On unital near-trusses, dual weak braces and the set-theoretic Yang-Baxter equation

Bernard Rybołowicz

Based on

„Deformed solutions of the Yang-Baxter equation coming from dual weak braces and unital near-trusses arXiv:2304.05235"

In collaboration with
Marzia Mazzotta and Paola Stefanelli

> Lecce
> 9.06.2023

The set-theoretic Yang-Baxter equation

Definition

A map $r: X \times X \rightarrow X \times X$ is a solution of set-theoretic Yang-Baxter equation if

$$
(r \times i d)(i d \times r)(r \times i d)=(i d \times r)(r \times i d)(i d \times r)
$$

- For $x, y \in X$, we write $r(x, y)=\left(\lambda_{a}(b), \rho_{b}(a)\right)$.
- We say r is involutive if $r^{2}=i d$.
- We say that r is left (right) non-degenerate if for all $a \in X$ $\lambda_{a}(-) \quad\left(\rho_{a}(-)\right)$ is a bijection

Skew braces

Definition

A skew brace is a triple $(B,+, \circ)$, where $(B,+)$ and (B, \circ) are groups, and for all $a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

Definition
A right distributor of a skew brace B is a set

$$
\mathcal{D}_{r}(B)=\{a \in B \mid(b+c) \circ a=b \circ a-a+c \circ a \forall b, c \in B\} .
$$

- $\operatorname{Fix}(B)=\left\{a \in B \mid \lambda_{x}(a)=-x+x \circ a=a \forall x \in B\right\} \subseteq \mathcal{D}_{r}(B)$,
- $Z(B, \circ) \subseteq \mathcal{D}_{r}(B)$.

Examples of distributors

Example

Let $(B,+, \circ)$ be the brace on $(\mathbb{Z}, \circ)=\langle g\rangle$ with $g^{k}+g^{l}=g^{k+(-1)^{k} l}$, for all $k, l \in \mathbb{Z}$. Then, if $k, l, z \in \mathbb{Z}$, since

$$
\begin{aligned}
& \left(g^{k}+g^{\prime}\right) \circ g^{z}=g^{k+z+(-1)^{k} I} \\
& g^{k} \circ g^{z}-g^{z}+g^{\prime} \circ g^{z}=g^{k+z+(-1)^{k}(I+2 z)}
\end{aligned}
$$

it follows that $\mathcal{D}_{r}(B)$ is trivial.

Example

Let us consider the skew brace $(B,+, \circ)$ with trivial distributor and the brace $U_{9}:=\left(U\left(\mathbb{Z} / 2^{9} \mathbb{Z}\right),+{ }_{1}, \circ\right)$, with $a+{ }_{1} b=a-1+b$ and $a \circ b=a b$, for all $a, b \in U\left(\mathbb{Z} / 2^{9} \mathbb{Z}\right)$, with the usual operations in the ring modulo 2^{9}. Then, $U_{9} \times B$ is a left skew brace such that $\mathcal{D}_{r}\left(U_{9} \times B\right)=U_{9} \times\{0\}$.

Solutions from skew braces

Theorem
Let B be a skew brace and $z \in \mathcal{D}_{r}(B)$, then the following maps

$$
\begin{gathered}
\check{r}_{z}(a, b):=\left(\check{\lambda}_{a}^{z}(b), \check{\tau}_{b}^{z}(a)\right)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-1} \circ a \circ b\right) \\
r_{z}(a, b):=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-1} \circ a \circ b\right)
\end{gathered}
$$

are non-degenerate solutions of the set-theoretic Yang-Baxter equation.

Remark

$$
\left(\check{r}_{z}\right)^{-1}=r_{z^{-1}}
$$

What next

We can go further and extend this connection for the following two cases:

- Unital near-trusses
- Dual weak braces

Near-trusses

Definition

A unital near-truss is a triple $(T,+, \cdot)$, such that $(T,+)$ is a group, $(T, \cdot, 1)$ is a monoid and for all $a, b, c \in T$,

$$
a(b+c)=a b-a+a c
$$

Definition

A homomorphism of unital near-trusses is a map $f: T \rightarrow S$ such that $f(1)=1, f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$.

Remark

If $f: T \rightarrow S$ is a homomorphism of unital near-trusses, then

$$
\operatorname{ker}_{1}(f):=f^{-1}(1)=\{a \in T \mid f(a)=1\}
$$

is a unital near-truss and $\operatorname{ker}_{1}(f) \subseteq T$.

Sequences

- B is a near-truss
- for any near-truss T, we can define $\check{\lambda}_{a}^{z}(b):=a b-a z+z$, but it is not invertible.
- for any homomorphism of near-trusses $f: T \rightarrow S$,

$$
f\left(\check{\lambda}_{a}^{z}(b)\right)=\check{\lambda}_{f(a)}^{f(z)}(f(b)) .
$$

If we consider the following sequence:

$$
\begin{equation*}
T \underset{\gamma}{\stackrel{\pi}{\rightleftarrows}} B \xrightarrow{t}\{1\} \tag{1}
\end{equation*}
$$

In this case, by exactness we understand $t^{-1}(1)=\operatorname{Im}(\pi)$ and $\pi \gamma=\mathrm{id}_{B}$, that is π is surjective and γ is injective.

Solution

Theorem

Let T be a unital near-truss and B a skew brace. Let $z \in T$ such that $\pi(z) \in \mathcal{D}_{r}(B)$ and suppose there exist two homomorphisms of unital near-trusses $\pi: T \rightarrow B$ and $\gamma: B \rightarrow T$ such that $\pi \gamma=\mathrm{id}_{B}$. Then, the map $\check{\eta}:=\gamma \pi \check{\lambda}$ gives rise to the solution $\check{r}^{2}: T \times T \rightarrow T \times T$ defined by

$$
\check{r}^{z}(a, b):=\left(\check{\eta}_{a}^{z}(b),\left(\check{\eta}_{a}^{z}(b)\right)^{-1} a b\right),
$$

for all $a, b \in T$.

Remarks

Remark

For every unital near-truss T, there exists the solution
$\check{r}_{T}(a, b)=\left(1_{T}, a b\right)$, given by $B=\{1\}, a \stackrel{\pi}{\mapsto} 1$ and $\gamma(1)=1_{T}$.
Remark
The restriction of $\check{r}_{z}: T \times T \rightarrow T \times T$ to $\left.\check{r}_{z}\right|_{\gamma(B) \times \gamma(B)}$ gives an equivalent solution to the solution $\breve{r}^{\pi(z)}$ on B via the bijection $\left.\pi\right|_{\gamma(B)}$.

Remark

Let T be a unital near-truss and $a, z \in T$. The map $\breve{\eta}_{a}^{z}: T \rightarrow T$ is injective if and only if $\pi: T \rightarrow B$ is a bijection.

Example

Example

Let us consider the brace $\left(U(\mathbb{Z} / 8 \mathbb{Z}),+_{1}, \circ\right)$ on the units of the ring of integers modulo $8, U(\mathbb{Z} / 8 \mathbb{Z})$, endowed with sandwich addition $a+{ }_{1} b:=a-1+b$, for all $a, b \in U(\mathbb{Z} / 8 \mathbb{Z})$, and with the modulo multiplication. Let us consider the unital near-truss $\mathbb{Z}^{8}:=\mathrm{T}(U(\mathbb{Z} / 8 \mathbb{Z})) \times \mathbb{Z}, \pi: \mathbb{Z}^{8} \rightarrow U(\mathbb{Z} / 8 \mathbb{Z}),(k, n) \mapsto k$, $\gamma: U(\mathbb{Z} / 8 \mathbb{Z}) \rightarrow \mathbb{Z}^{8}, k \mapsto(k, 1)$, and $z=(3, p)$ for some fixed $p \in \mathbb{Z}$. Then, the map $r^{(3, p)}: \mathbb{Z}^{8} \times \mathbb{Z}^{8} \rightarrow \mathbb{Z}^{8} \times \mathbb{Z}^{8}$ defined by

$$
r^{(3, p)}((k, n),(l, m))=\left((k l-3 k+3,1),\left((k l-3 k+3)^{-1} k l, n m\right)\right)
$$

is a deformed solution on \mathbb{Z}^{8}.

Dual weak braces

Definition

Let S be a set endowed with two binary operations + and \circ such that $(S,+)$ and (S, \circ) are inverse semigroups. Then, $(S,+, \circ)$ is said to be a weak (left) brace if the following relations

$$
a \circ(b+c)=a \circ b-a+a \circ c \quad \& \quad a \circ a^{-}=-a+a
$$

are satisfied, for all $a, b, c \in S$, where $-a$ and a^{-}denote the inverses of a with respect to + and \circ, respectively. Moreover, a weak brace $(S,+, \circ)$ is said to be a dual weak brace if (S, \circ) is a Clifford semigroup.
In any weak brace the sets of idempotents $E(S,+)$ and $E(S, \circ)$ coincide, thus we simply denote them by $E(S)$. More in general, any idempotent $e \in E(S)$ satisfies the following

$$
\begin{equation*}
e+a=e \circ a=\lambda_{e}(a) \tag{2}
\end{equation*}
$$

for every $a \in S$.

Examples

Example

Let (S, \wedge) be a semilattice, $\left\{B_{\alpha},+_{\alpha}, \circ_{\alpha}\right\}_{\alpha \in S}$ be a family of skew braces and let for all $\alpha \leqslant \beta$ exist $\mu_{\alpha, \beta} \in \operatorname{Hom}\left(B_{\beta}, B \alpha\right)$. Then we say that $\left[S, B_{\alpha}, \mu\right]$ is a strong semilattice of skew braces if

- for all $\alpha \in B_{\alpha} \mu_{\alpha, \alpha}=i d_{\alpha}$,
- for all $\alpha \leqslant \beta \leqslant \gamma \mu_{\alpha, \beta} \mu_{\beta, \gamma}=\mu_{\alpha, \gamma}$.

If $\left[S, B_{\alpha}, \mu\right]$ is a strong semilattice, then the triple $B(S):=\left(\bigsqcup_{\alpha \in S} B_{\alpha},+, \circ\right)$ is a dual weak brace, where for all $a \in B_{\alpha}$ and $b \in B_{\beta}$

$$
\begin{aligned}
& a+b=\mu_{\alpha \wedge \beta, \alpha}(a)+_{\alpha \wedge \beta} \mu_{\alpha \wedge \beta, \beta}(b) \\
& a \circ b=\mu_{\alpha \wedge \beta, \alpha}(a) \circ_{\alpha \wedge \beta} \mu_{\alpha \wedge \beta, \beta}(b)
\end{aligned}
$$

Solutions again

Theorem

Let S be a dual weak brace and $z \in S$. Then, the map $r_{z}: S \times S \rightarrow S \times S$ given by

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution if and only if $z \in \mathcal{D}_{r}(S)$. We call such a map r_{z} solution associated to S deformed by z.

Solutions again

Proposition

Let $(S,+, \circ)$ be a dual weak brace and $z \in S$. Then, the function $\lambda^{z}:(S, \circ) \rightarrow \operatorname{Map}(S)$ is a homomorphism if and only if $a \circ z=z+a$, for every $a \in S$.
In the case of a dual weak brace S, even if $\lambda^{z}:(S, \circ) \rightarrow \operatorname{Map}(S)$ is a homomorphism, in general, λ_{a}^{z} does not coincide with λ_{a}, since $\lambda_{a}^{z}(b)=\lambda_{a}(b)+z \circ z^{-}$. In the study of deformed solutions, the following question arises.

Equivalence

Question 1
Let $(S,+, \circ)$ be a dual weak brace. For which parameters $z, w \in S$, are the deformed solutions r_{z} and r_{w} equivalent?

Equivalence

The following example shows that in the case of dual weak braces, even deformed solutions by idempotents are not equivalent in general.

Example

Let $X=\{e, x, y\}$ and (S, \circ) the commutative inverse monoid on X with identity e satisfying the relations $x \circ x=y \circ y=x$ and $x \circ y=y$. Note that $a^{-}=a$, for every $a \in S$. Consider the trivial weak braces on S, namely $a+b=a \circ b$, for all $a, b \in S$. Then, we have two solutions $r_{e}=r$ and r_{x} related to the two idempotents e and x, respectively, for which the maps λ^{e} and λ^{x} are explicitly given by $\lambda_{a}^{e}(b)=\lambda_{a}(b)+e=\lambda_{a}(b)=a \circ a \circ b$ and $\lambda_{a}^{x}(b)=\lambda_{a}(b)+x=-a+a \circ b+x=a \circ a \circ b \circ x$. If the two solutions r_{x} and r_{e} were equivalent via a bijection $\varphi: S \rightarrow S$, then, in particular, we would have that $\varphi(a \circ a \circ b \circ x)=\varphi(a) \circ \varphi(a) \circ \varphi(b)$, for all $a, b \in S$. Thus, if $a=b=e$ we have that $\varphi(x)=\varphi(e) \circ \varphi(e) \circ \varphi(e)=\varphi(e), a$ contradiction.

Equivalence

Proposition

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.

Remark

Note that the converse of is not true. To show this, it is enough to consider the trivial brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solution r_{0} coincides with the solution r_{1} but 0 and 1 trivially belong to different conjugacy classes.

Summary:

- Right distributor is an interesting subset of a skew brace/near-truss.
- Solutions can be extended to near-trusses, although we loose invertibility and somehow trivialise part of a solution.
- The idea of a solution with a parameter can be extended to Dual weak braces.
- For which parameters solutions are equivalent?

Thank you

