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Yang–Baxter equation

Definition
Let V be a vector space. A homomorphism R : V ⊗ V → V ⊗ V is
called a solution of Yang–Baxter equation if it satisfies

(R ⊗ idV)(idV ⊗ R)(R ⊗ idV) = (idV ⊗ R)(R ⊗ idV)(idV ⊗ R).
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Set-theoretic solutions

Definition
Let X be a set. A mapping r : X × X → X × X is called a
set-theoretic solution of Yang–Baxter equation if it satisfies

(r × idX)(idX × r)(r × idX) = (idX × r)(r × idX)(idX × r).

A solution r : (x, y) 7→ (σx(y), τy(x)) is called bijective if r is a
bijection. It is called non-degenerate if σx and τy are bijections,
for all x, y ∈ X.
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Involutive solutions

Observation
A structure (X, r) is a solution if and only if σx and τy are
permutations, for all x, y ∈ X, satisfying

σxσy = σσx(y)στy(x)

τστy(x)(z)σx(y) = στσy(z)(x)τz(y)

τxτy = ττx(y)τσy(x)

Definition

A solution is called involutive if r2 = idX2 .

Observation

If r is involutive then τy(x) = σ−1
σx(y)(x).



Skew left braces and 2-reductive solutions of the Yang–Baxter equation 4 / 27
Involutive solutions

Involutive solutions

Observation
A structure (X, r) is a solution if and only if σx and τy are
permutations, for all x, y ∈ X, satisfying

σxσy = σσx(y)στy(x)

τστy(x)(z)σx(y) = στσy(z)(x)τz(y)

τxτy = ττx(y)τσy(x)

Definition

A solution is called involutive if r2 = idX2 .

Observation

If r is involutive then τy(x) = σ−1
σx(y)(x).



Skew left braces and 2-reductive solutions of the Yang–Baxter equation 4 / 27
Involutive solutions

Involutive solutions

Observation
A structure (X, r) is a solution if and only if σx and τy are
permutations, for all x, y ∈ X, satisfying

σxσy = σσx(y)στy(x)

τστy(x)(z)σx(y) = στσy(z)(x)τz(y)

τxτy = ττx(y)τσy(x)

Definition

A solution is called involutive if r2 = idX2 .

Observation

If r is involutive then τy(x) = σ−1
σx(y)(x).



Skew left braces and 2-reductive solutions of the Yang–Baxter equation 5 / 27
Involutive solutions

Left braces

Definition (W. Rump)

A set B equipped with operations + and ◦ is called a left brace if
(B,+) is an abelian group;
(B, ◦) is a group;
for all a, b, c ∈ B, we have a ◦ (b + c) = a ◦ b + a ◦ c − a.

Example

Let R be a ring and let n ∈ J(R). Let

a ◦ b = a + anb + b.

Then (B,+, ◦) is a left brace.
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Involutive solutions associated to left braces

Proposition

Let (B,+, ◦) be a left brace. The mapping λ : B → SB defined by

λa(b) = a ◦ b − a

is a homomorphism B → Aut(B,+).

Proposition

Let (B,+, ◦) be a left brace. If we define r : B2 → B2 as

r(a, b) = (λa(b), λ−1
λa(b)(a))

then (B, r) is an involutive solution.
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Retracts of involutive solutions

Definition
Let (X,σ, τ) be an involutive solution. We define a relation ∼ on X

x ∼ y if and only if σx = σy.
The set {[x]∼ | x ∈ X} with operations

σ[x]∼([y]∼) = [σx(y)]∼ and τ[y]∼([x]∼) = [τy(x)]∼
is called the retract of X and denoted by Ret(X).

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X,σ, τ) be an involutive solution. Then Ret(X) is a
well-defined involutive solution.

Definition
We say that an involutive solution (X,σ, τ) has multipermutation
level k if k is the smallest integer such that |Retk(X)| = 1.
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Example on multipermutation level

Example

Let R be a commutative ring and let n ∈ R be a nilpotent element
of degree k. Then, when defining

a ◦ b = a + anb + b,

we have
λa(c) = anc + c

and
a ∼ b if and only if na = nb.

Hence Ret(R) ∼= nR and (R, r) is an involutive solution of
multipermutation level k.
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Ideals in left braces

Definition
A subset I of a left brace (B,+, ◦) is called an ideal if I is a
subgroup of (B,+), I is a normal subgroup of (B, ◦) and λa(I) ⊆ I,
for each a ∈ B.

Definition
The set

Soc(B) = {s ∈ B | ∀a ∈ B s + a = s ◦ a}

is an ideal of B called the socle.

Observation
Soc(B) = Ker λ
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Nilpotency of left braces

Definition
Let (B,+, ◦) be a left brace. We define

B0 = B,
Bi+1 = Bi/Soc(Bi), for i ⩾ 0.

We say that B is nilpotent of class k if k is the least integer such
that |Bk| = 1.

Theorem (W. Rump)

A left brace (B,+, ◦) is nilpotent of class k if and only if its
associated solution has multipermutation level k
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2-reductive solutions

Definition
We say that an involutive solution is 2-reductive if, for all
x, y, z ∈ X, σσx(y)(z) = σy(z).

Proposition (T. Gateva-Ivanova)

Let (X,σ, τ) be an involutive solution. Then the following
conditions are equivalent:

X is 2-reductive,

σx ∈ Aut(X), for each x ∈ X, i.e. σxσy(z) = σσx(y)σx(z),

X has multip. level at most 2 and, for all x ∈ X, τx = σ−1
x .

Corollary

Let (X,σ, τ) be a 2-reductive involutive solution then
σxσy = σyσx, for all x, y ∈ X.
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Construction of involutive 2-reductive solutions

Theorem (P. J., A. Pilitowska, A. Zamojska-Dzienio)

Let us have

an index set I,
abelian groups Ai, for i ∈ I,
a matrix of constants ci,j ∈ Aj, for i, j ∈ I.

Then the set X =
⊔
i∈I

Ai with operation σ : X × X → X defined by

σa(b) = b + ci,j, for a ∈ Ai and b ∈ Aj
is a 2-reductive involutive solution.
Conversely, every 2-reductive involutive solution can be obtained
this way.

Corollary

Each abelian group is isomorphic to the permutation group of a
2-reductive involutive solution.
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Numbers of 2-reductive solutions

n 1 2 3 4 5 6 7 8
involutive solutions 1 2 5 23 88 595 3456 34530

multip. level 2 1 2 5 19 70 359 2095 16332
2-reductive 1 2 5 17 65 323 1960 15421

mp level 2, not 2-red. 0 0 0 2 5 36 135 911

n 9 10 11
2-reductive 155889 2064688 35982357

n 12 13 14
2-reductive 832698007 25731050861 1067863092309
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Left braces and 2-reductive solutions

Definition (L. Childs)
A left brace (B,+, ·) is called a bi-left brace if

a + (b ◦ c) = (a + b) ◦ a− ◦ (a + c),

for all a, b, c ∈ B.

Theorem (L. Stefanello, S. Trappeniers)

Let (B,+, ◦) be a left brace. Then its associated solution is
2-reductive if and only if B is a bi-left brace.
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Retracts of non-involutive solutions

Definition
Let (X,σ, τ) be a solution. We define a relation ∼ on X as

x ∼ y if and only if σx = σy and τx = τy.

The retract and the multipermutation level are defined
analogously as in the involutive case.

Theorem
Let (X,σ, τ) be a solution. Then Ret(X) is a well-defined solution.

2019: V. Lebed, L. Vendramin: injective case
2019: P. J., A. Pilitowska, A. Zamojska-Dzienio: general case
2022: F. Cedó, E. Jespers, Ł. Kubat, A. Van Antwerpen,
C. Verwimp: shorter proof
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Non-involutive 2-reductive solutions

Definition
A solution (X,σ, τ) is called 2-reductive, if, for all x, y ∈ X,

σσx(y) = σy,
στy(x) = σx,
ττy(x) = τx,
τσx(y) = τy.

Lemma
A 2-reductive solution is of multipermutation level 2 and the
group generated by σx and τx is abelian.
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Construction of non-involutive 2-reductive solutions

Theorem (P. J., A. Pilitowska)

Let us have

an index set I,
abelian groups Ai, for i ∈ I,
two matrices of constants ci,j, di,j ∈ Aj, for i, j ∈ I.

Then the set X =
⊔
i∈I

Ai with operations σ : X × X → X

and τ : X × X → X defined by

σa(b) = b + ci,j and τb(a) = a + dj,i, for a ∈ Ai and b ∈ Aj,

is a 2-reductive solution.
Conversely, every 2-reductive solution can be obtained this way.
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Inverse solution

Observation

Let (X, r) be a solution. Then (X, r−1) is also a solution, called the
inverse solution.

We denote r−1 = (σ̂, τ̂).

Proposition (P. J., A. Pilitowska)

Let (X,σ, τ) be a 2-reductive solution. Then the inverse solution
(X, σ̂, τ̂) is 2-reductive as well.

Proof.
Let σa(b) = b + ci,j and τb(a) = a + dj,i.
Then σ̂a(b) = b − di,j and τ̂b(a) = a − cj,i.
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Let (X, r) be a solution. Then (X, r−1) is also a solution, called the
inverse solution.

We denote r−1 = (σ̂, τ̂).

Proposition (P. J., A. Pilitowska)

Let (X,σ, τ) be a 2-reductive solution. Then the inverse solution
(X, σ̂, τ̂) is 2-reductive as well.

Proof.
Let σa(b) = b + ci,j and τb(a) = a + dj,i.
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Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and ◦ is called a skew left
brace if

(B,+) is a group;
(B, ◦) is a group;
for all a, b, c ∈ B, we have a ◦ (b + c) = a ◦ b − a + a ◦ c.

Example

Let G be a group. Then (G,+,+op) is a skew left brace.
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Skew left braces

Solutions associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let (B,+, ◦) be a skew left brace. The mapping λ : B → SB
defined by λa(b) = −a+ a ◦ b is a homomorphism B → Aut(B,+).

Proposition (D. Bachiller)

Let (B,+, ◦) be a skew left brace. The mapping ρ : B → SB
defined by ρb(a) = (λa(b))−1 ◦ a ◦ b is an anti-homomorphism,
that means ρa◦b = ρbρa.

Proposition (L. Guarnieri, L. Vendramin)

Let (B,+, ◦) be a left brace. If we define r : B2 → B2 as

r(a, b) = (λa(b), ρb(a))

then (B, r) is a solution.
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Skew left braces

Ideals in skew left braces

Definition
A subset I of a skew left brace (B,+, ◦) is called an ideal if I is a
normal subgroup of (B,+), I is a normal subgroup of (B, ◦) and
λa(I) ⊆ I, for each a ∈ B.

Definition
The set

Soc(B) = {s ∈ B | a + s = s + a = s ◦ a}

is an ideal of B called the socle.

Proposition (D. Bachiller)

Soc(B) = Ker λ ∩ Ker ρ
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Skew left braces

Nilpotency of left braces

Definition
Let (B,+, ◦) be a skew left brace. We define

B0 = B,
Bi+1 = Bi/Soc(Bi), for i ⩾ 0.

We say that B is nilpotent of class k if k is the least integer such
that |Bk| = 1.

Theorem (D. Bachiller)
A skew left brace (B,+, ◦) is nilpotent of class k if and only if its
associated solution has multipermutation level k



Skew left braces and 2-reductive solutions of the Yang–Baxter equation 22 / 27
Skew left braces

Nilpotency of left braces

Definition
Let (B,+, ◦) be a skew left brace. We define

B0 = B,
Bi+1 = Bi/Soc(Bi), for i ⩾ 0.

We say that B is nilpotent of class k if k is the least integer such
that |Bk| = 1.

Theorem (D. Bachiller)
A skew left brace (B,+, ◦) is nilpotent of class k if and only if its
associated solution has multipermutation level k



Skew left braces and 2-reductive solutions of the Yang–Baxter equation 23 / 27
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Opposite skew left braces

Definition (A. Koch, P. J. Truman)

Let (B,+, ◦) be a skew left brace. Then (B,+op, ◦) is a skew left
brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)

The solution associated to (B,+op, ◦) is inverse to the solution
associated to (B,+, ◦).

Corollary

λ̂a(b) = (a ◦ b) − a,

ρ̂b(a) = (̂λa(b))−1 ◦ a ◦ b.
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Bi-skew left braces

Bi-skew left braces

Definition (L. Childs)
A skew left brace (B,+, ◦) is called a bi-skew left brace if (B, ◦,+)
is a skew left brace as well.

Theorem (L. Stefanello, S. Trappeniers)

Let (B,+, ◦) be a skew left brace. Then B is a bi-skew left brace if
and only if

λλ̂a(b) = λb,

for each a, b ∈ B.

Theorem (A. Caranti)
A skew left brace (B,+, ◦) is a bi-skew left brace if and only if λ is
an anti-homomorphism of (B,+), i.e. λa+b = λbλa.
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Bi-skew left braces

Distributive solutions

Theorem (P. J., A. Pilitowska)

Let (X,σ, τ) be a solution.
TFAE:

σσ̂x(y) = σy,

στx(y) = σy,

σxσy = σσx(y)σx,

τ̂x = σ−1
x ,

σx ∈ Aut(X),
for all x, y ∈ X.

Corollary

Let (B,+, ◦) be a skew left
brace. TFAE:

B is a bi-skew left brace,

λa+b = λbλa,

λλ̂a(b) = λb,

λρa(b) = λb,

λaλb = λλa(b)λa,

ρ̂a = λ−1
a ,

λa ∈ Aut(B),
for all a, b ∈ B.
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Skew left braces and 2-reductivity

Equations of 2-reductivity and skew braces

Proposition (P. J., A. Pilitowska)

Let (B,+, ◦) be a skew left brace. Then

λλa(b) = λb if and only if λ is a homomorphism
(B,+) → Aut(B, ◦), that means λa+b = λaλb;

λρa(b) = λb if and only if λ is an anti-homomorphism
(B,+) → Aut(B, ◦), that means λa+b = λbλa;

ρρa(b) = ρb if and only if ρ is a homomorphism (B,+) → SX ,
that means ρa+b = ρaρb;

ρλa(b) = ρb if and only if ρ is an anti-homomorphism
(B,+) → Aut(B, ◦), that means ρa+b = ρbρa.
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Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let (B,+, ◦) be a skew left brace. TFAE

the solution (B, λ, ρ) is 2-reductive,

λa+b = λb+a = λaλb and ρa+b = ρb+a = ρaρb,

(B, λ, ρ) has multipermutation level at most 2,

(B,+, ◦) is nilpotent of degree at most 2,

(B,+op, ◦) is nilpotent of degree at most 2.
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