On unital near-trusses, dual weak braces and the set-theoretic Yang-Baxter equation

Bernard Rybołowicz

Based on

"Deformed solutions of the Yang-Baxter equation coming from dual weak braces and unital near-trusses arXiv:2304.05235" In collaboration with Marzia Mazzotta and Paola Stefanelli

> Lecce 9.06.2023

Definition

A map $r: X \times X \rightarrow X \times X$ is a solution of set-theoretic Yang-Baxter equation if

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r).$$

- For $x, y \in X$, we write $r(x, y) = (\lambda_a(b), \rho_b(a))$.
- We say r is involutive if $r^2 = id$.
- We say that r is left (right) non-degenerate if for all a ∈ X λ_a(−) (ρ_a(−)) is a bijection

Definition

A skew brace is a triple $(B, +, \circ)$, where (B, +) and (B, \circ) are groups, and for all $a, b, c \in B$,

$$a \circ (b + c) = a \circ b - a + a \circ c$$

Definition

A right distributor of a skew brace B is a set

$$\mathcal{D}_r(B) = \{a \in B \mid (b+c) \circ a = b \circ a - a + c \circ a \; \forall b, c \in B\}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example

Let $(B, +, \circ)$ be the brace on $(\mathbb{Z}, \circ) = \langle g \rangle$ with $g^k + g^l = g^{k+(-1)^{k_l}}$, for all $k, l \in \mathbb{Z}$. Then, if $k, l, z \in \mathbb{Z}$, since

$$(g^{k} + g^{l}) \circ g^{z} = g^{k+z+(-1)^{k}l}$$

 $g^{k} \circ g^{z} - g^{z} + g^{l} \circ g^{z} = g^{k+z+(-1)^{k}(l+2z)}$

it follows that $\mathcal{D}_r(B)$ is trivial.

Example

Let us consider the skew brace $(B, +, \circ)$ with trivial distributor and the brace $U_9 := (U(\mathbb{Z}/2^9\mathbb{Z}), +_1, \circ)$, with $a +_1 b = a - 1 + b$ and $a \circ b = ab$, for all $a, b \in U(\mathbb{Z}/2^9\mathbb{Z})$, with the usual operations in the ring modulo 2^9 . Then, $U_9 \times B$ is a left skew brace such that $\mathcal{D}_r(U_9 \times B) = U_9 \times \{0\}$.

Theorem

Let B be a skew brace and $z \in D_r(B)$, then the following maps

$$\check{r}_z(a,b) := (\check{\lambda}_a^z(b),\check{\tau}_b^z(a)) = (a \circ b - a \circ z + z, (a \circ b - a \circ z + z)^{-1} \circ a \circ b)$$

$$r_z(a,b) := (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^{-1} \circ a \circ b)$$

are non-degenerate solutions of the set-theoretic Yang-Baxter equation.

Remark

$$(\check{r}_z)^{-1} = r_{z^{-1}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We can go further and extend this connection for the following two cases:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Unital near-trusses
- Dual weak braces

Definition

A unital near-truss is a triple $(T, +, \cdot)$, such that (T, +) is a group, $(T, \cdot, 1)$ is a monoid and for all $a, b, c \in T$,

$$a(b+c) = ab - a + ac.$$

Definition

A homomorphism of unital near-trusses is a map $f : T \to S$ such that f(1) = 1, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b).

Remark

If $f: T \rightarrow S$ is a homomorphism of unital near-trusses, then

$$\ker_1(f) := f^{-1}(1) = \{ a \in T \mid f(a) = 1 \}$$

is a unital near-truss and $\ker_1(f) \subseteq T$.

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々ぐ

► *B* is a near-truss

- ▶ for any near-truss T, we can define X̃^z_a(b) := ab − az + z, but it is not invertible.
- for any homomorphism of near-trusses $f : T \rightarrow S$,

$$f(\check{\lambda}_a^z(b)) = \check{\lambda}_{f(a)}^{f(z)}(f(b)).$$

If we consider the following sequence:

$$T \xrightarrow[\gamma]{\pi} B \xrightarrow{t} \{1\} . \tag{1}$$

In this case, by exactness we understand $t^{-1}(1) = \text{Im}(\pi)$ and $\pi\gamma = \text{id}_B$, that is π is surjective and γ is injective.

Theorem

Let T be a unital near-truss and B a skew brace. Let $z \in T$ such that $\pi(z) \in \mathcal{D}_r(B)$ and suppose there exist two homomorphisms of unital near-trusses $\pi : T \to B$ and $\gamma : B \to T$ such that $\pi \gamma = \mathrm{id}_B$. Then, the map $\check{\eta} := \gamma \pi \check{\lambda}$ gives rise to the solution $\check{r}^z : T \times T \to T \times T$ defined by

$$\check{r}^z(a,b) := \left(\check{\eta}^z_a(b), \ (\check{\eta}^z_a(b))^{-1} \, ab
ight),$$

for all $a, b \in T$.

Remark

For every unital near-truss T, there exists the solution $\check{r}_{1_T}(a, b) = (1_T, ab)$, given by $B = \{1\}$, $a \stackrel{\pi}{\mapsto} 1$ and $\gamma(1) = 1_T$.

Remark

The restriction of $\check{r}_z : T \times T \to T \times T$ to $\check{r}_z|_{\gamma(B) \times \gamma(B)}$ gives an equivalent solution to the solution $\check{r}^{\pi(z)}$ on B via the bijection $\pi|_{\gamma(B)}$.

Remark

Let T be a unital near-truss and $a, z \in T$. The map $\check{\eta}_a^z : T \to T$ is injective if and only if $\pi : T \to B$ is a bijection.

Example

Let us consider the brace $(U(\mathbb{Z}/8\mathbb{Z}), +_1, \circ)$ on the units of the ring of integers modulo 8, $U(\mathbb{Z}/8\mathbb{Z})$, endowed with sandwich addition $a +_1 b := a - 1 + b$, for all $a, b \in U(\mathbb{Z}/8\mathbb{Z})$, and with the modulo multiplication. Let us consider the unital near-truss $\mathbb{Z}^8 := \mathrm{T}(U(\mathbb{Z}/8\mathbb{Z})) \times \mathbb{Z}, \pi : \mathbb{Z}^8 \to U(\mathbb{Z}/8\mathbb{Z}), (k, n) \mapsto k, \gamma : U(\mathbb{Z}/8\mathbb{Z}) \to \mathbb{Z}^8, k \mapsto (k, 1)$, and z = (3, p) for some fixed $p \in \mathbb{Z}$. Then, the map $r^{(3,p)} : \mathbb{Z}^8 \times \mathbb{Z}^8 \to \mathbb{Z}^8 \times \mathbb{Z}^8$ defined by

$$r^{(3,p)}((k,n),(l,m)) = \left((kl-3k+3,1),((kl-3k+3)^{-1}kl,nm)\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a deformed solution on \mathbb{Z}^8 .

Dual weak braces

Definition

Let S be a set endowed with two binary operations + and \circ such that (S, +) and (S, \circ) are inverse semigroups. Then, $(S, +, \circ)$ is said to be a *weak (left) brace* if the following relations

$$a \circ (b+c) = a \circ b - a + a \circ c$$
 & $a \circ a^- = -a + a$

are satisfied, for all $a, b, c \in S$, where -a and a^- denote the inverses of a with respect to + and \circ , respectively. Moreover, a weak brace $(S, +, \circ)$ is said to be a *dual weak brace* if (S, \circ) is a Clifford semigroup.

In any weak brace the sets of idempotents E(S, +) and $E(S, \circ)$ coincide, thus we simply denote them by E(S). More in general, any idempotent $e \in E(S)$ satisfies the following

$$e + a = e \circ a = \lambda_e(a), \qquad (2)$$

for every $a \in S$.

Examples

Example

Let (S, \wedge) be a semilattice, $\{B_{\alpha}, +_{\alpha}, \circ_{\alpha}\}_{\alpha \in S}$ be a family of skew braces and let for all $\alpha \leq \beta$ exist $\mu_{\alpha,\beta} \in \operatorname{Hom}(B_{\beta}, B\alpha)$. Then we say that $[S, B_{\alpha}, \mu]$ is a strong semilattice of skew braces if

• for all
$$\alpha \in B_{\alpha} \ \mu_{\alpha,\alpha} = id_{\alpha}$$
,

• for all
$$\alpha \leq \beta \leq \gamma \ \mu_{\alpha,\beta}\mu_{\beta,\gamma} = \mu_{\alpha,\gamma}$$
.

If $[S, B_{\alpha}, \mu]$ is a strong semilattice, then the triple $B(S) := (\bigsqcup_{\alpha \in S} B_{\alpha}, +, \circ)$ is a dual weak brace, where for all $a \in B_{\alpha}$ and $b \in B_{\beta}$

$$egin{aligned} \mathbf{a}+\mathbf{b}&=\mu_{lpha\wedgeeta,lpha}(\mathbf{a})+_{lpha\wedgeeta}\mu_{lpha\wedgeeta,eta}(\mathbf{b})\ \mathbf{a}\circ\mathbf{b}&=\mu_{lpha\wedgeeta,lpha}(\mathbf{a})\circ_{lpha\wedgeeta}\mu_{lpha\wedgeeta,eta}(\mathbf{b}) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

Let S be a dual weak brace and $z \in S$. Then, the map $r_z : S \times S \rightarrow S \times S$ given by

$$r_z(a,b) = \left(-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b\right),$$

for all $a, b \in S$, is a solution if and only if $z \in D_r(S)$. We call such a map r_z solution associated to S deformed by z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

Let $(S, +, \circ)$ be a dual weak brace and $z \in S$. Then, the function $\lambda^z : (S, \circ) \to \operatorname{Map}(S)$ is a homomorphism if and only if $a \circ z = z + a$, for every $a \in S$.

In the case of a dual weak brace S, even if $\lambda^z : (S, \circ) \to \operatorname{Map}(S)$ is a homomorphism, in general, λ^z_a does not coincide with λ_a , since $\lambda^z_a(b) = \lambda_a(b) + z \circ z^-$. In the study of deformed solutions, the following question arises.

Question 1 Let $(S, +, \circ)$ be a dual weak brace. For which parameters $z, w \in S$, are the deformed solutions r_z and r_w equivalent?

Equivalence

The following example shows that in the case of dual weak braces, even deformed solutions by idempotents are not equivalent in general.

Example

Let $X = \{e, x, y\}$ and (S, \circ) the commutative inverse monoid on X with identity e satisfying the relations $x \circ x = y \circ y = x$ and $x \circ y = y$. Note that $a^- = a$, for every $a \in S$. Consider the trivial weak braces on S, namely $a + b = a \circ b$, for all $a, b \in S$. Then, we have two solutions $r_e = r$ and r_x related to the two idempotents e and x, respectively, for which the maps λ^e and λ^x are explicitly given by $\lambda_a^e(b) = \lambda_a(b) + e = \lambda_a(b) = a \circ a \circ b$ and $\lambda_a^{x}(b) = \lambda_a(b) + x = -a + a \circ b + x = a \circ a \circ b \circ x$. If the two solutions r_x and r_e were equivalent via a bijection $\varphi: S \to S$, then, in particular, we would have that $\varphi(a \circ a \circ b \circ x) = \varphi(a) \circ \varphi(a) \circ \varphi(b)$, for all $a, b \in S$. Thus, if a = b = e we have that $\varphi(x) = \varphi(e) \circ \varphi(e) \circ \varphi(e) = \varphi(e)$, a contradiction. (日本本語を本書を本書を入事)の(の)

Proposition

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

Remark

Note that the converse of is not true. To show this, it is enough to consider the trivial brace (B, +, +) on the cyclic group $\mathbb{Z}/2\mathbb{Z}$. Then, the solution r_0 coincides with the solution r_1 but 0 and 1 trivially belong to different conjugacy classes.

Summary:

- Right distributor is an interesting subset of a skew brace/near-truss.
- Solutions can be extended to near-trusses, although we loose invertibility and somehow trivialise part of a solution.
- The idea of a solution with a parameter can be extended to Dual weak braces.
- For which parameters solutions are equivalent?

Thank you

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00