G such that $\bigcap_{i\geq 1} G_i = 1$.

The filtration S induces a translation-invariant metric d^S on G defined as

$$d^{\mathcal{S}}(x,y) = \inf\{|G:G_n|^{-1} \mid xy^{-1} \in G_n\},\$$

where $x, y \in G$.

Let G be a countably based profinite group G and let

$$S: G = G_0 \ge G_1 \ge \cdots$$

be a filtration of G, that is, a descending chain of open normal subgroups of G such that $\bigcap_{i\geq 1} G_i = 1$.

The filtration S induces a translation-invariant metric d^S on G defined as

$$d^{\mathcal{S}}(x,y) = \inf\{|G:G_n|^{-1} \mid xy^{-1} \in G_n\},\$$

where $x, y \in G$.

This metric, in turns, defines the Hausdorff dimension function $\operatorname{hdim}_{G}^{S}(X)$ for any subset $X \subseteq G$ with respect to the filtration series S.

Iker de las Heras

Theorem (Y. Barnea, A. Shalev)

Let G be a countably based profinite group and let $S: G = G_0 \ge G_1 \ge G_2 \ge \cdots$ be a filtration of G. If H is a closed subgroup of G, then

$$\operatorname{hdim}_{G}^{S}(H) = \liminf_{n \to \infty} \frac{\log |HG_{n} : G_{n}|}{\log |G : G_{n}|} \in [0, 1].$$

Theorem (Y. Barnea, A. Shalev)

Let G be a countably based profinite group and let $S: G = G_0 \ge G_1 \ge G_2 \ge \cdots$ be a filtration of G. If H is a closed subgroup of G, then

$$\operatorname{hdim}_{G}^{\mathcal{S}}(H) = \liminf_{n \to \infty} \frac{\log |HG_{n} : G_{n}|}{\log |G : G_{n}|} \in [0, 1].$$

Examples

Let G be a countably based profinite group and S any filtration series of G. Then:

- $\operatorname{hdim}_{G}^{S}(N) = 1$ for every open normal subgroup N of G.
- $\operatorname{hdim}_{G}^{S}(H) = 0$ for every finite subgroup H of G.

It is natural to ask which values can take the Hausdorff dimensions of the closed subgroups of a profinite group G.

It is natural to ask which values can take the Hausdorff dimensions of the closed subgroups of a profinite group G.

Definition

Let G be a countably based profinite group and let S be a filtration of G. The Hausdorff spectrum of G with respect to the filtration S is

 $\operatorname{hspec}^{\mathcal{S}}(G) = \{\operatorname{hdim}_{G}^{\mathcal{S}}(H) \mid H \leq_{c} G\} \subseteq [0, 1].$

It is natural to ask which values can take the Hausdorff dimensions of the closed subgroups of a profinite group G.

Definition

Let G be a countably based profinite group and let S be a filtration of G. The Hausdorff spectrum of G with respect to the filtration S is

$$\operatorname{nspec}^{\mathcal{S}}(G) = \{\operatorname{hdim}_{G}^{\mathcal{S}}(H) \mid H \leq_{c} G\} \subseteq [0, 1].$$

Remark

By the examples above, $\{0,1\} \subseteq \operatorname{hspec}^{\mathcal{S}}(G)$ for every filtration \mathcal{S} of G.

Example

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$.

Example

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^i) \rangle$ for every $i \ge 0$.

Example

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^S(H) = 1/2$, and $\operatorname{hspec}^S(G) = \{0, 1/2, 1\}$.

Example

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1/2$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1/2, 1\}$.

$$p^{G/G_1}$$

Example

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1/2$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1/2, 1\}$.

Example

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1/2$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1/2, 1\}$.

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$.

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$.

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^S(H) = 1$, and $\operatorname{hspec}^S(G) = \{0, 1\}$.

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1\}$.

$$G/G_1$$

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1\}$.

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1\}$.

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Consider $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$. Then $\operatorname{hdim}_G^{\mathcal{S}}(H) = 1$, and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1\}$.

Similarly, if $S : G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^{2^i}) \rangle$ for every $i \ge 0$, then $\operatorname{hdim}_G^S(H) = 0$, and $\operatorname{hspec}^S(G) = \{0, 1\}$.

Iker de las Heras

Hausdorff dimension in profinite groups

Actually, very pathological things may occur.

Actually, very pathological things may occur.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$, and let $S : G = G_0 \ge G_1 \ge \cdots$ be a filtration of G such that

$$G_i = \langle (p^{a_i}, ip^{a_i}), (0, p^{b_i}) \rangle,$$

where $a_0 = b_0 = 0$ and $a_i = p^i$, $b_i = p^i + 1$ for $i \ge 1$. Then,

$$[1/p+1, p-1/p+1] \subseteq \operatorname{hspec}^{\mathcal{S}}(G).$$

Is the Hausdorff spectrum bounded among the filtrations that give finite Hausdorff spectrum?

Is the Hausdorff spectrum bounded among the filtrations that give finite Hausdorff spectrum?

Theorem (IH, B. Klopsch, A. Thillaisundaram)

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$, and let $I \subseteq [0, 1]$ be finite with $0, 1 \in I$. Then there exists a filtration S of G such that

Is the Hausdorff spectrum bounded among the filtrations that give finite Hausdorff spectrum?

Theorem (IH, B. Klopsch, A. Thillaisundaram)

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$, and let $I \subseteq [0, 1]$ be finite with $0, 1 \in I$. Then there exists a filtration S of G such that

$$hspec^{\mathcal{S}}(G) = I.$$

We need to restrict our attention to specific filtration series.

Standard filtration series for finitely generated pro-p groups:

Standard filtration series for finitely generated pro-p groups:

• The *lower* p-series \mathcal{L} :

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} :

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$

• The *p*-power series \mathcal{P} :

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

- The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$
- The *p*-power series \mathcal{P} :

$$\pi_i(G) = G^{p^i} = \langle g^{p^i} \mid g \in G \rangle$$
 for $i \ge 0$.
Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$

• The *p*-power series \mathcal{P} :

$$\pi_i(G)=G^{p^i}=\langle g^{p^i}\mid g\in G
angle$$
 for $i\geq 0.$

• The iterated p-power series \mathcal{I} :

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$

• The *p*-power series \mathcal{P} :

$$\pi_i(G)=G^{p^i}=\langle g^{p^i}\mid g\in G
angle$$
 for $i\geq 0.$

• The iterated p-power series \mathcal{I} : $\pi_0^*(G) = G$ and $\pi_i^*(G) = \pi_{i-1}^*(G)^p$ for $i \ge 1$,

Iker de las Heras

Hausdorff dimension in profinite groups

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$

• The *p*-power series \mathcal{P} :

$$\pi_i(G)=G^{p^i}=\langle g^{p^i}\mid g\in G
angle$$
 for $i\geq 0.$

• The iterated p-power series \mathcal{I} : $\pi_0^*(G) = G$ and $\pi_i^*(G) = \pi_{i-1}^*(G)^p$ for $i \geq 1$,

• The *Frattini series* \mathcal{F} :

Iker de las Heras

Standard filtration series for finitely generated pro-*p* groups:

• The lower p-series
$$\mathcal{L}$$
: $P_1(G) = G$ and
 $P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G]$ for $i \ge 2$,

• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and $D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)]$ for $i \ge 2$

• The *p*-power series \mathcal{P} :

$$\pi_i(G)=G^{p^i}=\langle g^{p^i}\mid g\in G
angle$$
 for $i\geq 0.$

• The iterated p-power series \mathcal{I} : $\pi_0^*(G) = G$ and $\pi_i^*(G) = \pi_{i-1}^*(G)^p$ for $i \ge 1$,

• The Frattini series \mathcal{F} : $\Phi_0(G) = G$ and

$$\Phi_i(\mathcal{G}) = \Phi_{i-1}(\mathcal{G})^p[\Phi_{i-1}(\mathcal{G}), \Phi_{i-1}(\mathcal{G})] \text{ for } i \ge 1.$$

Iker de las Heras

p-adic analytic group

p-adic analytic pro-*p* groups have many characterisations.

- G has finite rank.
- G is finitely generated and virtually powerful.

- G has finite rank.
- G is finitely generated and virtually powerful.
- G is finitely generated and virtually uniform.

- G has finite rank.
- G is finitely generated and virtually powerful.
- G is finitely generated and virtually uniform.
- G has polynomial subgroup growth.

- G has finite rank.
- G is finitely generated and virtually powerful.
- G is finitely generated and virtually uniform.
- G has polynomial subgroup growth.
- G is finitely generated and $D_i(G) = D_{i+1}(G)$ for some $i \ge 1$.

- G has finite rank.
- G is finitely generated and virtually powerful.
- G is finitely generated and virtually uniform.
- G has polynomial subgroup growth.
- G is finitely generated and $D_i(G) = D_{i+1}(G)$ for some $i \ge 1$.
- *G* is the product of finitely many procyclic subgroups.

- G has finite rank.
- G is finitely generated and virtually powerful.
- G is finitely generated and virtually uniform.
- G has polynomial subgroup growth.
- G is finitely generated and $D_i(G) = D_{i+1}(G)$ for some $i \ge 1$.
- *G* is the product of finitely many procyclic subgroups.

Etc.

To each uniform pro-p group U one can give the structure of a free \mathbb{Z}_p -Lie algebra L such that:

To each uniform pro-p group U one can give the structure of a free \mathbb{Z}_p -Lie algebra L such that:

• U^{p^i} is equal to $p^i L$.

To each uniform pro-p group U one can give the structure of a free \mathbb{Z}_p -Lie algebra L such that:

• If
$$U = \langle x_1, \dots, x_d \rangle$$
, then $L = \langle x_1, \dots, x_d \rangle_{\mathbb{Z}_p}$.

To each uniform pro-p group U one can give the structure of a free \mathbb{Z}_p -Lie algebra L such that:

- U^{p^i} is equal to $p^i L$.
- If $U = \langle x_1, \ldots, x_d \rangle$, then $L = \langle x_1, \ldots, x_d \rangle_{\mathbb{Z}_p}$.
- $\operatorname{Aut}(U)$ is a linear group over \mathbb{Z}_p .

To each uniform pro-p group U one can give the structure of a free \mathbb{Z}_p -Lie algebra L such that:

•
$$U^{p^i}$$
 is equal to $p^i L$.

• If
$$U = \langle x_1, \ldots, x_d \rangle$$
, then $L = \langle x_1, \ldots, x_d \rangle_{\mathbb{Z}_p}$.

Aut(U) is a linear group over ℤ_p.

Let G be a p-adic analytic group and let U be a uniform open normal subgroup of G.

To each uniform pro-p group U one can give the structure of a free \mathbb{Z}_p -Lie algebra L such that:

•
$$U^{p^i}$$
 is equal to $p^i L$.

• If
$$U = \langle x_1, \ldots, x_d \rangle$$
, then $L = \langle x_1, \ldots, x_d \rangle_{\mathbb{Z}_p}$.

Aut(U) is a linear group over ℤ_p.

Let G be a p-adic analytic group and let U be a uniform open normal subgroup of G. Then, L is a \mathbb{Z}_pG -module.

Finite Hausdorff spectra and *p*-adic analytic groups

Problem 1

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. If G is p-adic analytic, does it follow that $hspec^{S}(G)$ is finite?

Problem 1

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. If G is p-adic analytic, does it follow that $hspec^{S}(G)$ is finite?

Problem 2

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. If $hspec^{S}(G)$ is finite, does it follow that G is p-adic analytic?

Partial answer to Problem 1

Theorem (Y. Barnea, A. Shalev; B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a p-adic analytic pro-p group and H a closed subgroup of G. Then, for $S \in \{D, P, I, F\}$, we have

$$\operatorname{hdim}_{G}^{\mathcal{S}}(H) = rac{\operatorname{dim}(H)}{\operatorname{dim}(G)},$$

where $\dim(H)$ and $\dim(G)$ stand for the analytic dimension of H and G respectively.

Theorem (Y. Barnea, A. Shalev; B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a p-adic analytic pro-p group and H a closed subgroup of G. Then, for $S \in \{D, P, I, F\}$, we have

$$\operatorname{hdim}_{G}^{\mathcal{S}}(H) = rac{\operatorname{dim}(H)}{\operatorname{dim}(G)},$$

where $\dim(H)$ and $\dim(G)$ stand for the analytic dimension of H and G respectively.

In particular, if G is a p-adic analytic pro-p group, then

$$\mathsf{hspec}^{\mathcal{S}}(G) \subseteq \left\{\mathsf{0}, \frac{1}{\mathsf{dim}(G)}, \dots, \frac{\mathsf{dim}(G) - 1}{\mathsf{dim}(G)}, 1\right\}$$

for any $\mathcal{S} \in \{\mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}.$

Iker de las Heras

Problem

Let G be a p-adic analytic pro-p group. Is $hspec^{\mathcal{L}}(G)$ finite?

Problem

Let G be a p-adic analytic pro-p group. Is $hspec^{\mathcal{L}}(G)$ finite?

There exists a family of *p*-adic analytic pro-*p* groups G(m, d), where $m, d \ge 0$, such that

$$\frac{|\operatorname{hspec}^{\mathcal{L}}(G(m,d))|}{\dim(G(m,d))} \to d+1 \quad \text{as} \quad m \to \infty,$$

which is unbounded as d tends to infinity.

Theorem (IH, B. Klopsch, A. Thillaisundaram)

Let G be a p-adic analytic pro-p group of dimension d. Then there exist $\zeta_1, \ldots, \zeta_d \in [0, 1] \cap \mathbb{Q}$ such that

$$\mathsf{hspec}^{\mathcal{L}} \subseteq \left\{ rac{\epsilon_1 \zeta_1 + \dots + \epsilon_d \zeta_d}{\zeta_1 + \dots + \zeta_d} \mid \epsilon_i \in \{0, 1\}
ight\}$$

Theorem (IH, B. Klopsch, A. Thillaisundaram)

Let G be a p-adic analytic pro-p group of dimension d. Then there exist $\zeta_1, \ldots, \zeta_d \in [0, 1] \cap \mathbb{Q}$ such that

$$\mathsf{hspec}^{\mathcal{L}} \subseteq \left\{ \frac{\epsilon_1 \zeta_1 + \dots + \epsilon_d \zeta_d}{\zeta_1 + \dots + \zeta_d} \mid \epsilon_i \in \{0, 1\} \right\}$$

In particular, $|\operatorname{hspec}^{\mathcal{L}}(G)| \leq 2^{d}$. (This bound can be improved)

Explicit description of \mathcal{L} for *p*-adic analytic groups

Definition

Let *L* be a \mathbb{Z}_p -module. Two filtrations $S: L = L_0 \ge L_1 \ge \cdots$ and $S^*: L = L_0^* \ge L_1^* \ge \cdots$ are said to be *equivalent* if there exists $b \in \mathbb{N}$ such that $|L_i + L_i^*: L_i \cap L_i^*| \le b$ for every $i \in \mathbb{N}$.

Definition

Let L be a \mathbb{Z}_p -module. Two filtrations $S: L = L_0 \ge L_1 \ge \cdots$ and $S^*: L = L_0^* \ge L_1^* \ge \cdots$ are said to be *equivalent* if there exists $b \in \mathbb{N}$ such that $|L_i + L_i^*: L_i \cap L_i^*| \le b$ for every $i \in \mathbb{N}$.

Definition

Let *L* be a free \mathbb{Z}_p -module of dimension *d*, and let $\{x_1, \ldots, x_d\}$ be a \mathbb{Z}_p -basis for *L*. We say that a filtration $S : L = L_0 \ge L_1 \ge \cdots$ is a *split* filtration with respect to $\{x_1, \ldots, x_d\}$ with growth rates $\zeta_1, \ldots, \zeta_d \in (0, 1]$ if it is equivalent to the filtration $S^* : L = L_0^* \ge L_1^* \ge \cdots$, where

$$L_{i}^{*} = \langle p^{\lfloor i\zeta_{1} \rfloor} x_{1}, p^{\lfloor i\zeta_{2} \rfloor} x_{2}, \dots, p^{\lfloor i\zeta_{d} \rfloor} x_{d} \rangle_{\mathbb{Z}_{p}}$$

for every $i \in \mathbb{N}_0$.

Explicit description of \mathcal{L} for *p*-adic analytic groups

What does $L_i^* = \langle p^{\lfloor i\zeta_1 \rfloor} x_1, p^{\lfloor i\zeta_2 \rfloor} x_2, \dots, p^{\lfloor i\zeta_d \rfloor} x_d \rangle_{\mathbb{Z}_p}$ mean?

Explicit description of \mathcal{L} for *p*-adic analytic groups

Definition

Let G be a group acting on a \mathbb{Z}_p -module L. The *lower p-series of L with* respect to G, is the series

$$\mathcal{L}_L^G \colon \mathcal{P}_0^G(L) = L, \quad \text{and} \quad \mathcal{P}_i^G(L) = p\mathcal{P}_{i-1}^G(L) + [\mathcal{P}_{i-1}^G(L), G] \quad \text{for } i \geq 1.$$

Definition

Let G be a group acting on a \mathbb{Z}_p -module L. The *lower p-series of* L with respect to G, is the series

$$\mathcal{L}_L^G \colon \mathcal{P}_0^G(L) = L, \quad \text{and} \quad \mathcal{P}_i^G(L) = p\mathcal{P}_{i-1}^G(L) + [\mathcal{P}_{i-1}^G(L), G] \quad \text{for } i \geq 1.$$

Theorem (IH, B. Klopsch, A. Thillaisundaram)

Let G be a p-adic analytic group acting on a free \mathbb{Z}_p -Lie algebra L. Then the series \mathcal{L}_L^G is equivalent to a split filtration of L.

Corollary (IH, B. Klopsch, A. Thillaisundaram)

Let G be a p-adic analytic pro-p group of dimension d and let U be a uniform pro-p subgroup of G of finite index. Then there exist b, $c \in \mathbb{N}_0$, $x_1, \ldots, x_d \in U$ and $\zeta_1, \ldots, \zeta_d \in (0, 1] \cap \mathbb{Q}$ such that

$$\langle x_1^{p^{\lfloor i\zeta_1 \rfloor + b}} \rangle \cdots \langle x_d^{p^{\lfloor i\zeta_d \rfloor + b}} \rangle \leq P_{c+i}(G) \leq \langle x_1^{p^{\lfloor i\zeta_1 \rfloor - b}} \rangle \cdots \langle x_d^{p^{\lfloor i\zeta_d \rfloor - b}} \rangle,$$

for every $i \in \mathbb{N}_0$, with

$$\langle x_1^{p^{\lfloor i\zeta_1 \rfloor + b}} \rangle \cdots \langle x_d^{p^{\lfloor i\zeta_d \rfloor + b}} \rangle$$
 and $\langle x_1^{p^{\lfloor i\zeta_1 \rfloor - b}} \rangle \cdots \langle x_d^{p^{\lfloor i\zeta_d \rfloor - b}} \rangle$

normal subgroups of G.

Explicit description of \mathcal{L} for *p*-adic analytic groups

 $P_{c+i}(G)$ is similar to $\langle x_1^{p^{\lfloor i\zeta_1 \rfloor}} \rangle \cdots \langle x_d^{p^{\lfloor i\zeta_d \rfloor}} \rangle$.

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. If G is p-adic analytic, does it follow that $hspec^{S}(G)$ is finite?

Problem 2

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. If $hspec^{S}(G)$ is finite, does it follow that G is p-adic analytic?

There exists a partial solution to this problem.

There exists a partial solution to this problem.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a finitely generated solvable pro-p group, and let $S \in \{D, P, F\}$. If G is not p-adic analytic, then the Hausdorff spectrum hspec^S(G) with respect to S contains an infinite real interval.

There exists a partial solution to this problem.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a finitely generated solvable pro-p group, and let $S \in \{D, P, F\}$. If G is not p-adic analytic, then the Hausdorff spectrum hspec^S(G) with respect to S contains an infinite real interval.

Corollary

Let G be a finitely generated solvable pro-p group and let $S \in \{D, P, F\}$. Then, G is p-adic analytic if and only if $hspec^{S}(G)$ is finite.

Finite Hausdorff spectra and *p*-adic analytic group

In general, we also have some structural results.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a finitely generated pro-p group, and let $S \in \{D, P, I, F\}$. Then the following are equivalent:

1) The group G is p-adic analytic.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a finitely generated pro-p group, and let $S \in \{D, P, I, F\}$. Then the following are equivalent:

- 1) The group G is p-adic analytic.
- 2 There exists a constant c ∈ (0, 1] such that every infinite closed subgroup H ≤ G satisfies hdim^S_G(H) ≥ c.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a finitely generated pro-p group, and let $S \in \{D, P, I, F\}$. Then the following are equivalent:

- 1) The group G is p-adic analytic.
- 2 There exists a constant c ∈ (0, 1] such that every infinite closed subgroup H ≤ G satisfies hdim^S_G(H) ≥ c.
- 3 Every infinite closed subgroup $H \leq G$ satisfies $\operatorname{hdim}_{G}^{S}(H) > 0$.

Theorem (B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal)

Let G be a finitely generated pro-p group, and let $S \in \{D, P, I, F\}$. Then the following are equivalent:

- 1) The group G is p-adic analytic.
- ② There exists a constant c ∈ (0, 1] such that every infinite closed subgroup H ≤ G satisfies hdim^S_G(H) ≥ c.
- 3 Every infinite closed subgroup $H \leq G$ satisfies $\operatorname{hdim}_{G}^{S}(H) > 0$.
- ④ The group G is finite, or there exists a closed subgroup $H \leq G$ such that $H \cong \mathbb{Z}_p$ and $\operatorname{hdim}_{G}^{S}(H) > 0$.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra?

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

Examples

(B. Klopsch, A. Thillaisundaram) The group
 W = C_p 2 Z_p ≡ lim_n C_p C_{pⁿ} with respect to the five standard filtration series.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

- (B. Klopsch, A. Thillaisundaram) The group $W = C_p \hat{\wr} \mathbb{Z}_p \equiv \lim_{n} C_p \wr C_{p^n}$ with respect to the five standard filtration series.
- (B. Klopsch) Finitely generated branch groups with respect to the congruence subgroup filtration.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

- (B. Klopsch, A. Thillaisundaram) The group $W = C_p \hat{\wr} \mathbb{Z}_p \equiv \lim_{n} C_p \wr C_{p^n}$ with respect to the five standard filtration series.
- (B. Klopsch) Finitely generated branch groups with respect to the congruence subgroup filtration.
- (O. Garaialde Ocaña, A. Garrido, B. Klopsch) Finitely generated non-abelian free pro-p groups with respect to D, I and F.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

- (B. Klopsch, A. Thillaisundaram) The group $W = C_p \hat{\wr} \mathbb{Z}_p \equiv \lim_{n} C_p \wr C_{p^n}$ with respect to the five standard filtration series.
- (B. Klopsch) Finitely generated branch groups with respect to the congruence subgroup filtration.
- (O. Garaialde Ocaña, A. Garrido, B. Klopsch) Finitely generated non-abelian free pro-p groups with respect to D, I and F.
- (IH, B. Klopsch, A. Thillaisundaram) Finitely generated non-abelian free pro-p groups with respect to *L*.

Does there exist a finitely generated pro-p group with infinite Hausdorff spectra? Yes.

Examples

- (B. Klopsch, A. Thillaisundaram) The group
 W = C_p 2 Z_p ≡ lim_n C_p 2 C_{pⁿ} with respect to the five standard filtration series.
- (B. Klopsch) Finitely generated branch groups with respect to the congruence subgroup filtration.
- (O. Garaialde Ocaña, A. Garrido, B. Klopsch) Finitely generated non-abelian free pro-p groups with respect to D, I and F.
- (IH, B. Klopsch, A. Thillaisundaram) Finitely generated non-abelian free pro-p groups with respect to *L*.

Most of the spectra of these groups cover the full interval [0, 1].

Iker de las Heras

Definition

Let G be a countably based profinite group and let S be a filtration of G. The *normal Hausdorff spectrum* of G with respect to the filtration S is

$$\mathsf{hspec}^{\mathcal{S}}_{\trianglelefteq}(\mathcal{G}) = \{\mathsf{hdim}^{\mathcal{S}}_{\mathcal{G}}(\mathcal{H}) \mid \mathcal{H} \trianglelefteq_{c} \mathcal{G}\} \subseteq [0, 1].$$

Definition

Let G be a countably based profinite group and let S be a filtration of G. The *normal Hausdorff spectrum* of G with respect to the filtration S is

$$\mathsf{hspec}^\mathcal{S}_\trianglelefteq(\mathcal{G}) = \{\mathsf{hdim}^\mathcal{S}_\mathcal{G}(\mathcal{H}) \mid \mathcal{H} \trianglelefteq_\mathcal{c} \mathcal{G}\} \subseteq [0,1].$$

Examples

• $\operatorname{hspec}_{\leq}^{\mathcal{D}}(W) = \operatorname{hspec}_{\leq}^{\mathcal{P}}(W) = \operatorname{hspec}_{\leq}^{\mathcal{I}}(W) = \operatorname{hspec}_{\leq}^{\mathcal{F}}(W) = \{0, 1\},\$ and $\operatorname{hspec}_{\leq}^{\mathcal{L}}(W) = \{0, 1/2, 1\}.$

Definition

Let G be a countably based profinite group and let S be a filtration of G. The *normal Hausdorff spectrum* of G with respect to the filtration S is

$$\mathsf{hspec}^\mathcal{S}_\trianglelefteq(\mathcal{G}) = \{\mathsf{hdim}^\mathcal{S}_\mathcal{G}(\mathcal{H}) \mid \mathcal{H} \trianglelefteq_\mathcal{c} \mathcal{G}\} \subseteq [0,1].$$

Examples

• $\operatorname{hspec}_{\leq}^{\mathcal{D}}(W) = \operatorname{hspec}_{\leq}^{\mathcal{P}}(W) = \operatorname{hspec}_{\leq}^{\mathcal{I}}(W) = \operatorname{hspec}_{\leq}^{\mathcal{F}}(W) = \{0, 1\},\$ and $\operatorname{hspec}_{\leq}^{\mathcal{L}}(W) = \{0, 1/2, 1\}.$

•
$$\operatorname{hspec}_{\trianglelefteq}^{\mathcal{D}}(F) = \operatorname{hspec}_{\trianglelefteq}^{\mathcal{I}}(F) = \operatorname{hspec}_{\trianglelefteq}^{\mathcal{F}}(F) = \{0, 1\}.$$

Does there exist a finitely generated pro-p group with infinite normal Hausdorff spectra?

Does there exist a finitely generated pro-p group with infinite normal Hausdorff spectra?

Theorem (B. Klopsch, A. Thillaisundaram)

There exists a 2-generator pro-p group G, such that $hspec_{\leq}^{\mathcal{S}}(G)$ contains an infinite interval, where $\mathcal{S} \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{F}\}$.

Does there exist a finitely generated pro-p group with infinite normal Hausdorff spectra?

Theorem (B. Klopsch, A. Thillaisundaram)

There exists a 2-generator pro-p group G, such that $hspec_{\leq}^{S}(G)$ contains an infinite interval, where $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{F}\}$.

Problem

Does there exist a finitely generated pro-p group with full normal Hausdorff spectra?

Theorem (I.H., B. Klopsch)

There exists a 2-generator pro-p group $\mathfrak{G}(p)$, with p odd, such that

$$\mathsf{hspec}^\mathcal{S}_{\trianglelefteq}(\mathfrak{G}(p)) = [\mathsf{0}, \mathsf{1}],$$

where \mathcal{S} is any of the five standard filtrations series.

Theorem (I.H., B. Klopsch)

There exists a 2-generator pro-p group $\mathfrak{G}(p)$, with p odd, such that

$$\mathsf{hspec}^\mathcal{S}_{\trianglelefteq}(\mathfrak{G}(\pmb{p})) = [\mathsf{0},\mathsf{1}],$$

where S is any of the five standard filtrations series.

Theorem (I.H., A. Thillaisundaram)

There exists a 2-generator pro-2 group $\mathfrak{G}(2)$ such that

$$\mathsf{hspec}^{\mathcal{S}}_{\trianglelefteq}(\mathfrak{G}(2)) = [\mathsf{0},\mathsf{1}],$$

where S is any of the five standard filtrations series.

Iker de las Heras

Hausdorff dimension in profinite groups

Lemma

Let G be a countably based profinite group, and let $S: G = G_0 \ge G_1 \ge \cdots$ be a filtration series of G.

Lemma

Let G be a countably based profinite group, and let $S: G = G_0 \ge G_1 \ge \cdots$ be a filtration series of G. Let $Z \le G$ be a closed subgroup such that $\operatorname{hdim}_G^S(Z)$ is given by a proper limit (has strong Hausdorff dimension), that is

$$\operatorname{hdim}_{G}^{S}(Z) = \lim_{i \to \infty} \frac{\log_{p} |ZG_{i} : G_{i}|}{\log_{p} |G : G_{i}|}.$$

Lemma

Let G be a countably based profinite group, and let $S: G = G_0 \ge G_1 \ge \cdots$ be a filtration series of G. Let $Z \le G$ be a closed subgroup such that $\operatorname{hdim}_G^S(Z)$ is given by a proper limit (has strong Hausdorff dimension), that is

$$\mathsf{hdim}_{G}^{\mathcal{S}}(Z) = \lim_{i \to \infty} \frac{\log_{p} |ZG_{i} : G_{i}|}{\log_{p} |G : G_{i}|}.$$

Let $S|_Z : Z = Z_0 \ge Z_1 \ge \cdots$, where $Z_i = Z \cap G_i$ for $i \in \mathbb{N}_0$, denote the induced filtration series of Z.
Lemma

Let G be a countably based profinite group, and let $S: G = G_0 \ge G_1 \ge \cdots$ be a filtration series of G. Let $Z \le G$ be a closed subgroup such that $\operatorname{hdim}_G^S(Z)$ is given by a proper limit (has strong Hausdorff dimension), that is

$$\mathsf{hdim}_{G}^{\mathcal{S}}(Z) = \lim_{i \to \infty} \frac{\log_{p} |ZG_{i} : G_{i}|}{\log_{p} |G : G_{i}|}.$$

Let $S|_Z : Z = Z_0 \ge Z_1 \ge \cdots$, where $Z_i = Z \cap G_i$ for $i \in \mathbb{N}_0$, denote the induced filtration series of Z. Then for every $K \le Z$,

$$\operatorname{hdim}_{G}^{\mathcal{S}}(K) = \operatorname{hdim}_{G}^{\mathcal{S}}(Z) \cdot \operatorname{hdim}_{Z}^{\mathcal{S}|_{Z}}(K).$$

$$W = C_p \hat{\wr} \mathbb{Z}_p$$
$$= \langle \dot{x}, \dot{y} \rangle$$

$$W = C_{p} \hat{i} \mathbb{Z}_{p} \qquad W$$
$$= \langle \dot{x}, \dot{y} \rangle \qquad \qquad \begin{vmatrix} W \\ B \\ B \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$W = C_p \hat{i} \mathbb{Z}_p \qquad W \\ = \langle \dot{x}, \dot{y} \rangle \qquad \Big| \\ F = \langle \tilde{x}, \tilde{y} \rangle \qquad B = C_p^{\aleph_0} \\ \text{free pro-}p \text{ group} \\ \text{on 2 generators} \qquad 1$$

$$W = C_p \hat{\wr} \mathbb{Z}_p \qquad W \\ = \langle \dot{x}, \dot{y} \rangle \qquad \Big| \\ F = \langle \tilde{x}, \tilde{y} \rangle \qquad B = C_p^{\aleph_0} \\ \text{free pro-}p \text{ group} \\ \text{on 2 generators} \qquad 1$$

 $\begin{array}{c} \varphi: F \longrightarrow W \\ \tilde{x} \longmapsto \dot{x} \\ \tilde{y} \longmapsto \dot{y} \end{array}$

 $\begin{array}{c} \varphi: F \longrightarrow W \\ \tilde{x} \longmapsto \dot{x} \\ \tilde{y} \longmapsto \dot{y} \end{array}$

$$W = C_p \hat{\wr} \mathbb{Z}_p \qquad W \qquad \stackrel{\varphi}{\longleftarrow} \qquad F \\ = \langle \dot{x}, \dot{y} \rangle \qquad \qquad B = C_p^{\aleph_0} \qquad Y = \varphi^{-1}(B) \\ free \text{ pro-}p \text{ group} \\ \text{on 2 generators} \qquad 1 \qquad R = \ker(\varphi)$$

 $\begin{array}{c} \varphi: F \longrightarrow W \\ \tilde{x} \longmapsto \dot{x} \\ \tilde{y} \longmapsto \dot{y} \end{array}$

$$W = C_{p} \hat{i} \mathbb{Z}_{p} \qquad W \qquad \varphi \qquad F$$

$$= \langle \dot{x}, \dot{y} \rangle \qquad B = C_{p}^{\aleph_{0}} \qquad Y = \varphi^{-1}(B)$$
free pro-*p* group
on 2 generators
$$1 \qquad R = \ker(\varphi)$$

$$\varphi : F \longrightarrow W$$

$$\tilde{x} \longmapsto \dot{x}$$

$$\tilde{y} \longmapsto \dot{y} \qquad N = [R, F] Y^{p}$$

Lemma

In the group $\mathfrak{G}(p)$, the subgroup Z has strong Hausdorff dimension < 1.

Lemma

In the group $\mathfrak{G}(p)$, the subgroup Z has strong Hausdorff dimension 1.

Iker de las Heras

Hausdorff dimension in profinite groups

Finitely generated Hausdorff spectrum

Definition

Let G be a countably based profinite group and let S be a filtration of G. The *finitely generated Hausdorff spectrum* of G with respect to the filtration S is

 $\operatorname{hspec}_{\operatorname{fg}}^{\mathcal{S}}(G) = \{\operatorname{hdim}_{G}^{\mathcal{S}}(H) \mid H \leq_{c} G \text{ and } H \text{ is finitely generated}\} \subseteq [0, 1].$

Does there exist a pro-p group with infinite finitely generated Hausdorff spectrum?

Does there exist a pro-p group with infinite finitely generated Hausdorff spectrum? Yes.

Does there exist a pro-p group with infinite finitely generated Hausdorff spectrum? Yes.

Theorem (M. Abért, B. Virág)

Let $G={\rm Aut}(\mathcal{T})$ be the group of automorphisms of the p-adic rooted tree $\mathcal{T}.$ Then,

$$\mathsf{hspec}^{\mathcal{S}}_{fg}(G) = [0, 1],$$

where ${\cal S}$ is the congruence subgroups filtration.

Does there exist a pro-p group with infinite finitely generated Hausdorff spectrum? Yes.

Theorem (M. Abért, B. Virág)

Let $G={\rm Aut}(\mathcal{T})$ be the group of automorphisms of the p-adic rooted tree $\mathcal{T}.$ Then,

$$\mathsf{hspec}^{\mathcal{S}}_{fg}(G) = [0, 1],$$

where \mathcal{S} is the congruence subgroups filtration.

Actually, this spectrum can be covered just using 3-geneator closed subgroups.

Does there exists a finitely generated pro-p group with infinite finitely generated Hausdorff spectrum?

Does there exists a finitely generated pro-p group with infinite finitely generated Hausdorff spectrum? Yes.

Does there exists a finitely generated pro-p group with infinite finitely generated Hausdorff spectrum? Yes.

Examples

• (B. Klopsch, A. Thillaisundaram) The pro-p group $W = C_p \hat{\wr} \mathbb{Z}_p$ satisfies

$$\begin{split} \operatorname{hspec}_{fg}^{\mathcal{P}}(W) &= \operatorname{hspec}_{fg}^{\mathcal{P}}(W) = \operatorname{hspec}_{fg}^{\mathcal{F}}(W) \\ &= \{m/p^n \mid n \in \mathbb{N}_0, 0 \le m \le p^n\}, \\ \operatorname{hspec}_{fg}^{\mathcal{L}}(W) &= \{0\} \cup \{1/2 + m/2p^n \mid n \in \mathbb{N}_0, 0 \le m \le p^n\}. \end{split}$$

Problem

Let G be a finitely generated pro-p group and let $S \in \{L, D, P, I, F\}$. Is the finitely generated Hausdorff spectrum of G with respect to the filtration S discrete?

Problem

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. Is the finitely generated Hausdorff spectrum of G with respect to the filtration S discrete?

Theorem (I.H., A. Thillaisundaram)

The groups $\mathfrak{G}(p)$ satisfy

$$ext{hspec}_{ extsf{g}}^{\mathcal{S}}(\mathfrak{G}(p)) = \{ d^2/2^{2l} \mid 0 \leq d \leq 2^l, l \in \mathbb{N}_0 \},$$

where $\mathcal{S} \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}.$

Problem

Let G be a finitely generated pro-p group and let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}$. Is the finitely generated Hausdorff spectrum of G with respect to the filtration S discrete?

Theorem (I.H., A. Thillaisundaram)

The groups $\mathfrak{G}(p)$ satisfy

$$ext{hspec}_{ extsf{fg}}^{\mathcal{S}}(\mathfrak{G}(p)) = \{ d^2/2^{2l} \mid 0 \leq d \leq 2^l, l \in \mathbb{N}_0 \},$$

where $\mathcal{S} \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{I}, \mathcal{F}\}.$

So we do not know.

Iker de las Heras

Eskerrik asko! Grazie mille!