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Definition
A polynomial identity of an algebra A is a polynomial in non-commuting
indeterminates vanishing under all evaluations in A.

xy− yx is a polynomial identity for any commutative algebra.
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A bit of history

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und
allgemeine Zahlsysteme. Math. Ann. 85 (1922);

- Wagner W.: Über die Grundlagen der projektiven Geometrie und
allgemeine Zahlensysteme Math. Ann. (1937);

- Kaplansky I.: Rings with a polynomial identity. Bull. Amer. Math. Soc.
54 (1948).

3 / 26



A bit of history

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und
allgemeine Zahlsysteme. Math. Ann. 85 (1922);

- Wagner W.: Über die Grundlagen der projektiven Geometrie und
allgemeine Zahlensysteme Math. Ann. (1937);

- Kaplansky I.: Rings with a polynomial identity. Bull. Amer. Math. Soc.
54 (1948).

3 / 26



A bit of history

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und
allgemeine Zahlsysteme. Math. Ann. 85 (1922);

- Wagner W.: Über die Grundlagen der projektiven Geometrie und
allgemeine Zahlensysteme Math. Ann. (1937);

- Kaplansky I.: Rings with a polynomial identity. Bull. Amer. Math. Soc.
54 (1948).

3 / 26



A bit of history

Positive answer to the Kurosh problem for PI-algebras

Kurosh problem, 1941: Is every finitely generated algebraic algebra finite
dimensional?

Counterexamples: Golod-Shafarevich, 1964.
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Combinatorial approach in PI-theory

Theorem (Amitsur, Levitzki, 1950)
The standard polynomial of degree 2n

St2n(x1, . . . ,x2n) = ∑
σ∈S2n

(sgnσ)xσ(1) · · ·xσ(2n)

is a polynomial identity of minimal degree for Mn(F) the algebra of n×n
matrices.
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F⟨X⟩= the free associative algebra on a countable set X = {x1,x2, . . .} over a
field F of characteristic zero

A = associative F-algebra

Id(A) = {f ∈ F⟨X⟩ | f ≡ 0 in A} = the T-ideal of F⟨X⟩ of polynomial identities
of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra
finitely generated?

Kemer (1987): Positive answer to the Specht problem.
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Examples of T-ideals

Id(F) = ⟨[x1,x2]⟩T , where [x1,x2] = x1x2 − x2x1;

M2(F) = the algebra of 2×2 matrices over F,

Id(M2(F)) = ⟨[[x1,x2]
2,x3],St4(x1,x2,x3,x4)⟩T .
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If charF = 0, Id(A) is completely determined by its multilinear polynomials.

For every n ≥ 1, let

Pn = spanF{xσ(1) · · ·xσ(n) | σ ∈ Sn}

be the vector space of multilinear polynomials in x1, . . . ,xn.

Id(A) is generated by Pn ∩ Id(A), n ≥ 1.
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Definition
The non-negative integer

cn(A) = dimF
Pn

Pn ∩ Id(A)
, n ≥ 1

is called the n-th codimension of A. The sequence {cn(A)}n≥1 is the
codimension sequence of A.

Regev (1972) If A is a PI-algebra , then there exists d ≥ 1 such that
cn(A)≤ dn, for all n.
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Codimension sequence of PI-algebras

cn(F) = 1, for all n ≥ 1;

cn(Mk(F))≃ Cn−
1
2 (k

2−1)k2n, with C a constant (Regev, 1984).
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In the 1980’s two main conjectures were made:

Amitsur’s conjecture: For any PI-algebra A, limn→∞
n
√

cn(A) exists and is a
non-negative integer.

Regev’s conjecture: For any PI-algebra A, there exist a constant C, a
semi-integer q and an integer d ≥ 0 such that

cn(A)≃ Cnqdn.
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Amitsur’s conjecture

Giambruno-Zaicev (1999):

For a PI-algebra A, there exist constants c1 > 0,c2,k1,k2, and an integer d ≥ 0
such that

c1nk1dn ≤ cn(A)≤ c2nk2dn.

Hence exp(A) = limn→∞
n
√

cn(A) exists and is a non-negative integer called
the exponent of A.
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Regev’s Conjecture

Berele-Regev (2008): For any PI-algebra A with 1, cn(A)≃ Cntexp(A)n, with
t ∈ 1

2Z.

Giambruno-Zaicev(2014): A = PI-algebra. Then the sequence cn(A) is
eventually non decreasing, i.e., cn+1(A)≥ cn(A), for n large enough.

For any PI-algebra A

C1ntexp(A)n ≤ cn(A)≤ C2ntexp(A)n, t ∈ 1
2
Z.

Definition

t = pol(A) = lim
n→∞

logn
cn(A)

exp(A)n .
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Algebras with G-action: superalgebras and algebras
with involution

A is an algebra with G-action where G = ⟨ϕ⟩,ϕ is an automorphism or
antiautomorphism of A of order ≤ 2.

A = Aϕ

0 ⊕Aϕ

1 , where

Aϕ

0 = {a ∈ A | aϕ = a} and Aϕ

1 = {a ∈ A | aϕ =−a}.

if ϕ is an antiautomorphism (involution)

Aϕ

0 = A+ and Aϕ

1 = A− are the subspaces of symmetric and skew elements,
respectively.

if ϕ is an automorphism ⇒ A is a Z2-graded algebra (superalgebra) with

grading (A(0), A(1)), where A(0) = Aϕ

0 and A(1) = Aϕ

1 .

A is called a ϕ-algebra
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F⟨X,ϕ⟩= F⟨x1,x
ϕ

1 ,x2,x
ϕ

2 , . . .⟩ = the free associative algebra on X with
G-action.

Idϕ(A)= the set of ϕ-identities of A= Tϕ -ideal of F⟨X,ϕ⟩.

For every n ≥ 1, the non negative integer

cϕ
n (A) = dimF

Pϕ
n

Pϕ
n ∩ Idϕ(A)

is called the n-th ϕ-codimension of A, where Pϕ
n is the vector space of

multilinear polynomials of degree n in x1,x
ϕ

1 , . . . ,xn,x
ϕ
n .

Giambruno-Regev (1985) If A is a PI-algebra then cϕ
n (A), n = 1,2, . . . , is

exponentially bounded.
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Amitsur’s conjecture for ϕ-algebras

Amitsur’s conjecture: For any PI-ϕ-algebra A, limn→∞
n
√

cϕ
n (A) exists and is a

non-negative integer.

Aljadeff-Giambruno-LM (2010-2011), Giambruno-Polcino-Valenti (2017):

For a PI-algebra A, there exist constants c1 > 0,c2,k1,k2, and an integer d ≥ 0
such that

c1nk1dn ≤ cϕ
n (A)≤ c2nk2dn.

Hence expϕ(A) = limn→∞
n
√

cϕ
n (A) exists and is a non-negative integer called

the ϕ-exponent of A.
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Regev’s conjecture for ϕ-algebras

Regev’s conjecture: There exist a constant C, a semi-integer q and an integer
d ≥ 0 such that

cϕ
n (A)≃ Cnqdn.
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Finite dimensional simple algebras with involution

Berele, Giambruno, Regev (1996): If A = (Mk(F),ϕ), ϕ = t or s,

cϕ
n (A)≃ Cn−

1
2 dimAϕ

1 (dimA)n

Giambruno, Polcino Milies, L.M. (2020): If A = Mk(F)⊕Mk(F)op,

cϕ
n (A)≃ Cn−

1
2 (dimAϕ

1 −1)(dimA)n

where Aϕ

1 = A− = {a ∈ A | aϕ =−a}.
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Finite dimensional simple superalgebras

Karasik-Shpigelman (2016) : If A is a finite dimensional ϕ-simple algebra
then

cϕ
n (A)≃ Cn−

1
2 (dimAϕ

0 −1)(dimA)n,

for some constant C, where Aϕ

0 is the homogeneous component of degree
zero.
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For a PI-algebra A, there exist constants c1 > 0,c2,k1,k2, and an integer d ≥ 0
such that

c1nk1dn ≤ cϕ
n (A)≤ c2nk2dn.

Is k1 = k2?

Positive answer for finitely generated ϕ-algebras: k1 = k2 ∈ 1
2Z.
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ϕ-fundamental algebras

Let A be a finite dimensional ϕ-algebra over F = F̄.

Let A = Ā+ J where Ā = A1 ⊕·· ·⊕Aq, with A1, . . . ,Aq simple ϕ-algebras,
J = J(A) the Jacobson radical of A

t = dim Ā, s ≥ 0 is the least integer such that Js+1 = 0.

Definition
A is ϕ-fundamental if ∀µ ≥ 1 ∃ a multilinear ϕ-polynomial
f (X1, . . . ,Xµ ,Z1, . . . ,Zs,Y) ̸∈ Idϕ(A) alternating in the µ sets Xi with |Xi|= t
and in the s sets Zj with |Zj|= t+1.
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21 / 26



ϕ-fundamental algebras

Let A be a finite dimensional ϕ-algebra over F = F̄.
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ϕ-fundamental algebras

Theorem (Giambruno, Polcino Milies, LM (2020))
Let A = Ā+ J be a ϕ-fundamental algebra, where ϕ is an antiautomorphism.
Write Ā = A1 ⊕·· ·Ar ⊕Ar+1 ⊕·· ·⊕Aq, a direct sum of ϕ-simple algebras
with A1, . . . ,Ar not simple algebras, then

C1n−
1
2 (dim(Ā)−−r)+sdn ≤ cϕ

n (A)≤ C2n−
1
2 (dim(Ā)−−r)+sdn,

for some constants C1 > 0,C2, where s ≥ 0 is the least integer such that
Js+1 = 0 and d = expϕ(A) = dim Ā. Hence

lim
n→∞

logn
cϕ

n (A)
expϕ(A)n =−1

2
(dim(Ā)−− r)+ s.
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ϕ-fundamental algebras

Theorem (Giambruno, LM (2022))
Let A = Ā+ J be a ϕ-fundamental algebra, where ϕ is an automorphism.
Write Ā = A1 ⊕·· ·⊕Aq, a direct sum of ϕ-simple algebras then

C1n−
1
2 (dim(Ā)(0)−q)+sdn ≤ cϕ

n (A)≤ C2n−
1
2 (dim(Ā)(0)−q)+sdn,

for some constants C1 > 0,C2, where s ≥ 0 is the least integer such that
Js+1 = 0 and d = expϕ(A) = dim Ā. Hence

lim
n→∞

logn
cϕ

n (A)
expϕ(A)n =−1

2
(dim(Ā)(0)−q)+ s.
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Finitely generated ϕ-algebras

remark
Every finite dimensional ϕ-algebra has the same ϕ-identities as a finite direct
sum of ϕ-fundamental algebras.

A finitely generated PI ϕ-algebra has the same identities as a finite
dimensional ϕ-algebra.
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Theorem (Giambruno, Polcino Milies, LM, 2020, 2022)
Let A be a finitely generated PI ϕ-algebra over a field F of characteristic
zero. Then

C1ntexpϕ(A)n ≤ cϕ
n (A)≤ C2ntexpϕ(A)n,

where t ∈ 1
2Z, for some constants C1 > 0,C2.

Hence lim
n→∞

logn
cϕ

n (A)
exp(A)n

exists and is a half integer.
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Thank you for your attention!
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