Skew left braces and 2-reductive solutions of the Yang-Baxter equation

Přemysl Jedlička with Agata Pilitowska

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in Prague
$6^{\text {th }}$ June 2023
Faculty of
Engineering

Yang-Baxter equation

Definition

Let V be a vector space. A homomorphism $R: V \otimes V \rightarrow V \otimes V$ is called a solution of Yang-Baxter equation if it satisfies

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)=\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)
$$

Set-theoretic solutions

Definition

Let X be a set. A mapping $r: X \times X \rightarrow X \times X$ is called a set-theoretic solution of Yang-Baxter equation if it satisfies

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

A solution $r:(x, y) \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)$ is called bijective if r is a bijection. It is called non-degenerate if σ_{x} and τ_{y} are bijections, for all $x, y \in X$.

Involutive solutions

Observation

A structure (X, r) is a solution if and only if σ_{x} and τ_{y} are permutations, for all $x, y \in X$, satisfying

$$
\begin{aligned}
\sigma_{x} \sigma_{y} & =\sigma_{\sigma_{x}(y)} \sigma_{\tau_{y}(x)} \\
\tau_{\sigma_{\tau y}(x)}(z) & \sigma_{x}(y)
\end{aligned}=\sigma_{\tau_{\sigma_{y}(z)}(x)} \tau_{z}(y)
$$

Definition

A solution is called involutive if $\mathrm{r}^{2}=\mathrm{id}_{\mathrm{X}_{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Involutive solutions

Observation

A structure (X, r) is a solution if and only if σ_{x} and τ_{y} are permutations, for all $x, y \in X$, satisfying

$$
\begin{aligned}
\sigma_{x} \sigma_{y} & =\sigma_{\sigma_{x}(y)} \sigma_{\tau_{y}(x)} \\
\tau_{\sigma_{\tau y}(x)}(z) & \sigma_{x}(y)
\end{aligned}=\sigma_{\tau_{\sigma_{y}(z)}(x)} \tau_{z}(y), ~\left(\tau_{x} \tau_{y}=\tau_{\tau_{x}(y)} \tau_{\sigma_{y}(x)}\right.
$$

Definition

A solution is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Involutive solutions

Observation

A structure (X, r) is a solution if and only if σ_{x} and τ_{y} are permutations, for all $x, y \in X$, satisfying

$$
\begin{aligned}
\sigma_{x} \sigma_{y} & =\sigma_{\sigma_{x}(y)} \sigma_{\tau_{y}(x)} \\
\tau_{\sigma_{\tau y}(x)}(z) & \sigma_{x}(y)
\end{aligned}=\sigma_{\tau_{\sigma_{y}(z)}(x)} \tau_{z}(y), ~\left(\tau_{x} \tau_{y}=\tau_{\tau_{x}(y)} \tau_{\sigma_{y}(x)}\right.
$$

Definition

A solution is called involutive if $r^{2}=\mathrm{id}_{X^{2}}$.

Observation

If r is involutive then $\tau_{y}(x)=\sigma_{\sigma_{x}(y)}^{-1}(x)$.

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a left brace if

- $(B,+)$ is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b+a \circ c-a$.

Example
 Let R be a ring and let $n \in J(R)$. Let

$$
a \circ b=a+a n b+b \text {. }
$$

Then $(B,+, \circ)$ is a left brace.

Left braces

Definition (W. Rump)

A set B equipped with operations + and \circ is called a left brace if

- $(B,+)$ is an abelian group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b+a \circ c-a$.

Example

Let R be a ring and let $n \in J(R)$. Let

$$
a \circ b=a+a n b+b
$$

Then $(B,+, \circ)$ is a left brace.

Involutive solutions associated to left braces

Proposition

Let $(B,+, \circ)$ be a left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by

$$
\lambda_{a}(b)=a \circ b-a
$$

is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition

Let $(B,+, 0)$ be a left brace. If we define $r: B^{2} \rightarrow B^{2}$ as
then (B, r) is an involutive solution.

Involutive solutions associated to left braces

Proposition

Let $(B,+, \circ)$ be a left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by

$$
\lambda_{a}(b)=a \circ b-a
$$

is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition

Let $(B,+, o)$ be a left brace. If we define $r: B^{2} \rightarrow B^{2}$ as

$$
r(a, b)=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

then (B, r) is an involutive solution.

Retracts of involutive solutions

Definition

Let (X, σ, τ) be an involutive solution. We define a relation \sim on X

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

The set $\left\{[x]_{\sim} \mid x \in X\right\}$ with operations $\sigma_{[x]_{\sim}}\left([y]_{\sim}\right)=\left[\sigma_{x}(y)\right]_{\sim} \quad$ and $\quad \tau_{[y]_{\sim}}\left([x]_{\sim}\right)=\left[\tau_{y}(x)\right]$

is called the retract of X and denoted by $\operatorname{Ret}(X)$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X, σ, τ) be an involutive solution. Then $\operatorname{Ret}(X)$ is a
well-defined involutive solution.

Definition

We say that an involutive solution (X, σ, τ) has multipermutation level k if k is the smallest integer such that $\left|\operatorname{Ret}^{k}(X)\right|=1$.

Retracts of involutive solutions

Definition

Let (X, σ, τ) be an involutive solution. We define a relation \sim on X

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

The set $\left\{[x]_{\sim} \mid x \in X\right\}$ with operations

$$
\sigma_{[x]_{\sim}}\left([y]_{\sim}\right)=\left[\sigma_{x}(y)\right]_{\sim} \quad \text { and } \quad \tau_{[y]_{\sim}}\left([x]_{\sim}\right)=\left[\tau_{y}(x)\right]_{\sim}
$$

is called the retract of X and denoted by $\operatorname{Ret}(X)$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X, σ, τ) be an involutive solution. Then $\operatorname{Ret}(X)$ is a
well-defined involutive solution.

Definition
We say that an involutive solution (X, σ, τ) has multipermutation level k if k is the smallest integer such that $\left|\operatorname{Ret}^{k}(X)\right|=1$.

Retracts of involutive solutions

Definition

Let (X, σ, τ) be an involutive solution. We define a relation \sim on X

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

The set $\left\{[x]_{\sim} \mid x \in X\right\}$ with operations

$$
\sigma_{[x]_{\sim}}\left([y]_{\sim}\right)=\left[\sigma_{x}(y)\right]_{\sim} \quad \text { and } \quad \tau_{[y]_{\sim}}\left([x]_{\sim}\right)=\left[\tau_{y}(x)\right]_{\sim}
$$

is called the retract of X and denoted by $\operatorname{Ret}(X)$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X, σ, τ) be an involutive solution. Then $\operatorname{Ret}(X)$ is a well-defined involutive solution.

Definition
We say that an involutive solution (X, σ, τ) has multipermutation level k if k is the smallest integer such that $\left|\operatorname{Ret}^{k}(X)\right|=1$.

Retracts of involutive solutions

Definition

Let (X, σ, τ) be an involutive solution. We define a relation \sim on X

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} .
$$

The set $\left\{[x]_{\sim} \mid x \in X\right\}$ with operations

$$
\sigma_{[x]_{\sim}}\left([y]_{\sim}\right)=\left[\sigma_{x}(y)\right]_{\sim} \quad \text { and } \quad \tau_{[y]_{\sim}}\left([x]_{\sim}\right)=\left[\tau_{y}(x)\right]_{\sim}
$$

is called the retract of X and denoted by $\operatorname{Ret}(X)$.

Theorem (P. Etingof, T. Schedler, A. Soloviev)

Let (X, σ, τ) be an involutive solution. Then $\operatorname{Ret}(X)$ is a well-defined involutive solution.

Definition

We say that an involutive solution (X, σ, τ) has multipermutation level k if k is the smallest integer such that $\left|\operatorname{Ret}^{k}(X)\right|=1$.

Example on multipermutation level

Example

Let R be a commutative ring and let $n \in R$ be a nilpotent element of degree k. Then, when defining

$$
a \circ b=a+a n b+b
$$

we have

$$
\lambda_{a}(c)=a n c+c
$$

and

$$
a \sim b \text { if and only if } n a=n b .
$$

Hence $\operatorname{Ret}(R) \cong n R$ and (R, r) is an involutive solution of multipermutation level k.

Ideals in left braces

Definition

A subset I of a left brace $(B,+, \circ)$ is called an ideal if I is a subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid \forall a \in B \quad s+a=s \circ a\}
$$

Observation
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda$

Ideals in left braces

Definition

A subset I of a left brace $(B,+, \circ)$ is called an ideal if I is a subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid \forall a \in B \quad s+a=s \circ a\}
$$

is an ideal of B called the socle.
Observation
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda$

Ideals in left braces

Definition

A subset I of a left brace $(B,+, \circ)$ is called an ideal if I is a subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid \forall a \in B \quad s+a=s \circ a\}
$$

is an ideal of B called the socle.
Observation
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda$

Nilpotency of left braces

Definition

Let $(B,+, \circ)$ be a left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (W. Rump)

A left brace $(B,+, o)$ is nilpotent of class k if and only if its
associated solution has multipermutation level k

Nilpotency of left braces

Definition

Let $(B,+, \circ)$ be a left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (W. Rump)

A left brace $(B,+, \circ)$ is nilpotent of class k if and only if its associated solution has multipermutation level k

2-reductive solutions

Definition

We say that an involutive solution is 2-reductive if, for all $x, y, z \in X, \sigma_{\sigma_{x}(y)}(z)=\sigma_{y}(z)$.

Proposition (T. Gateva-Ivanova)
Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

Corollary
Let (X, σ, τ) be a 2 -reductive involutive solution then $\sigma_{x} \sigma_{y}=\sigma_{y} \sigma_{x}$, for all $x, y \in X$.

2-reductive solutions

Definition

We say that an involutive solution is 2-reductive if, for all $x, y, z \in X, \sigma_{\sigma_{x}(y)}(z)=\sigma_{y}(z)$.

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

```
- X is 2-reductive,
```



```
- X has multip. level at most 2 and, for all }x\inX,\mp@subsup{\tau}{x}{}=\mp@subsup{\sigma}{x}{-1
```

Let (X, σ, τ) be a 2 -reductive involutive solution then $\sigma_{x} \sigma_{y}=\sigma_{y} \sigma_{x}$, for all $x, y \in X$.

2-reductive solutions

Definition

We say that an involutive solution is 2-reductive if, for all $x, y, z \in X, \sigma_{\sigma_{x}(y)}(z)=\sigma_{y}(z)$.

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive,
- $\sigma_{x} \in \operatorname{Aut}(X)$, for each $x \in X$, i.e. $\sigma_{x} \sigma_{y}(z)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)$, - X has multip. level at most 2 and, for all $x \in X, \tau_{x}=\sigma_{x}^{-1}$

2-reductive solutions

Definition

We say that an involutive solution is 2-reductive if, for all $x, y, z \in X, \sigma_{\sigma_{x}(y)}(z)=\sigma_{y}(z)$.

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive,
- $\sigma_{x} \in \operatorname{Aut}(X)$, for each $x \in X$, i.e. $\sigma_{x} \sigma_{y}(z)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)$,

Let (X, σ, τ) be a 2 -reductive involutive solution then $\sigma_{x} \sigma_{y}=\sigma_{y} \sigma_{x}$, for all $x, y \in X$.

2-reductive solutions

Definition

We say that an involutive solution is 2-reductive if, for all $x, y, z \in X, \sigma_{\sigma_{x}(y)}(z)=\sigma_{y}(z)$.

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive,
- $\sigma_{x} \in \operatorname{Aut}(X)$, for each $x \in X$, i.e. $\sigma_{x} \sigma_{y}(z)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)$,
- X has multip. level at most 2 and, for all $x \in X, \tau_{x}=\sigma_{x}^{-1}$.
 $\sigma_{x} \sigma_{y}=\sigma_{y} \sigma_{x}$, for all $x, y \in X$.

2-reductive solutions

Definition

We say that an involutive solution is 2-reductive if, for all $x, y, z \in X, \sigma_{\sigma_{x}(y)}(z)=\sigma_{y}(z)$.

Proposition (T. Gateva-Ivanova)

Let (X, σ, τ) be an involutive solution. Then the following conditions are equivalent:

- X is 2-reductive,
- $\sigma_{x} \in \operatorname{Aut}(X)$, for each $x \in X$, i.e. $\sigma_{x} \sigma_{y}(z)=\sigma_{\sigma_{x}(y)} \sigma_{x}(z)$,
- X has multip. level at most 2 and, for all $x \in X, \tau_{x}=\sigma_{x}^{-1}$.

Corollary

Let (X, σ, τ) be a 2-reductive involutive solution then
$\sigma_{x} \sigma_{y}=\sigma_{y} \sigma_{x}$, for all $x, y \in X$.

Construction of involutive 2-reductive solutions

Theorem (P. J., A. Pilitowska, A. Zamojska-Dzienio)

Let us have

- an index set I,
- abelian groups A_{i}, for $i \in I$,
- a matrix of constants $c_{i, j} \in A_{j}$, for $i, j \in I$.

Then the set $X=\bigsqcup_{i \in I} A_{i}$ with operation $\sigma: X \times X \rightarrow X$ defined by

$$
\sigma_{a}(b)=b+c_{i, j,}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j}
$$

is a 2-reductive involutive solution.
Conversely, every 2-reductive involutive solution can be obtained this way.

[^0]
Construction of involutive 2-reductive solutions

Theorem (P. J., A. Pilitowska, A. Zamojska-Dzienio)

Let us have

- an index set I,
- abelian groups A_{i}, for $i \in I$,
- a matrix of constants $c_{i, j} \in A_{j}$, for $i, j \in I$.

Then the set $X=\bigsqcup_{i \in I} A_{i}$ with operation $\sigma: X \times X \rightarrow X$ defined by

$$
\sigma_{a}(b)=b+c_{i, j}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j}
$$

is a 2-reductive involutive solution.
Conversely, every 2-reductive involutive solution can be obtained this way.

Corollary

Each abelian group is isomorphic to the permutation group of a 2-reductive involutive solution.

Numbers of 2-reductive solutions

n	1	2	3	4	5	6	7	8
involutive solutions	1	2	5	23	88	595	3456	34530
multip. level 2	1	2	5	19	70	359	2095	16332
2-reductive	1	2	5	17	65	323	1960	15421
mp level 2, not 2-red.	0	0	0	2	5	36	135	911

n	9	10	11
2-reductive	155889	2064688	35982357

n	12	13	14
2-reductive	832698007	25731050861	1067863092309

Left braces and 2-reductive solutions

Definition (L. Childs)

A left brace $(B,+, \cdot)$ is called a bi-left brace if

$$
a+(b \circ c)=(a+b) \circ a^{-} \circ(a+c)
$$

for all $a, b, c \in B$.

Theorem (L. Stefanello, S. Trappeniers)
Let $(B,+, 0)$ be a left brace. Then its associated solution is 2-reductive if and only if B is a bi-left brace.

Left braces and 2-reductive solutions

Definition (L. Childs)

A left brace $(B,+, \cdot)$ is called a bi-left brace if

$$
a+(b \circ c)=(a+b) \circ a^{-} \circ(a+c)
$$

for all $a, b, c \in B$.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B,+, o)$ be a left brace. Then its associated solution is 2-reductive if and only if B is a bi-left brace.

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} \text { and } \tau_{x}=\tau_{y} .
$$

The retract and the multipermutation level are defined analogously as in the involutive case.

Theorem

Let (X, σ, τ) be a solution. Then $\operatorname{Ret}(X)$ is a well-defined solution.

> 2019: V. Lebed, L. Vendramin: injective case
> 2019: P. J., A. Pilitowska, A. Zamojska-Dzienio: general case
> 2022: F. Cedó, E. Jespers, Ł. Kubat, A. Van Antwerpen,
> C. Verwimp: shorter proof

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} \text { and } \tau_{x}=\tau_{y}
$$

The retract and the multipermutation level are defined analogously as in the involutive case.

Theorem
Let (X, σ, τ) be a solution. Then $\operatorname{Ret}(X)$ is a well-defined solution.

> 2019: V. Lebed, L. Vendramin: injective case
> 2019: P. J., A. Pilitowska, A. Zamojska-Dzienio: general case
> 2022: F. Cedó, E. Jespers, Ł. Kubat, A. Van Antwerpen,
> C. Verwimp: shorter proof

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} \text { and } \tau_{x}=\tau_{y}
$$

The retract and the multipermutation level are defined analogously as in the involutive case.

Theorem

Let (X, σ, τ) be a solution. Then $\operatorname{Ret}(X)$ is a well-defined solution.
2019: V. Lebed, L. Vendramin: injective case
2019: P. J., A. Pilitowska, A. Zamojska-Dzienio: general case
2022: F. Cedó, E. Jespers, Ł. Kubat, A. Van Antwerpen,
C. Verwimp: shorter proof

Retracts of non-involutive solutions

Definition

Let (X, σ, τ) be a solution. We define a relation \sim on X as

$$
x \sim y \text { if and only if } \sigma_{x}=\sigma_{y} \text { and } \tau_{x}=\tau_{y}
$$

The retract and the multipermutation level are defined analogously as in the involutive case.

Theorem

Let (X, σ, τ) be a solution. Then $\operatorname{Ret}(X)$ is a well-defined solution.
2019: V. Lebed, L. Vendramin: injective case
2019: P. J., A. Pilitowska, A. Zamojska-Dzienio: general case 2022: F. Cedó, E. Jespers, Ł. Kubat, A. Van Antwerpen, C. Verwimp: shorter proof

Non-involutive 2-reductive solutions

Definition

A solution (X, σ, τ) is called 2-reductive, if, for all $x, y \in X$,

- $\sigma_{\sigma_{x}(y)}=\sigma_{y}$,
- $\sigma_{\tau_{y}(x)}=\sigma_{x}$,
- $\tau_{\tau_{y}(x)}=\tau_{x}$,
- $\tau_{\sigma_{x}(y)}=\tau_{y}$.

Lemma

A 2-reductive solution is of multipermutation level 2 and the group generated by σ_{x} and τ_{x} is abelian.

Non-involutive 2-reductive solutions

Definition

A solution (X, σ, τ) is called 2-reductive, if, for all $x, y \in X$,

- $\sigma_{\sigma_{x}(y)}=\sigma_{y}$,
- $\sigma_{\tau_{y}(x)}=\sigma_{x}$,
- $\tau_{\tau_{y}(x)}=\tau_{x}$,
- $\tau_{\sigma_{x}(y)}=\tau_{y}$.

Lemma

A 2-reductive solution is of multipermutation level 2 and the group generated by σ_{x} and τ_{x} is abelian.

Construction of non-involutive 2 -reductive solutions

Theorem (P. J., A. Pilitowska)

Let us have

- an index set I,
- abelian groups A_{i}, for $i \in I$,
- two matrices of constants $c_{i, j}, d_{i, j} \in A_{j}$, for $i, j \in I$.

Then the set $X=\bigsqcup_{i \in I} A_{i}$ with operations $\sigma: X \times X \rightarrow X$ and $\tau: X \times X \rightarrow X$ defined by

$$
\sigma_{a}(b)=b+c_{i, j} \text { and } \tau_{b}(a)=a+d_{j, i}, \quad \text { for } a \in A_{i} \text { and } b \in A_{j,}
$$

is a 2-reductive solution.
Conversely, every 2-reductive solution can be obtained this way.

Inverse solution

Observation

Let (X, r) be a solution. Then $\left(X, r^{-1}\right)$ is also a solution, called the inverse solution.

We denote $r^{-1}=(\hat{\sigma}, \hat{\tau})$.
Proposition (P. J., A. Pilitowska)
Let (X, σ, τ) be a 2-reductive solution. Then the inverse solution ($X, \hat{\sigma}, \hat{\tau}$) is 2-reductive as well.

Proof.
Let $\sigma_{a}(b)=b+c_{i, j}$ and $\tau_{b}(a)=a+d_{j, i}$.
Then $\hat{\sigma}_{a}(b)=b-d_{i, j}$ and $\hat{\tau}_{b}(a)=a-c_{j, i}$.

Inverse solution

Observation

Let (X, r) be a solution. Then $\left(X, r^{-1}\right)$ is also a solution, called the inverse solution.

We denote $r^{-1}=(\hat{\sigma}, \hat{\tau})$.

Proposition (P. J., A. Pilitowska)

Let (X, σ, τ) be a 2-reductive solution. Then the inverse solution ($X, \hat{\sigma}, \hat{\tau}$) is 2-reductive as well.

Proof.

Let $\sigma_{a}(b)=b+c_{i, j}$ and $\tau_{b}(a)=a+d_{j, i}$.
Then $\hat{\sigma}_{a}(b)=b-d_{i, j}$ and $\hat{\tau}_{b}(a)=a-c_{j, i}$.

Inverse solution

Observation

Let (X, r) be a solution. Then $\left(X, r^{-1}\right)$ is also a solution, called the inverse solution.

We denote $r^{-1}=(\hat{\sigma}, \hat{\tau})$.

Proposition (P. J., A. Pilitowska)

Let (X, σ, τ) be a 2-reductive solution. Then the inverse solution ($X, \hat{\sigma}, \hat{\tau}$) is 2-reductive as well.

Proof.

Let $\sigma_{a}(b)=b+c_{i, j}$ and $\tau_{b}(a)=a+d_{j, i}$.
Then $\hat{\sigma}_{a}(b)=b-d_{i, j}$ and $\hat{\tau}_{b}(a)=a-c_{j, i}$.

Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and \circ is called a skew left brace if

- $(B,+)$ is a group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b-a+a \circ c$.
\square
Let G be a group. Then $\left(G,+,+_{o p}\right)$ is a skew left brace.

Skew left braces

Definition (L. Guarnieri, L. Vendramin)

A set B equipped with operations + and \circ is called a skew left brace if

- $(B,+)$ is a group;
- (B, \circ) is a group;
- for all $a, b, c \in B$, we have $a \circ(b+c)=a \circ b-a+a \circ c$.

Example

Let G be a group. Then $\left(G,+,+_{o p}\right)$ is a skew left brace.

Solutions associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by $\lambda_{a}(b)=-a+a \circ b$ is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition (D. Bachiller)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\rho: B \rightarrow \mathfrak{S}_{B}$ defined by $\rho_{b}(a)=\left(\lambda_{a}(b)\right)^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b}=\rho_{b} \rho_{a}$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a left brace. If we define $r: B^{2} \rightarrow B^{2}$ as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

then (B, r) is a solution

Solutions associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by $\lambda_{a}(b)=-a+a \circ b$ is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition (D. Bachiller)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\rho: B \rightarrow \mathfrak{S}_{B}$ defined by $\rho_{b}(a)=\left(\lambda_{a}(b)\right)^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b}=\rho_{b} \rho_{a}$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, o)$ be a left brace. If we define $r: B^{2} \rightarrow B^{2}$ as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

then (B, r) is a solution.

Solutions associated to skew left braces

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\lambda: B \rightarrow \mathfrak{S}_{B}$ defined by $\lambda_{a}(b)=-a+a \circ b$ is a homomorphism $B \rightarrow \operatorname{Aut}(B,+)$.

Proposition (D. Bachiller)

Let $(B,+, \circ)$ be a skew left brace. The mapping $\rho: B \rightarrow \mathfrak{S}_{B}$ defined by $\rho_{b}(a)=\left(\lambda_{a}(b)\right)^{-1} \circ a \circ b$ is an anti-homomorphism, that means $\rho_{a \circ b}=\rho_{b} \rho_{a}$.

Proposition (L. Guarnieri, L. Vendramin)

Let $(B,+, \circ)$ be a left brace. If we define $r: B^{2} \rightarrow B^{2}$ as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

then (B, r) is a solution.

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B,+, 0)$ is called an ideal if I is a normal subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set
$\operatorname{Soc}(B)=\{s \in B \mid a+s=s+a=s \circ a\}$

Proposition (D. Bachiller)
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda \cap \operatorname{Ker} \rho$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B,+, 0)$ is called an ideal if I is a normal subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid a+s=s+a=s \circ a\}
$$

is an ideal of B called the socle.

Proposition (D. Bachiller)
$\operatorname{Soc}(B)=\operatorname{Ker} \lambda \cap \operatorname{Ker} \rho$

Ideals in skew left braces

Definition

A subset I of a skew left brace $(B,+, 0)$ is called an ideal if I is a normal subgroup of $(B,+), I$ is a normal subgroup of (B, \circ) and $\lambda_{a}(I) \subseteq I$, for each $a \in B$.

Definition

The set

$$
\operatorname{Soc}(B)=\{s \in B \mid a+s=s+a=s \circ a\}
$$

is an ideal of B called the socle.

Proposition (D. Bachiller)

$\operatorname{Soc}(B)=\operatorname{Ker} \lambda \cap \operatorname{Ker} \rho$

Nilpotency of left braces

Definition

Let $(B,+, o)$ be a skew left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (D. Bachiller)

A skew left brace $(B,+, \circ)$ is nilpotent of class k if and only if its
associated solution has multipermutation level k

Nilpotency of left braces

Definition

Let $(B,+, \circ)$ be a skew left brace. We define

- $B_{0}=B$,
- $B_{i+1}=B_{i} / \operatorname{Soc}\left(B_{i}\right)$, for $i \geqslant 0$.

We say that B is nilpotent of class k if k is the least integer such that $\left|B_{k}\right|=1$.

Theorem (D. Bachiller)

A skew left brace $(B,+, \circ)$ is nilpotent of class k if and only if its associated solution has multipermutation level k

Opposite skew left braces

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,+_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)
The solution associated to $\left(B,+_{o p}, 0\right)$ is inverse to the solution associated to $(B,+, 0)$.

Corollary

- $\hat{\lambda}_{a}(b)=(a \circ b)-a$,
- $\hat{\rho}_{b}(a)=\left(\hat{\lambda}_{a}(b)\right)^{-1} \circ a \circ b$.

Opposite skew left braces

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,+_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)

The solution associated to $\left(B,+_{o p}, 0\right)$ is inverse to the solution associated to $(B,+, \circ)$.

Opposite skew left braces

Definition (A. Koch, P. J. Truman)

Let $(B,+, \circ)$ be a skew left brace. Then $\left(B,+_{o p}, \circ\right)$ is a skew left brace called the opposite skew left brace.

Theorem (A. Koch, P. J. Truman)

The solution associated to $\left(B,+_{o p}, 0\right)$ is inverse to the solution associated to $(B,+, \circ)$.

Corollary

- $\hat{\lambda}_{a}(b)=(a \circ b)-a$,
- $\hat{\rho}_{b}(a)=\left(\hat{\lambda}_{a}(b)\right)^{-1} \circ a \circ b$.

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B,+, \circ)$ is called a bi-skew left brace if $(B, 0,+)$ is a skew left brace as well.

```
Theorem (L. Stefanello, S. Trappeniers)
Let }(B,+,0)\mathrm{ be a skew left brace. Then B}\mathrm{ is a bi-skew left brace if
and only if
\lambda}\mp@subsup{\hat{\lambda}}{a}{(b)
for each }a,b\inB
Theorem (A. Caranti)
A skew left brace ( }B,+,0)\mathrm{ is a bi-skew left brace if and only if }\lambda\mathrm{ is
an anti-homomorphism of (B,+), i.e. }\mp@subsup{\lambda}{a+b}{}=\mp@subsup{\lambda}{b}{}\mp@subsup{\lambda}{a}{}\mathrm{ .
```


Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B,+, \circ)$ is called a bi-skew left brace if $(B, 0,+)$ is a skew left brace as well.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B,+, o)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$
\lambda_{\hat{\lambda}_{a}(b)}=\lambda_{b}
$$

for each $a, b \in B$.

Theorem (A. Caranti)
A skew left brace $(B,+, 0)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of $(B,+)$, i.e. $\lambda_{a+b}=\lambda_{b} \lambda_{a}$.

Bi-skew left braces

Definition (L. Childs)

A skew left brace $(B,+, \circ)$ is called a bi-skew left brace if $(B, 0,+)$ is a skew left brace as well.

Theorem (L. Stefanello, S. Trappeniers)

Let $(B,+, \circ)$ be a skew left brace. Then B is a bi-skew left brace if and only if

$$
\lambda_{\hat{\lambda}_{a}(b)}=\lambda_{b}
$$

for each $a, b \in B$.

Theorem (A. Caranti)

A skew left brace $(B,+, \circ)$ is a bi-skew left brace if and only if λ is an anti-homomorphism of $(B,+)$, i.e. $\lambda_{a+b}=\lambda_{b} \lambda_{a}$.

Distributive solutions

Theorem (P. J., A. Pilitowska)

Let (X, σ, τ) be a solution.
TFAE:

- $\sigma_{\hat{\sigma}_{x}(y)}=\sigma_{y}$,
- $\sigma_{\tau_{x}(y)}=\sigma_{y}$,
- $\sigma_{x} \sigma_{y}=\sigma_{\sigma_{x}(y)} \sigma_{x,}$
- $\hat{\tau}_{x}=\sigma_{x}^{-1}$,
- $\sigma_{x} \in \operatorname{Aut}(X)$,
for all $x, y \in X$.

Distributive solutions

Theorem (P. J., A. Pilitowska)

Let (X, σ, τ) be a solution. TFAE:

- $\sigma_{\hat{\sigma}_{x}(y)}=\sigma_{y}$,
- $\sigma_{\tau_{x}(y)}=\sigma_{y}$,
- $\sigma_{x} \sigma_{y}=\sigma_{\sigma_{x}(y)} \sigma_{x}$,
- $\hat{\tau}_{x}=\sigma_{x}^{-1}$,
- $\sigma_{x} \in \operatorname{Aut}(X)$,
for all $x, y \in X$.

Corollary

Let $(B,+, \circ)$ be a skew left brace. TFAE:

- B is a bi-skew left brace,
- $\lambda_{a+b}=\lambda_{b} \lambda_{a}$
- $\lambda_{\hat{\lambda}_{a}(b)}=\lambda_{b}$,
- $\lambda_{\rho_{a}(b)}=\lambda_{b}$,
- $\lambda_{a} \lambda_{b}=\lambda_{\lambda_{a}(b)} \lambda_{a}$,
- $\hat{\rho}_{a}=\lambda_{a}^{-1}$,
- $\lambda_{a} \in \operatorname{Aut}(B)$,
for all $a, b \in B$.

Equations of 2-reductivity and skew braces

Proposition (P. J., A. Pilitowska)

Let $(B,+, \circ)$ be a skew left brace. Then

- $\lambda_{\lambda_{a}(b)}=\lambda_{b}$ if and only if λ is a homomorphism $(B,+) \rightarrow \operatorname{Aut}(B, \circ)$, that means $\lambda_{a+b}=\lambda_{a} \lambda_{b}$;
- $\lambda_{\rho_{a}(b)}=\lambda_{b}$ if and only if λ is an anti-homomorphism $(B,+) \rightarrow \operatorname{Aut}(B, \circ)$, that means $\lambda_{a+b}=\lambda_{b} \lambda_{a}$;
- $\rho_{\rho_{a}(b)}=\rho_{b}$ if and only if ρ is a homomorphism $(B,+) \rightarrow \mathfrak{S}_{X}$, that means $\rho_{a+b}=\rho_{a} \rho_{b}$;
- $\rho_{\lambda_{a}(b)}=\rho_{b}$ if and only if ρ is an anti-homomorphism $(B,+) \rightarrow \operatorname{Aut}(B, \circ)$, that means $\rho_{a+b}=\rho_{b} \rho_{a}$.

Skew left braces and 2-reductivity

Theorem (P. J., A. Pilitowska)

Let $(B,+, \circ)$ be a skew left brace. TFAE

- the solution (B, λ, ρ) is 2-reductive,
- $\lambda_{a+b}=\lambda_{b+a}=\lambda_{a} \lambda_{b}$ and $\rho_{a+b}=\rho_{b+a}=\rho_{a} \rho_{b}$,
- (B, λ, ρ) has multipermutation level at most 2 ,
- $(B,+, \circ)$ is nilpotent of degree at most 2 ,
- $\left(B,+_{o p}, \circ\right)$ is nilpotent of degree at most 2 .

[^0]: Corollary
 Each abelian group is isomorphic to the permutation group of a 2-reductive involutive solution.

