Polynomial identities: some computational aspects

Daniela La Mattina
University of Palermo

Advances in Group Theory and Applications 2023, June 6th-9th 2023

Definition

A polynomial identity of an algebra A is a polynomial in non-commuting indeterminates vanishing under all evaluations in A.

Definition

A polynomial identity of an algebra A is a polynomial in non-commuting indeterminates vanishing under all evaluations in A.

Definition

A polynomial identity of an algebra A is a polynomial in non-commuting indeterminates vanishing under all evaluations in A.
$x y-y x$ is a polynomial identity for any commutative algebra.

A bit of history

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922);

A bit of history

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922);
- Wagner W.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme Math. Ann. (1937);

A bit of history

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922);
- Wagner W.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme Math. Ann. (1937);
- Kaplansky I.: Rings with a polynomial identity. Bull. Amer. Math. Soc. 54 (1948).

A bit of history

Positive answer to the Kurosh problem for PI-algebras

A bit of history

Positive answer to the Kurosh problem for PI-algebras
Kurosh problem, 1941: Is every finitely generated algebraic algebra finite dimensional?

Counterexamples: Golod-Shafarevich, 1964.

Combinatorial approach in PI-theory

Theorem (Amitsur, Levitzki, 1950)

The standard polynomial of degree $2 n$

$$
\operatorname{St}_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{\sigma \in S_{2 n}}(\operatorname{sgn} \sigma) x_{\sigma(1)} \cdots x_{\sigma(2 n)}
$$

is a polynomial identity of minimal degree for $M_{n}(F)$ the algebra of $n \times n$ matrices.
$F\langle X\rangle=$ the free associative algebra on a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ over a field F of characteristic zero
$F\langle X\rangle=$ the free associative algebra on a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ over a field F of characteristic zero
$A=$ associative F-algebra
$F\langle X\rangle=$ the free associative algebra on a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ over a field F of characteristic zero
$A=$ associative F-algebra
$\operatorname{Id}(A)=\{f \in F\langle X\rangle \mid f \equiv 0$ in $A\}=$ the T-ideal of $F\langle X\rangle$ of polynomial identities of A
$F\langle X\rangle=$ the free associative algebra on a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ over a field F of characteristic zero
$A=$ associative F-algebra
$\operatorname{Id}(A)=\{f \in F\langle X\rangle \mid f \equiv 0$ in $A\}=$ the T-ideal of $F\langle X\rangle$ of polynomial identities of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra finitely generated?
$F\langle X\rangle=$ the free associative algebra on a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ over a field F of characteristic zero
$A=$ associative F-algebra
$\operatorname{Id}(A)=\{f \in F\langle X\rangle \mid f \equiv 0$ in $A\}=$ the T-ideal of $F\langle X\rangle$ of polynomial identities of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra finitely generated?
$F\langle X\rangle=$ the free associative algebra on a countable set $X=\left\{x_{1}, x_{2}, \ldots\right\}$ over a field F of characteristic zero
$A=$ associative F-algebra
$\operatorname{Id}(A)=\{f \in F\langle X\rangle \mid f \equiv 0$ in $A\}=$ the T-ideal of $F\langle X\rangle$ of polynomial identities of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra finitely generated?

Kemer (1987): Positive answer to the Specht problem.

Examples of T-ideals

- $\operatorname{Id}(F)=\left\langle\left[x_{1}, x_{2}\right]\right\rangle_{T}$, where $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1} ;$

Examples of T-ideals

- $\operatorname{Id}(F)=\left\langle\left[x_{1}, x_{2}\right]\right\rangle_{T}$, where $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1} ;$
- $M_{2}(F)=$ the algebra of 2×2 matrices over F,

$$
\operatorname{Id}\left(M_{2}(F)\right)=\left\langle\left[\left[x_{1}, x_{2}\right]^{2}, x_{3}\right], S t_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\rangle_{T} .
$$

If char $F=0, \operatorname{Id}(A)$ is completely determined by its multilinear polynomials.

If char $F=0, \operatorname{Id}(A)$ is completely determined by its multilinear polynomials.

For every $n \geq 1$, let

$$
P_{n}=\operatorname{span}_{F}\left\{x_{\sigma(1)} \cdots x_{\sigma(n)} \mid \sigma \in S_{n}\right\}
$$

be the vector space of multilinear polynomials in x_{1}, \ldots, x_{n}.

If char $F=0, \operatorname{Id}(A)$ is completely determined by its multilinear polynomials.

For every $n \geq 1$, let

$$
P_{n}=\operatorname{span}_{F}\left\{x_{\sigma(1)} \cdots x_{\sigma(n)} \mid \sigma \in S_{n}\right\}
$$

be the vector space of multilinear polynomials in x_{1}, \ldots, x_{n}.
$\operatorname{Id}(A)$ is generated by $P_{n} \cap \operatorname{Id}(A), n \geq 1$.

Definition

The non-negative integer

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap \operatorname{Id}(A)}, n \geq 1
$$

is called the n-th codimension of A. The sequence $\left\{c_{n}(A)\right\}_{n \geq 1}$ is the codimension sequence of A.

Definition

The non-negative integer

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap \operatorname{Id}(A)}, n \geq 1
$$

is called the n-th codimension of A. The sequence $\left\{c_{n}(A)\right\}_{n \geq 1}$ is the codimension sequence of A.

Definition

The non-negative integer

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap \operatorname{Id}(A)}, n \geq 1
$$

is called the n-th codimension of A. The sequence $\left\{c_{n}(A)\right\}_{n \geq 1}$ is the codimension sequence of A.

Regev (1972) If A is a PI-algebra, then there exists $d \geq 1$ such that $c_{n}(A) \leq d^{n}$, for all n.

Codimension sequence of PI-algebras

- $c_{n}(F)=1$, for all $n \geq 1$;

Codimension sequence of PI-algebras

- $c_{n}(F)=1$, for all $n \geq 1$;
- $c_{n}\left(M_{k}(F)\right) \simeq C n^{-\frac{1}{2}\left(k^{2}-1\right)} k^{2 n}$, with C a constant (Regev, 1984).

In the 1980's two main conjectures were made:

In the 1980's two main conjectures were made:
Amitsur's conjecture: For any PI-algebra $A, \lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exists and is a non-negative integer.

In the 1980's two main conjectures were made:
Amitsur's conjecture: For any PI-algebra $A, \lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exists and is a non-negative integer.

Regev's conjecture: For any PI-algebra A, there exist a constant C, a semi-integer q and an integer $d \geq 0$ such that

$$
c_{n}(A) \simeq C n^{q} d^{n}
$$

Amitsur's conjecture

Giambruno-Zaicev (1999):

For a PI-algebra A, there exist constants $c_{1}>0, c_{2}, k_{1}, k_{2}$, and an integer $d \geq 0$ such that

$$
c_{1} n^{k_{1}} d^{n} \leq c_{n}(A) \leq c_{2} n^{k_{2}} d^{n} .
$$

Hence $\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}$ exists and is a non-negative integer called the exponent of A.

Regev's Conjecture

Berele-Regev (2008): For any PI-algebra A with $1, c_{n}(A) \simeq C n^{t} \exp (A)^{n}$, with $t \in \frac{1}{2} \mathbb{Z}$.

Regev's Conjecture

Berele-Regev (2008): For any PI-algebra A with $1, c_{n}(A) \simeq C n^{t} \exp (A)^{n}$, with $t \in \frac{1}{2} \mathbb{Z}$.

Giambruno-Zaicev(2014): $A=P I$-algebra. Then the sequence $c_{n}(A)$ is eventually non decreasing, i.e., $c_{n+1}(A) \geq c_{n}(A)$, for n large enough.

Regev's Conjecture

Berele-Regev (2008): For any PI-algebra A with $1, c_{n}(A) \simeq C n^{t} \exp (A)^{n}$, with $t \in \frac{1}{2} \mathbb{Z}$.

Giambruno-Zaicev(2014): $A=P I$-algebra. Then the sequence $c_{n}(A)$ is eventually non decreasing, i.e., $c_{n+1}(A) \geq c_{n}(A)$, for n large enough.

For any PI-algebra A

$$
C_{1} n^{t} \exp (A)^{n} \leq c_{n}(A) \leq C_{2} n^{t} \exp (A)^{n}, \quad t \in \frac{1}{2} \mathbb{Z}
$$

Regev's Conjecture

Berele-Regev (2008): For any PI-algebra A with $1, c_{n}(A) \simeq C n^{t} \exp (A)^{n}$, with $t \in \frac{1}{2} \mathbb{Z}$.

Giambruno-Zaicev(2014): $A=P I$-algebra. Then the sequence $c_{n}(A)$ is eventually non decreasing, i.e., $c_{n+1}(A) \geq c_{n}(A)$, for n large enough.

For any PI-algebra A

$$
C_{1} n^{t} \exp (A)^{n} \leq c_{n}(A) \leq C_{2} n^{t} \exp (A)^{n}, \quad t \in \frac{1}{2} \mathbb{Z}
$$

Definition

$$
t=\operatorname{pol}(A)=\lim _{n \rightarrow \infty} \log _{n} \frac{c_{n}(A)}{\exp (A)^{n}}
$$

Algebras with G-action: superalgebras and algebras with involution

A is an algebra with G-action where $G=\langle\varphi\rangle, \varphi$ is an automorphism or antiautomorphism of A of order ≤ 2.

Algebras with G-action: superalgebras and algebras with involution

A is an algebra with G-action where $G=\langle\varphi\rangle, \varphi$ is an automorphism or antiautomorphism of A of order ≤ 2.
$A=A_{0}^{\varphi} \oplus A_{1}^{\varphi}$, where

$$
A_{0}^{\varphi}=\left\{a \in A \mid a^{\varphi}=a\right\} \text { and } A_{1}^{\varphi}=\left\{a \in A \mid a^{\varphi}=-a\right\} .
$$

Algebras with G-action: superalgebras and algebras with involution

A is an algebra with G-action where $G=\langle\varphi\rangle, \varphi$ is an automorphism or antiautomorphism of A of order ≤ 2.
$A=A_{0}^{\varphi} \oplus A_{1}^{\varphi}$, where

$$
A_{0}^{\varphi}=\left\{a \in A \mid a^{\varphi}=a\right\} \text { and } A_{1}^{\varphi}=\left\{a \in A \mid a^{\varphi}=-a\right\} .
$$

if φ is an antiautomorphism (involution)
$A_{0}^{\varphi}=A^{+}$and $A_{1}^{\varphi}=A^{-}$are the subspaces of symmetric and skew elements, respectively.

Algebras with G-action: superalgebras and algebras with involution

A is an algebra with G-action where $G=\langle\varphi\rangle, \varphi$ is an automorphism or antiautomorphism of A of order ≤ 2.
$A=A_{0}^{\varphi} \oplus A_{1}^{\varphi}$, where

$$
A_{0}^{\varphi}=\left\{a \in A \mid a^{\varphi}=a\right\} \text { and } A_{1}^{\varphi}=\left\{a \in A \mid a^{\varphi}=-a\right\} .
$$

if φ is an antiautomorphism (involution)
$A_{0}^{\varphi}=A^{+}$and $A_{1}^{\varphi}=A^{-}$are the subspaces of symmetric and skew elements, respectively.
if φ is an automorphism $\Rightarrow A$ is a \mathbb{Z}_{2}-graded algebra (superalgebra) with grading $\left(A^{(0)}, A^{(1)}\right)$, where $A^{(0)}=A_{0}^{\varphi}$ and $A^{(1)}=A_{1}^{\varphi}$.

Algebras with G-action: superalgebras and algebras with involution

A is an algebra with G-action where $G=\langle\varphi\rangle, \varphi$ is an automorphism or antiautomorphism of A of order ≤ 2.
$A=A_{0}^{\varphi} \oplus A_{1}^{\varphi}$, where

$$
A_{0}^{\varphi}=\left\{a \in A \mid a^{\varphi}=a\right\} \text { and } A_{1}^{\varphi}=\left\{a \in A \mid a^{\varphi}=-a\right\} .
$$

if φ is an antiautomorphism (involution)
$A_{0}^{\varphi}=A^{+}$and $A_{1}^{\varphi}=A^{-}$are the subspaces of symmetric and skew elements, respectively.
if φ is an automorphism $\Rightarrow A$ is a \mathbb{Z}_{2}-graded algebra (superalgebra) with grading $\left(A^{(0)}, A^{(1)}\right)$, where $A^{(0)}=A_{0}^{\varphi}$ and $A^{(1)}=A_{1}^{\varphi}$.
A is called a φ-algebra
$F\langle X, \varphi\rangle=F\left\langle x_{1}, x_{1}^{\varphi}, x_{2}, x_{2}^{\varphi}, \ldots\right\rangle=$ the free associative algebra on X with G-action.
$F\langle X, \varphi\rangle=F\left\langle x_{1}, x_{1}^{\varphi}, x_{2}, x_{2}^{\varphi}, \ldots\right\rangle=$ the free associative algebra on X with G-action.
$\operatorname{Id}^{\varphi}(A)=$ the set of φ-identities of $A=\mathrm{T}^{\varphi}$-ideal of $F\langle X, \varphi\rangle$.
$F\langle X, \varphi\rangle=F\left\langle x_{1}, x_{1}^{\varphi}, x_{2}, x_{2}^{\varphi}, \ldots\right\rangle=$ the free associative algebra on X with G-action.
$\operatorname{Id}^{\varphi}(A)=$ the set of φ-identities of $A=\mathrm{T}^{\varphi}$-ideal of $F\langle X, \varphi\rangle$.
$F\langle X, \varphi\rangle=F\left\langle x_{1}, x_{1}^{\varphi}, x_{2}, x_{2}^{\varphi}, \ldots\right\rangle=$ the free associative algebra on X with G-action.
$\operatorname{Id}^{\varphi}(A)=$ the set of φ-identities of $A=\mathrm{T}^{\varphi}$-ideal of $F\langle X, \varphi\rangle$.

For every $n \geq 1$, the non negative integer

$$
c_{n}^{\varphi}(A)=\operatorname{dim}_{F} \frac{P_{n}^{\varphi}}{P_{n}^{\varphi} \cap I d^{\varphi}(A)}
$$

is called the n-th φ-codimension of A, where P_{n}^{φ} is the vector space of multilinear polynomials of degree n in $x_{1}, x_{1}^{\varphi}, \ldots, x_{n}, x_{n}^{\varphi}$.
$F\langle X, \varphi\rangle=F\left\langle x_{1}, x_{1}^{\varphi}, x_{2}, x_{2}^{\varphi}, \ldots\right\rangle=$ the free associative algebra on X with G-action.
$\operatorname{Id}^{\varphi}(A)=$ the set of φ-identities of $A=\mathrm{T}^{\varphi}$-ideal of $F\langle X, \varphi\rangle$.

For every $n \geq 1$, the non negative integer

$$
c_{n}^{\varphi}(A)=\operatorname{dim}_{F} \frac{P_{n}^{\varphi}}{P_{n}^{\varphi} \cap I d^{\varphi}(A)}
$$

is called the n-th φ-codimension of A, where P_{n}^{φ} is the vector space of multilinear polynomials of degree n in $x_{1}, x_{1}^{\varphi}, \ldots, x_{n}, x_{n}^{\varphi}$.

Giambruno-Regev (1985) If A is a PI-algebra then $c_{n}^{\varphi}(A), n=1,2, \ldots$, is exponentially bounded.

Amitsur's conjecture for φ-algebras

Amitsur's conjecture: For any PI- φ-algebra $A, \lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\varphi}(A)}$ exists and is a non-negative integer.

Amitsur's conjecture for φ-algebras

Amitsur's conjecture: For any PI- φ-algebra $A, \lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\varphi}(A)}$ exists and is a non-negative integer.

Aljadeff-Giambruno-LM (2010-2011), Giambruno-Polcino-Valenti (2017):
For a PI-algebra A, there exist constants $c_{1}>0, c_{2}, k_{1}, k_{2}$, and an integer $d \geq 0$ such that

$$
c_{1} n^{k_{1}} d^{n} \leq c_{n}^{\varphi}(A) \leq c_{2} n^{k_{2}} d^{n}
$$

Hence $\exp ^{\varphi}(A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\varphi}(A)}$ exists and is a non-negative integer called the φ-exponent of A.

Regev's conjecture for φ-algebras

Regev's conjecture: There exist a constant C, a semi-integer q and an integer $d \geq 0$ such that

$$
c_{n}^{\varphi}(A) \simeq C n^{q} d^{n}
$$

Finite dimensional simple algebras with involution

Berele, Giambruno, Regev (1996): If $A=\left(M_{k}(F), \varphi\right), \varphi=t$ or s,

$$
c_{n}^{\varphi}(A) \simeq C n^{-\frac{1}{2} \operatorname{dim} A_{1}^{\varphi}}(\operatorname{dim} A)^{n}
$$

Finite dimensional simple algebras with involution

Berele, Giambruno, Regev (1996): If $A=\left(M_{k}(F), \varphi\right), \varphi=t$ or s,

$$
c_{n}^{\varphi}(A) \simeq C n^{-\frac{1}{2} \operatorname{dim} A_{1}^{\varphi}}(\operatorname{dim} A)^{n}
$$

Giambruno, Polcino Milies, L.M. (2020): If $A=M_{k}(F) \oplus M_{k}(F)^{o p}$,

$$
c_{n}^{\varphi}(A) \simeq C n^{-\frac{1}{2}\left(\operatorname{dim} A_{1}^{\varphi}-1\right)}(\operatorname{dim} A)^{n}
$$

where $A_{1}^{\varphi}=A^{-}=\left\{a \in A \mid a^{\varphi}=-a\right\}$.

Finite dimensional simple superalgebras

Karasik-Shpigelman (2016) : If A is a finite dimensional φ-simple algebra then

$$
c_{n}^{\varphi}(A) \simeq C n^{-\frac{1}{2}\left(\operatorname{dim} A_{0}^{\varphi}-1\right)}(\operatorname{dim} A)^{n},
$$

for some constant C, where A_{0}^{φ} is the homogeneous component of degree zero.

For a PI-algebra A, there exist constants $c_{1}>0, c_{2}, k_{1}, k_{2}$, and an integer $d \geq 0$ such that

$$
c_{1} n^{k_{1}} d^{n} \leq c_{n}^{\varphi}(A) \leq c_{2} n^{k_{2}} d^{n}
$$

For a PI-algebra A, there exist constants $c_{1}>0, c_{2}, k_{1}, k_{2}$, and an integer $d \geq 0$ such that

$$
c_{1} n^{k_{1}} d^{n} \leq c_{n}^{\varphi}(A) \leq c_{2} n^{k_{2}} d^{n}
$$

Is $k_{1}=k_{2}$?

For a PI-algebra A, there exist constants $c_{1}>0, c_{2}, k_{1}, k_{2}$, and an integer $d \geq 0$ such that

$$
c_{1} n^{k_{1}} d^{n} \leq c_{n}^{\varphi}(A) \leq c_{2} n^{k_{2}} d^{n}
$$

Is $k_{1}=k_{2}$?
Positive answer for finitely generated φ-algebras: $k_{1}=k_{2} \in \frac{1}{2} \mathbb{Z}$.

φ-fundamental algebras

Let A be a finite dimensional φ-algebra over $F=\bar{F}$.

φ-fundamental algebras

Let A be a finite dimensional φ-algebra over $F=\bar{F}$.
Let $A=\bar{A}+J$ where $\bar{A}=A_{1} \oplus \cdots \oplus A_{q}$, with A_{1}, \ldots, A_{q} simple φ-algebras, $J=J(A)$ the Jacobson radical of A

φ-fundamental algebras

Let A be a finite dimensional φ-algebra over $F=\bar{F}$.
Let $A=\bar{A}+J$ where $\bar{A}=A_{1} \oplus \cdots \oplus A_{q}$, with A_{1}, \ldots, A_{q} simple φ-algebras, $J=J(A)$ the Jacobson radical of A
$t=\operatorname{dim} \bar{A}, s \geq 0$ is the least integer such that $J^{s+1}=0$.

φ-fundamental algebras

Let A be a finite dimensional φ-algebra over $F=\bar{F}$.
Let $A=\bar{A}+J$ where $\bar{A}=A_{1} \oplus \cdots \oplus A_{q}$, with A_{1}, \ldots, A_{q} simple φ-algebras, $J=J(A)$ the Jacobson radical of A
$t=\operatorname{dim} \bar{A}, s \geq 0$ is the least integer such that $J^{s+1}=0$.

Definition

A is φ-fundamental if $\forall \mu \geq 1 \exists$ a multilinear φ-polynomial $f\left(X_{1}, \ldots, X_{\mu}, Z_{1}, \ldots, Z_{s}, Y\right) \notin I d^{\varphi}(A)$ alternating in the μ sets X_{i} with $\left|X_{i}\right|=t$ and in the s sets Z_{j} with $\left|Z_{j}\right|=t+1$.

φ-fundamental algebras

Theorem (Giambruno, Polcino Milies, LM (2020))

Let $A=\bar{A}+J$ be a φ-fundamental algebra, where φ is an antiautomorphism. Write $\bar{A}=A_{1} \oplus \cdots A_{r} \oplus A_{r+1} \oplus \cdots \oplus A_{q}$, a direct sum of φ-simple algebras with A_{1}, \ldots, A_{r} not simple algebras, then

$$
C_{1} n^{-\frac{1}{2}\left(\operatorname{dim}(\bar{A})^{-}-r\right)+s} d^{n} \leq c_{n}^{\varphi}(A) \leq C_{2} n^{-\frac{1}{2}\left(\operatorname{dim}(\bar{A})^{-}-r\right)+s} d^{n}
$$

for some constants $C_{1}>0, C_{2}$, where $s \geq 0$ is the least integer such that $J^{s+1}=0$ and $d=\exp ^{\varphi}(A)=\operatorname{dim} \bar{A}$. Hence

$$
\lim _{n \rightarrow \infty} \log _{n} \frac{c_{n}^{\varphi}(A)}{\exp ^{\varphi}(A)^{n}}=-\frac{1}{2}\left(\operatorname{dim}(\bar{A})^{-}-r\right)+s .
$$

φ-fundamental algebras

Theorem (Giambruno, LM (2022))

Let $A=\bar{A}+J$ be a φ-fundamental algebra, where φ is an automorphism. Write $\bar{A}=A_{1} \oplus \cdots \oplus A_{q}$, a direct sum of φ-simple algebras then

$$
C_{1} n^{-\frac{1}{2}\left(\operatorname{dim}(\bar{A})^{(0)}-q\right)+s} d^{n} \leq c_{n}^{\varphi}(A) \leq C_{2} n^{-\frac{1}{2}\left(\operatorname{dim}(\bar{A})^{(0)}-q\right)+s} d^{n},
$$

for some constants $C_{1}>0, C_{2}$, where $s \geq 0$ is the least integer such that $J^{s+1}=0$ and $d=\exp ^{\varphi}(A)=\operatorname{dim} \bar{A}$. Hence

$$
\lim _{n \rightarrow \infty} \log _{n} \frac{c_{n}^{\varphi}(A)}{\exp ^{\varphi}(A)^{n}}=-\frac{1}{2}\left(\operatorname{dim}(\bar{A})^{(0)}-q\right)+s
$$

Finitely generated φ-algebras

remark

Every finite dimensional φ-algebra has the same φ-identities as a finite direct sum of φ-fundamental algebras.

Finitely generated φ-algebras

remark

Every finite dimensional φ-algebra has the same φ-identities as a finite direct sum of φ-fundamental algebras.

Finitely generated φ-algebras

remark

Every finite dimensional φ-algebra has the same φ-identities as a finite direct sum of φ-fundamental algebras.

A finitely generated PI φ-algebra has the same identities as a finite dimensional φ-algebra.

Theorem (Giambruno, Polcino Milies, LM, 2020, 2022)

Let A be a finitely generated PI φ-algebra over a field F of characteristic zero. Then

$$
C_{1} n^{t} \exp ^{\varphi}(A)^{n} \leq c_{n}^{\varphi}(A) \leq C_{2} n^{t} \exp ^{\varphi}(A)^{n}
$$

where $t \in \frac{1}{2} \mathbb{Z}$, for some constants $C_{1}>0, C_{2}$.
Hence $\lim _{n \rightarrow \infty} \log _{n} \frac{c_{n}^{\varphi}(A)}{\exp (A)^{n}}$ exists and is a half integer.

Thank you for your attention!

