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L field containing Q. If L is the splitting field of some
p(x) € Q(x), we say L/Q is Galois. Otherwise it is non-normal.

If L/Q is Galois, it has a group
Gal(L/Q) := {0 € Aut(L) | o(x) = x Vx € Q}

and |Gal(L/Q)| = [L: Q).

Theorem (Fundamental Theorem of Galois Theory)
If L/Q is Galois, then there is a bijective correspondence between

Fields Q < F < L, and
Subgroups H < Gal(L/Q)

given by F = L1,
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L/Q Galois, G := Gal(L/Q). Then

e [ is a Q[G]-module algebra

e The linear map induced by this action given by

0:L®Q[G] — Endg(L)
x® h— 0(x @ h)(y) =x(h-y)

is an isomorphism.

e Q[G] has the structure of a Hopf algebra.

This gives an example of a Hopf-Galois Structure
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Some facts

Fact 1: Q[G] may not be the only Hopf algebra to act on L in
such a way (unlike there being a unique Galois group)

Fact 2: This also makes sense for non-normal extensions (it can
actually be defined for certain rings as well)

Fact 3: There is an analogous "Hopf-Galois Correspondence”. It

is always injective, but not always surjective.

My work focuses on studying, describing and counting Hopf-Galois
structures for different field extensions.
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Define the holomorph, Hol(N) of a group N to be the semidirect
product of N and Aut(N):
Hol(N) = N x Aut(N).
Where
(1, @) (1, B) = (nalp), ).

Note: Hol(/N) has a natural action on N given by:

(n; @) - p = na(p)
L/Q (not necessarily Galois) extension, E Galois closure, and
G = Gal(E/Q). In 1996, Byott [Byo96] (building on [GP87])
showed that HGS on L/Q correspond with transitive subgroups of
Hol(N) (where N cycles through the groups of order [L : Q])

isomorphic to G.
H = E[N]°®
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Examples

Q[G] is a HGS on L/Q of type G.
N is a transitive subgroup of Hol(N).

Hol(N) is a transitive subgroup of Hol(N)
If G < Hol(N) is transitive then G < Hol(N°P) is transitive.

L/Q degree p?, 2p [CS20], mp with (m, p) = 1 [Koh07] &
[Koh16], squarefree Galois [AB20],...
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L/Q degree pq

Idea: for each N of order pg, obtain a ‘nice’ presentation for
Hol(N) to help find transitive subgroups.

There are two abstract groups of order pq for g | (p — 1): Cpq and
Cp % Cq. In each group, let o, 7 be the generators of orders p, q
respectively.

Hol(Cpq) = Cpg 3 (Cp1 % Cq-1)
Hol(Cp x Cg) = (Cp 1 Cg) ¥ (Cp 4 Cp_1)

In each case, we find the smallest subgroups of Hol(/N) which are
transitive on NV and then build up.
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For N = Cpq, these ‘minimally transitive’ subgroups are

N,

G

for a generating the unique Sylow g-subgroup of Aut(N) and
u # 0.

To get ALL transitive subgroups of Hol(Cpq) we may extend these
groups by any subgroups of their normalisers in Aut(/N) (that is
Aut(N) and Aut((o)) respectively).

For N = C, x Cg, it is possible to write Hol(N) as P x R for P, R
abelian groups of orders p?, g(p — 1) respectively.



Questions

e How much can we extend the methods to all squarefree
extensions?



Questions

e How much can we extend the methods to all squarefree
extensions?

What can we say about L'/Q?



Questions

e How much can we extend the methods to all squarefree

.
| A

What can we say about L’/Q?

extensions?

e How much can we push these results to other related
constructions?



Thank You!
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