Polynomial identities: some computational aspects

Daniela La Mattina

University of Palermo

Advances in Group Theory and Applications 2023, June 6th-9th 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A polynomial identity of an algebra *A* is a polynomial in non-commuting indeterminates vanishing under all evaluations in *A*.

A polynomial identity of an algebra *A* is a polynomial in non-commuting indeterminates vanishing under all evaluations in *A*.

A polynomial identity of an algebra *A* is a polynomial in non-commuting indeterminates vanishing under all evaluations in *A*.

xy - yx is a polynomial identity for any commutative algebra.

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922);

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922);
- Wagner W.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme Math. Ann. (1937);

- Dehn, M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922);
- Wagner W.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme Math. Ann. (1937);
- Kaplansky I.: Rings with a polynomial identity. Bull. Amer. Math. Soc. 54 (1948).

Positive answer to the Kurosh problem for PI-algebras

Positive answer to the Kurosh problem for PI-algebras

Kurosh problem, 1941: Is every finitely generated algebraic algebra finite dimensional?

Counterexamples: Golod-Shafarevich, 1964.

Combinatorial approach in PI-theory

Theorem (Amitsur, Levitzki, 1950)

The standard polynomial of degree 2n

$$St_{2n}(x_1,\ldots,x_{2n}) = \sum_{\sigma\in S_{2n}} (sgn\sigma)x_{\sigma(1)}\cdots x_{\sigma(2n)}$$

is a polynomial identity of minimal degree for $M_n(F)$ the algebra of $n \times n$ matrices.

6/26

A =associative F-algebra

A =associative F-algebra

 $Id(A) = \{f \in F \langle X \rangle \mid f \equiv 0 \text{ in } A\}$ = the T-ideal of $F \langle X \rangle$ of polynomial identities of A

A =associative F-algebra

 $Id(A) = \{f \in F \langle X \rangle \mid f \equiv 0 \text{ in } A\}$ = the T-ideal of $F \langle X \rangle$ of polynomial identities of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra finitely generated?

A =associative F-algebra

 $Id(A) = \{f \in F \langle X \rangle \mid f \equiv 0 \text{ in } A\}$ = the T-ideal of $F \langle X \rangle$ of polynomial identities of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra finitely generated?

A =associative F-algebra

 $Id(A) = \{f \in F \langle X \rangle \mid f \equiv 0 \text{ in } A\}$ = the T-ideal of $F \langle X \rangle$ of polynomial identities of A

Specht Problem (1950): Is every proper T-ideal of the free associative algebra finitely generated?

Kemer (1987): Positive answer to the Specht problem.

• Id(F) = $\langle [x_1, x_2] \rangle_T$, where $[x_1, x_2] = x_1 x_2 - x_2 x_1$;

•
$$\mathrm{Id}(F) = \langle [x_1, x_2] \rangle_T$$
, where $[x_1, x_2] = x_1 x_2 - x_2 x_1$;

• $M_2(F)$ = the algebra of 2 × 2 matrices over F,

 $\mathrm{Id}(M_2(F)) = \langle [[x_1, x_2]^2, x_3], St_4(x_1, x_2, x_3, x_4) \rangle_T.$

If char F = 0, Id(A) is completely determined by its multilinear polynomials.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

8/26

If char F = 0, Id(A) is completely determined by its multilinear polynomials.

For every $n \ge 1$, let

$$P_n = \operatorname{span}_F \{ x_{\sigma(1)} \cdots x_{\sigma(n)} \mid \sigma \in S_n \}$$

be the vector space of multilinear polynomials in x_1, \ldots, x_n .

If char F = 0, Id(A) is completely determined by its multilinear polynomials.

For every $n \ge 1$, let

$$P_n = \operatorname{span}_F \{ x_{\sigma(1)} \cdots x_{\sigma(n)} \mid \sigma \in S_n \}$$

8/26

be the vector space of multilinear polynomials in x_1, \ldots, x_n .

Id(A) is generated by $P_n \cap Id(A), n \ge 1$.

The non-negative integer

$$c_n(A) = \dim_F \frac{P_n}{P_n \cap \mathrm{Id}(A)}, \ n \ge 1$$

is called the *n*-th codimension of *A*. The sequence $\{c_n(A)\}_{n\geq 1}$ is the *codimension sequence* of *A*.

The non-negative integer

$$c_n(A) = \dim_F \frac{P_n}{P_n \cap \mathrm{Id}(A)}, \ n \ge 1$$

is called the *n*-th codimension of *A*. The sequence $\{c_n(A)\}_{n\geq 1}$ is the *codimension sequence* of *A*.

The non-negative integer

$$c_n(A) = \dim_F \frac{P_n}{P_n \cap \mathrm{Id}(A)}, \ n \ge 1$$

is called the *n*-th codimension of *A*. The sequence $\{c_n(A)\}_{n\geq 1}$ is the *codimension sequence* of *A*.

Regev (1972) If A is a PI-algebra , then there exists $d \ge 1$ such that $c_n(A) \le d^n$, for all n.

Codimension sequence of PI-algebras

•
$$c_n(F) = 1$$
, for all $n \ge 1$;

•
$$c_n(F) = 1$$
, for all $n \ge 1$;

• $c_n(M_k(F)) \simeq Cn^{-\frac{1}{2}(k^2-1)}k^{2n}$, with *C* a constant (Regev, 1984).

<ロト < 合 ト < 言 ト < 言 ト こ の へ () 10/26 In the 1980's two main conjectures were made:

In the 1980's two main conjectures were made:

Amitsur's conjecture: For any PI-algebra A, $\lim_{n\to\infty} \sqrt[n]{c_n(A)}$ exists and is a non-negative integer.

In the 1980's two main conjectures were made:

Amitsur's conjecture: For any PI-algebra A, $\lim_{n\to\infty} \sqrt[n]{c_n(A)}$ exists and is a non-negative integer.

Regev's conjecture: For any PI-algebra A, there exist a constant C, a semi-integer q and an integer $d \ge 0$ such that

 $c_n(A) \simeq Cn^q d^n.$

<ロ> (四) (四) (三) (三) (三)

11/26

Giambruno-Zaicev (1999):

For a PI-algebra *A*, there exist constants $c_1 > 0, c_2, k_1, k_2$, and an integer $d \ge 0$ such that

$$c_1 n^{k_1} d^n \le c_n(A) \le c_2 n^{k_2} d^n.$$

Hence $exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$ exists and is a non-negative integer called the exponent of *A*.

Berele-Regev (2008): For any PI-algebra A with 1, $c_n(A) \simeq Cn^t exp(A)^n$, with $t \in \frac{1}{2}\mathbb{Z}$.

Berele-Regev (2008): For any PI-algebra A with 1, $c_n(A) \simeq Cn^t exp(A)^n$, with $t \in \frac{1}{2}\mathbb{Z}$.

Giambruno-Zaicev(2014): A = PI-algebra. Then the sequence $c_n(A)$ is eventually non decreasing, i.e., $c_{n+1}(A) \ge c_n(A)$, for *n* large enough.

Berele-Regev (2008): For any PI-algebra A with 1, $c_n(A) \simeq Cn^t exp(A)^n$, with $t \in \frac{1}{2}\mathbb{Z}$.

Giambruno-Zaicev(2014): A = PI-algebra. Then the sequence $c_n(A)$ is eventually non decreasing, i.e., $c_{n+1}(A) \ge c_n(A)$, for *n* large enough.

For any PI-algebra A

$$C_1 n^t exp(A)^n \le c_n(A) \le C_2 n^t exp(A)^n, \quad t \in \frac{1}{2}\mathbb{Z}.$$

Berele-Regev (2008): For any PI-algebra A with 1, $c_n(A) \simeq Cn^t exp(A)^n$, with $t \in \frac{1}{2}\mathbb{Z}$.

Giambruno-Zaicev(2014): A = PI-algebra. Then the sequence $c_n(A)$ is eventually non decreasing, i.e., $c_{n+1}(A) \ge c_n(A)$, for *n* large enough.

For any PI-algebra A

$$C_1 n^t exp(A)^n \le c_n(A) \le C_2 n^t exp(A)^n, \quad t \in \frac{1}{2}\mathbb{Z}.$$

Definition

$$t = pol(A) = \lim_{n \to \infty} \log_n \frac{c_n(A)}{exp(A)^n}$$

Algebras with *G***-action: superalgebras and algebras with involution**

A is an algebra with *G*-action where $G = \langle \varphi \rangle, \varphi$ is an automorphism or antiautomorphism of *A* of order ≤ 2 .

Algebras with *G*-action: superalgebras and algebras with involution

A is an algebra with *G*-action where $G = \langle \varphi \rangle, \varphi$ is an automorphism or antiautomorphism of *A* of order ≤ 2 .

 $A = A_0^{\varphi} \oplus A_1^{\varphi}$, where

 $A_0^{\varphi} = \{a \in A \mid a^{\varphi} = a\} \text{ and } A_1^{\varphi} = \{a \in A \mid a^{\varphi} = -a\}.$

Algebras with *G***-action: superalgebras and algebras with involution**

A is an algebra with *G*-action where $G = \langle \varphi \rangle, \varphi$ is an automorphism or antiautomorphism of *A* of order ≤ 2 .

 $A = A_0^{\varphi} \oplus A_1^{\varphi}$, where

$$A_0^{\varphi} = \{a \in A \mid a^{\varphi} = a\} \text{ and } A_1^{\varphi} = \{a \in A \mid a^{\varphi} = -a\}.$$

if φ is an antiautomorphism (involution)

 $A_0^{\varphi} = A^+$ and $A_1^{\varphi} = A^-$ are the subspaces of symmetric and skew elements, respectively.

Algebras with *G*-action: superalgebras and algebras with involution

A is an algebra with *G*-action where $G = \langle \varphi \rangle, \varphi$ is an automorphism or antiautomorphism of *A* of order ≤ 2 .

 $A = A_0^{\varphi} \oplus A_1^{\varphi}$, where

$$A_0^{\varphi} = \{a \in A \mid a^{\varphi} = a\} \text{ and } A_1^{\varphi} = \{a \in A \mid a^{\varphi} = -a\}.$$

if φ is an antiautomorphism (involution)

 $A_0^{\varphi} = A^+$ and $A_1^{\varphi} = A^-$ are the subspaces of symmetric and skew elements, respectively.

if φ is an automorphism $\Rightarrow A$ is a \mathbb{Z}_2 -graded algebra (superalgebra) with grading $(A^{(0)}, A^{(1)})$, where $A^{(0)} = A_0^{\varphi}$ and $A^{(1)} = A_1^{\varphi}$.

Algebras with *G*-action: superalgebras and algebras with involution

A is an algebra with *G*-action where $G = \langle \varphi \rangle, \varphi$ is an automorphism or antiautomorphism of *A* of order ≤ 2 .

 $A = A_0^{\varphi} \oplus A_1^{\varphi}$, where

$$A_0^{\varphi} = \{a \in A \mid a^{\varphi} = a\} \text{ and } A_1^{\varphi} = \{a \in A \mid a^{\varphi} = -a\}.$$

if φ is an antiautomorphism (involution)

 $A_0^{\varphi} = A^+$ and $A_1^{\varphi} = A^-$ are the subspaces of symmetric and skew elements, respectively.

if φ is an automorphism $\Rightarrow A$ is a \mathbb{Z}_2 -graded algebra (superalgebra) with grading $(A^{(0)}, A^{(1)})$, where $A^{(0)} = A_0^{\varphi}$ and $A^{(1)} = A_1^{\varphi}$. *A* is called a φ -algebra

 $\operatorname{Id}^{\varphi}(A)$ = the set of φ -identities of A = T φ -ideal of $F\langle X, \varphi \rangle$.

 $\operatorname{Id}^{\varphi}(A)$ = the set of φ -identities of A = T φ -ideal of $F\langle X, \varphi \rangle$.

 $\operatorname{Id}^{\varphi}(A)$ = the set of φ -identities of A = T $^{\varphi}$ -ideal of $F\langle X, \varphi \rangle$.

For every $n \ge 1$, the non negative integer

$$c_n^{\varphi}(A) = \dim_F \frac{P_n^{\varphi}}{P_n^{\varphi} \cap Id^{\varphi}(A)}$$

is called the *n*-th φ -codimension of *A*, where P_n^{φ} is the vector space of multilinear polynomials of degree *n* in $x_1, x_1^{\varphi}, \dots, x_n, x_n^{\varphi}$.

 $\mathrm{Id}^{\varphi}(A)$ = the set of φ -identities of A = T $^{\varphi}$ -ideal of $F\langle X, \varphi \rangle$.

For every $n \ge 1$, the non negative integer

$$c_n^{\varphi}(A) = \dim_F \frac{P_n^{\varphi}}{P_n^{\varphi} \cap Id^{\varphi}(A)}$$

is called the *n*-th φ -codimension of *A*, where P_n^{φ} is the vector space of multilinear polynomials of degree *n* in $x_1, x_1^{\varphi}, \dots, x_n, x_n^{\varphi}$.

Giambruno-Regev (1985) If *A* is a PI-algebra then $c_n^{\varphi}(A)$, n = 1, 2, ..., is exponentially bounded.

Amitsur's conjecture for φ -algebras

Amitsur's conjecture: For any PI- φ -algebra A, $\lim_{n\to\infty} \sqrt[n]{c_n^{\varphi}(A)}$ exists and is a non-negative integer.

Amitsur's conjecture: For any PI- φ -algebra A, $\lim_{n\to\infty} \sqrt[n]{c_n^{\varphi}(A)}$ exists and is a non-negative integer.

Aljadeff-Giambruno-LM (2010-2011), Giambruno-Polcino-Valenti (2017):

For a PI-algebra *A*, there exist constants $c_1 > 0, c_2, k_1, k_2$, and an integer $d \ge 0$ such that

$$c_1 n^{k_1} d^n \le c_n^{\varphi}(A) \le c_2 n^{k_2} d^n.$$

Hence $exp^{\varphi}(A) = \lim_{n \to \infty} \sqrt[n]{c_n^{\varphi}(A)}$ exists and is a non-negative integer called the φ -exponent of A.

Regev's conjecture: There exist a constant *C*, a semi-integer *q* and an integer $d \ge 0$ such that

 $c_n^{\varphi}(A) \simeq Cn^q d^n.$

Finite dimensional simple algebras with involution

Berele, Giambruno, Regev (1996): If $A = (M_k(F), \varphi), \varphi = t$ or s,

$$c_n^{\varphi}(A) \simeq C n^{-\frac{1}{2}\dim A_1^{\varphi}} (\dim A)^n$$

Finite dimensional simple algebras with involution

Berele, Giambruno, Regev (1996): If $A = (M_k(F), \varphi), \varphi = t$ or s,

$$c_n^{\varphi}(A) \simeq C n^{-\frac{1}{2}\dim A_1^{\varphi}} (\dim A)^n$$

Giambruno, Polcino Milies, L.M. (2020): If $A = M_k(F) \oplus M_k(F)^{op}$,

$$c_n^{\varphi}(A) \simeq C n^{-\frac{1}{2}(\dim A_1^{\varphi} - 1)} (\dim A)^n$$

18/26

where $A_1^{\varphi} = A^- = \{a \in A \mid a^{\varphi} = -a\}.$

Karasik-Shpigelman (2016) : If A is a finite dimensional φ -simple algebra then

$$c_n^{\varphi}(A) \simeq C n^{-\frac{1}{2}(\dim A_0^{\varphi} - 1)} (\dim A)^n,$$

for some constant *C*, where A_0^{φ} is the homogeneous component of degree zero.

For a PI-algebra A, there exist constants $c_1 > 0, c_2, k_1, k_2$, and an integer $d \ge 0$ such that

$$c_1 n^{k_1} d^n \le c_n^{\varphi}(A) \le c_2 n^{k_2} d^n.$$

For a PI-algebra A, there exist constants $c_1 > 0, c_2, k_1, k_2$, and an integer $d \ge 0$ such that

$$c_1 n^{k_1} d^n \le c_n^{\varphi}(A) \le c_2 n^{k_2} d^n.$$

Is $k_1 = k_2$?

For a PI-algebra A, there exist constants $c_1 > 0, c_2, k_1, k_2$, and an integer $d \ge 0$ such that

$$c_1 n^{k_1} d^n \le c_n^{\varphi}(A) \le c_2 n^{k_2} d^n.$$

Is $k_1 = k_2$?

Positive answer for finitely generated φ -algebras: $k_1 = k_2 \in \frac{1}{2}\mathbb{Z}$.

ϕ -fundamental algebras

Let *A* be a finite dimensional φ -algebra over $F = \overline{F}$.

ϕ -fundamental algebras

Let *A* be a finite dimensional φ -algebra over $F = \overline{F}$.

Let $A = \overline{A} + J$ where $\overline{A} = A_1 \oplus \cdots \oplus A_q$, with A_1, \ldots, A_q simple φ -algebras, J = J(A) the Jacobson radical of A

ϕ -fundamental algebras

Let *A* be a finite dimensional φ -algebra over $F = \overline{F}$.

Let $A = \overline{A} + J$ where $\overline{A} = A_1 \oplus \cdots \oplus A_q$, with A_1, \ldots, A_q simple φ -algebras, J = J(A) the Jacobson radical of A

 $t = \dim \overline{A}, s \ge 0$ is the least integer such that $J^{s+1} = 0$.

φ -fundamental algebras

Let *A* be a finite dimensional φ -algebra over $F = \overline{F}$.

Let $A = \overline{A} + J$ where $\overline{A} = A_1 \oplus \cdots \oplus A_q$, with A_1, \ldots, A_q simple φ -algebras, J = J(A) the Jacobson radical of A

 $t = \dim \overline{A}, s \ge 0$ is the least integer such that $J^{s+1} = 0$.

Definition

A is φ -fundamental if $\forall \mu \ge 1 \exists$ a multilinear φ -polynomial $f(X_1, \ldots, X_\mu, Z_1, \ldots, Z_s, Y) \notin Id^{\varphi}(A)$ alternating in the μ sets X_i with $|X_i| = t$ and in the *s* sets Z_j with $|Z_j| = t + 1$.

Theorem (Giambruno, Polcino Milies, LM (2020))

Let $A = \overline{A} + J$ be a φ -fundamental algebra, where φ is an antiautomorphism. Write $\overline{A} = A_1 \oplus \cdots A_r \oplus A_{r+1} \oplus \cdots \oplus A_q$, a direct sum of φ -simple algebras with A_1, \ldots, A_r not simple algebras, then

$$C_1 n^{-\frac{1}{2}(\dim(\bar{A})^- - r) + s} d^n \le c_n^{\varphi}(A) \le C_2 n^{-\frac{1}{2}(\dim(\bar{A})^- - r) + s} d^n,$$

for some constants $C_1 > 0, C_2$, where $s \ge 0$ is the least integer such that $J^{s+1} = 0$ and $d = exp^{\varphi}(A) = \dim \overline{A}$. Hence

$$\lim_{n\to\infty}\log_n\frac{c_n^{\varphi}(A)}{exp^{\varphi}(A)^n}=-\frac{1}{2}(\dim(\bar{A})^--r)+s.$$

φ -fundamental algebras

Theorem (Giambruno, LM (2022))

Let $A = \overline{A} + J$ be a φ -fundamental algebra, where φ is an automorphism. Write $\overline{A} = A_1 \oplus \cdots \oplus A_q$, a direct sum of φ -simple algebras then

$$C_1 n^{-\frac{1}{2}(\dim(\bar{A})^{(0)}-q)+s} d^n \le c_n^{\varphi}(A) \le C_2 n^{-\frac{1}{2}(\dim(\bar{A})^{(0)}-q)+s} d^n$$

for some constants $C_1 > 0, C_2$, where $s \ge 0$ is the least integer such that $J^{s+1} = 0$ and $d = exp^{\varphi}(A) = \dim \overline{A}$. Hence

$$\lim_{n\to\infty}\log_n\frac{c_n^{\varphi}(A)}{exp^{\varphi}(A)^n}=-\frac{1}{2}(\dim(\bar{A})^{(0)}-q)+s.$$

remark

Every finite dimensional φ -algebra has the same φ -identities as a finite direct sum of φ -fundamental algebras.

remark

Every finite dimensional φ -algebra has the same φ -identities as a finite direct sum of φ -fundamental algebras.

remark

Every finite dimensional φ -algebra has the same φ -identities as a finite direct sum of φ -fundamental algebras.

A finitely generated PI φ -algebra has the same identities as a finite dimensional φ -algebra.

Theorem (Giambruno, Polcino Milies, LM, 2020, 2022)

Let A be a finitely generated PI φ -algebra over a field F of characteristic zero. Then

 $C_1 n^t exp^{\varphi}(A)^n \le c_n^{\varphi}(A) \le C_2 n^t exp^{\varphi}(A)^n,$

where $t \in \frac{1}{2}\mathbb{Z}$, for some constants $C_1 > 0, C_2$.

Hence $\lim_{n\to\infty} \log_n \frac{c_n^{\varphi}(A)}{exp(A)^n}$ exists and is a half integer.

Thank you for your attention!

イロト イポト イヨト イヨト 二日

26/26