# New solutions of the Yang-Baxter equation obtained through solutions of the pentagon equation

Paola Stefanelli

□ paola.stefanelli@unisalento.it



Advances in Group Theory and Applications 2019

Lecce, 27th June 2019

# The pentagon equation

The study of the pentagon equation (PE) classically originates from the field of Mathematical Physics and it is widely investigated also in Analysis. The paper [Dimakis, Müller-Hoissen, 2015] can be useful for a brief introduction to this topic.

Recent developments have been provided in [Catino, Mazzotta, Miccoli, 2019], where this equation is dealt with from an algebraic point of view.

#### Aim of this talk

Show new applications of the PE to set-theoretical solutions of the well-known Yang-Baxter equation. [Catino, Mazzotta, S., work in progress]

# The pentagon equation

The study of the pentagon equation (PE) classically originates from the field of Mathematical Physics and it is widely investigated also in Analysis. The paper [Dimakis, Müller-Hoissen, 2015] can be useful for a brief introduction to this topic.

Recent developments have been provided in [Catino, Mazzotta, Miccoli, 2019], where this equation is dealt with from an algebraic point of view.

#### Aim of this talk

Show new applications of the PE to set-theoretical solutions of the well-known Yang-Baxter equation. [Catino, Mazzotta, S., work in progress]

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12} = s \times id_S$ ,  $s_{23} = id_S \times s$ , and  $s_{13} = (id_S \times \tau)s_{12}(id_S \times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y) = (y,x)$ , for all  $x,y \in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b))$$

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12} = s \times id_S$ ,  $s_{23} = id_S \times s$ , and  $s_{13} = (id_S \times \tau)s_{12}(id_S \times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y) = (y,x)$ , for all  $x,y \in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b))$$

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12} = s \times id_S$ ,  $s_{23} = id_S \times s$ , and  $s_{13} = (id_S \times \tau)s_{12}(id_S \times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y) = (y,x)$ , for all  $x,y \in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b))$$

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12}=s\times \mathrm{id}_S$ ,  $s_{23}=\mathrm{id}_S\times s$ , and  $s_{13}=(\mathrm{id}_S\times \tau)s_{12}(\mathrm{id}_S\times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y)=(y,x)$ , for all  $x,y\in S$ .

We briefly call s a solution of the PE

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b))$$

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12}=s\times \operatorname{id}_S$ ,  $s_{23}=\operatorname{id}_S\times s$ , and  $s_{13}=(\operatorname{id}_S\times \tau)s_{12}(\operatorname{id}_S\times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y)=(y,x)$ , for all  $x,y\in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b))$$

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12}=s\times \mathrm{id}_S$ ,  $s_{23}=\mathrm{id}_S\times s$ , and  $s_{13}=(\mathrm{id}_S\times \tau)s_{12}(\mathrm{id}_S\times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y)=(y,x)$ , for all  $x,y\in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b)),$$

for all  $a, b \in S$ , where  $\theta_a$  is a map from S into itself, for every  $a \in S$ .

Note that the structure  $(S, \cdot)$  is a semigroup.

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12}=s\times \mathrm{id}_S$ ,  $s_{23}=\mathrm{id}_S\times s$ , and  $s_{13}=(\mathrm{id}_S\times \tau)s_{12}(\mathrm{id}_S\times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y)=(y,x)$ , for all  $x,y\in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b)),$$

for all  $a, b \in S$ , where  $\theta_a$  is a map from S into itself, for every  $a \in S$ .

Note that the structure  $(S, \cdot)$  is a semigroup.

Given a set S, a map  $s: S \times S \to S \times S$  is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where  $s_{12}=s\times \mathrm{id}_S$ ,  $s_{23}=\mathrm{id}_S\times s$ , and  $s_{13}=(\mathrm{id}_S\times \tau)s_{12}(\mathrm{id}_S\times \tau)$  with  $\tau$  the twist map, i.e.,  $\tau(x,y)=(y,x)$ , for all  $x,y\in S$ . We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a,b) = (a \cdot b, \theta_a(b)),$$

A solution of the reversed PE on a set S is a map  $t: S \times S \to S \times S$  such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$S_{23} S_{13} S_{12} = S_{12} S_{23}$$

Remark: A map s is a solution of the PE if and only if  $t := \tau s \tau$  is a reversed solution, that is given by

$$t(a,b) = (\theta_b(a), b \cdot a)$$

A solution of the reversed PE on a set S is a map  $t: S \times S \to S \times S$  such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$S_{23} S_{13} S_{12} = S_{12} S_{23}$$

**Remark:** A map s is a solution of the PE if and only if  $t := \tau s \tau$  is a reversed solution, that is given by

$$t(a,b) = (\theta_b(a), b \cdot a)$$

A solution of the reversed PE on a set S is a map  $t: S \times S \to S \times S$  such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

**Remark**: A map s is a solution of the PE if and only if  $t := \tau s \tau$  is a reversed solution, that is given by

$$t(a,b) = (\theta_b(a), b \cdot a)$$

A solution of the reversed PE on a set S is a map  $t: S \times S \to S \times S$  such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

**Remark**: A map s is a solution of the PE if and only if  $t := \tau s \tau$  is a reversed solution, that is given by

$$t(a,b) = (\theta_b(a), b \cdot a)$$

A solution of the reversed PE on a set S is a map  $t: S \times S \to S \times S$  such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

**Remark**: A map s is a solution of the PE if and only if  $t:=\tau s\tau$  is a reversed solution, that is given by

$$t(a,b)=(\theta_b(a),b\cdot a),$$

A solution of the reversed PE on a set S is a map  $t: S \times S \to S \times S$  such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

**Remark**: A map s is a solution of the PE if and only if  $t := \tau s \tau$  is a reversed solution, that is given by

$$t(a,b) = (\theta_b(a), b \cdot a),$$

▶ If S is a semigroup and  $\gamma$  an idempotent endomorphism of S then the map  $s: S \times S \to S \times S$  given by

$$s(a,b) = (ab, \gamma(b))$$

is a solution of the PE on S but not of the R-PE.

Military solutions: Given f and g idempotent maps from a set S into itself such that fg = gf. Then the map g given by

$$s(a, b) = (f(a), g(b))$$

▶ If S is a semigroup and  $\gamma$  an idempotent endomorphism of S then the map  $s: S \times S \to S \times S$  given by

$$s(a,b) = (ab, \gamma(b))$$

is a solution of the PE on S but not of the R-PE.

Military solutions: Given f and g idempotent maps from a set S into itself such that fg = gf. Then the map g given by

$$s(a, b) = (f(a), g(b))$$

• If S is a semigroup and  $\gamma$  an idempotent endomorphism of S then the map  $s: S \times S \to S \times S$  given by

$$s(a,b)=(ab,\gamma(b))$$

is a solution of the PE on S but not of the R-PE.

▶ *Militaru solutions*: Given f and g idempotent maps from a set S into itself such that fg = gf. Then the map s given by

$$s(a, b) = (f(a), g(b))$$

▶ If S is a semigroup and  $\gamma$  an idempotent endomorphism of S then the map  $s: S \times S \to S \times S$  given by

$$s(a, b) = (ab, \gamma(b))$$

is a solution of the PE on S but not of the R-PE.

▶ *Militaru solutions*: Given f and g idempotent maps from a set S into itself such that fg = gf. Then the map s given by

$$s(a,b) = (f(a), g(b))$$

According to [Drinfel'd, 1992], given a set S, a map  $\mathcal{R}: S \times S \to S \times S$  is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \, \mathcal{R}_{13} \, \mathcal{R}_{12} = \mathcal{R}_{12} \, \mathcal{R}_{13} \, \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call  $\mathcal R$  a solution of the QYBE

PE 
$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$
 |  $t_{23} t_{12} = t_{12} t_{13} t_{23}$  R-PE

According to [Drinfel'd, 1992], given a set S, a map  $\mathcal{R}: S \times S \to S \times S$  is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23}\,\mathcal{R}_{13}\,\mathcal{R}_{12} = \mathcal{R}_{12}\,\mathcal{R}_{13}\,\mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call  $\mathcal R$  a solution of the QYBE.

PE 
$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$
 |  $t_{23} t_{12} = t_{12} t_{13} t_{23}$  R-PE

According to [Drinfel'd, 1992], given a set S, a map  $\mathcal{R}: S \times S \to S \times S$  is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \, \mathcal{R}_{13} \, \mathcal{R}_{12} = \mathcal{R}_{12} \, \mathcal{R}_{13} \, \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call  $\mathcal R$  a solution of the QYBE.

PE 
$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$
 |  $t_{23} t_{12} = t_{12} t_{13} t_{23}$  R-PE

According to [Drinfel'd, 1992], given a set S, a map  $\mathcal{R}: S \times S \to S \times S$  is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \, \mathcal{R}_{13} \, \mathcal{R}_{12} = \mathcal{R}_{12} \, \mathcal{R}_{13} \, \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call  $\mathcal R$  a solution of the QYBE.

PE 
$$s_{23} s_{13} s_{12} = s_{12} s_{23} \mid t_{23} t_{12} = t_{12} t_{13} t_{23}$$
 R-PE

According to [Drinfel'd, 1992], given a set S, a map  $\mathcal{R}: S \times S \to S \times S$  is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \, \mathcal{R}_{13} \, \mathcal{R}_{12} = \mathcal{R}_{12} \, \mathcal{R}_{13} \, \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call  $\mathcal R$  a solution of the QYBE.

PE 
$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$
 |  $t_{23} t_{12} = t_{12} t_{13} t_{23}$  R-PE

According to [Drinfel'd, 1992], given a set S, a map  $\mathcal{R}: S \times S \to S \times S$  is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \, \mathcal{R}_{13} \, \mathcal{R}_{12} = \mathcal{R}_{12} \, \mathcal{R}_{13} \, \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call  $\mathcal R$  a solution of the QYBE.

PE 
$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$
 |  $t_{23} t_{12} = t_{12} t_{13} t_{23}$  R-PE

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b)=(ab,\theta_a(b))$ Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$_{a}\theta_{b}=\theta_{b}$$
 (Y2)

$$\theta_a(bc) = \theta_{\theta_b(c)}(bc)$$
 (Y3)

are satisfied, for all  $a, b, c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a, b) = (ab, \theta_a(b))$ .

Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b$$
 (Y2)

$$\theta_a(bc) = \theta_{\theta_b(c)}(bc)$$
 (Y3)

are satisfied, for all  $a, b, c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$a_a \theta_b = \theta_b$$
 (Y2)

$$\theta_{\theta_b(c)}(bc) = \theta_{\theta_b(c)}(bc) \tag{Y3}$$

are satisfied, for all  $a, b, c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_{a}(bc) = \theta_{\theta_{b}(c)}(bc) \tag{Y3}$$

are satisfied, for all  $a, b, c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_{a}(bc) = \theta_{\theta_{b}(c)}(bc) \tag{Y3}$$

are satisfied, for all  $a, b, c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_a(bc) = \theta_{\theta_b(c)}(bc) \tag{Y3}$$

are satisfied, for all a, b,  $c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_{a}(bc) = \theta_{\theta_{b}(c)}(bc) \tag{Y3}$$

are satisfied, for all a, b,  $c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_a(bc) = \theta_{\theta_b(c)}(bc) \tag{Y3}$$

are satisfied, for all a, b,  $c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

#### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_a(bc) = \theta_{\theta_b(c)}(bc) \tag{Y3}$$

are satisfied, for all a, b,  $c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution,  $t(a,b)=(\theta_b(a),ba)$ , then t is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution

R-QYBE

# A special class of solutions

### Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by  $s(a,b) = (ab,\theta_a(b))$ . Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc \tag{Y1}$$

$$\theta_a \theta_b = \theta_b \tag{Y2}$$

$$\theta_a(bc) = \theta_{\theta_b(c)}(bc) \tag{Y3}$$

are satisfied, for all a, b,  $c \in S$ . We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution,  $t(a, b) = (\theta_b(a), ba)$ , then t is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]) then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S

If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]) then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S

If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]) then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S.

If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]), then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S.

If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]), then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S.

▶ If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]), then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S.

▶ If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b)=(f(a),g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known Lyubashenko solutions.

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]), then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S.

▶ If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, the map

$$s(a,b) = (f(a), g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by ab := f(a). Clearly, s lies in the class of the well-known  $Lyubashenko\ solutions$ .

▶ If S is such that abc = adbc, for all  $a, b, c, d \in S$  (cf. [Monzo, 2003]), then

$$s(a,b) = (ab, \gamma(b))$$

with  $\gamma$  an idempotent endomorphism, is a solution to the P-QYBE on S.

▶ If S is such that abc = abdbc and  $a^3 = a^2$ , for all  $a, b, c, d \in S$ ,  $k \in S$ , then the map

$$s(a,b) = (ab, k^2)$$

We focus on solutions  $s(a, b) = (ab, \theta_a(b))$  of the PE defined on specific varieties of semigroups S with the property

$$abc = adbc$$

for all  $a, b, c, d \in S$ . We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE, i.e.,

$$r(a,b) := \tau s(a,b) = (\theta_a(b), ab)$$

$$(r \times id_S)(id_S \times r)(r \times id_S) = (id_S \times r)(r \times id_S)(id_S \times r).$$

We focus on solutions  $s(a,b) = (ab, \theta_a(b))$  of the PE defined on specific varieties of semigroups S with the property

$$abc = adbc$$

for all  $a, b, c, d \in S$ . We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE,

$$r(a,b) := \tau s(a,b) = (\theta_a(b), ab)$$

$$(r \times id_S)(id_S \times r)(r \times id_S) = (id_S \times r)(r \times id_S)(id_S \times r).$$

We focus on solutions  $s(a, b) = (ab, \theta_a(b))$  of the PE defined on specific varieties of semigroups S with the property

$$abc = adbc$$

for all  $a, b, c, d \in S$ . We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE, i.e.,

$$r(a,b) := \tau s(a,b) = (\theta_a(b), ab).$$

$$(r \times id_S)(id_S \times r)(r \times id_S) = (id_S \times r)(r \times id_S)(id_S \times r).$$

We focus on solutions  $s(a, b) = (ab, \theta_a(b))$  of the PE defined on specific varieties of semigroups S with the property

$$abc = adbc$$

for all  $a, b, c, d \in S$ . We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE, i.e.,

$$r(a,b) := \tau s(a,b) = (\theta_a(b), ab).$$

$$(r \times id_S)(id_S \times r)(r \times id_S) = (id_S \times r)(r \times id_S)(id_S \times r).$$

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property abc = adbc and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers  $r^2$ ,  $r^3$ ,  $r^4$  of the map r are still solutions to the YBE.

### Remark - Example

If S is a left quasi normal semigroup, i.e., abc = acbc, then the map on S defined by r(a,b) := (b,ab) is a solution of the P-YBE such that  $r^5 = r^3$ . If S is not idempotent, then  $r^2, r^3, r^4$  are not solutions of the YBE.

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property abc = adbc and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers  $r^2$ ,  $r^3$ ,  $r^4$  of the map r are still solutions to the YBE.

### Remark - Example

If S is a left quasi normal semigroup, i.e., abc = acbc, then the map on S defined by r(a,b) := (b,ab) is a solution of the P-YBE such that  $r^5 = r^3$ . If S is not idempotent, then  $r^2, r^3, r^4$  are not solutions of the YBE.

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property abc = adbc and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers  $r^2$ ,  $r^3$ ,  $r^4$  of the map r are still solutions to the YBE.

### Remark - Example

If S is a left quasi normal semigroup, i.e., abc = acbc, then the map on S defined by r(a,b) := (b,ab) is a solution of the P-YBE such that  $r^5 = r^3$ . If S is not idempotent, then  $r^2, r^3, r^4$  are not solutions of the YBE.

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property abc = adbc and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers  $r^2$ ,  $r^3$ ,  $r^4$  of the map r are still solutions to the YBE.

#### Remark - Example

If S is a left quasi normal semigroup, i.e., abc = acbc, then the map on S defined by r(a,b) := (b,ab) is a solution of the P-YBE such that  $r^5 = r^3$ . If S is not idempotent, then  $r^2, r^3, r^4$  are not solutions of the YBE.

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property abc = adbc and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers  $r^2$ ,  $r^3$ ,  $r^4$  of the map r are still solutions to the YBE.

### Remark - Example

If S is a left quasi normal semigroup, i.e., abc = acbc, then the map on S defined by r(a,b) := (b,ab) is a solution of the P-YBE such that  $r^5 = r^3$ . If S is not idempotent, then  $r^2, r^3, r^4$  are not solutions of the YBE.

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property abc = adbc and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers  $r^2$ ,  $r^3$ ,  $r^4$  of the map r are still solutions to the YBE.

### Remark - Example

If S is a left quasi normal semigroup, i.e., abc = acbc, then the map on S defined by r(a,b) := (b,ab) is a solution of the P-YBE such that  $r^5 = r^3$ . If S is not idempotent, then  $r^2, r^3, r^4$  are not solutions of the YBE.

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, then the solution P-YBE defined by

$$r(a,b) = (g(b), f(a))$$

is such that  $r^4 = r^2$ . Note that here  $ab = f_2(a)$ .

▶ If S is such that abc = adbc, for all  $a, b, c \in S$ , then the solution to the P-YBE defined by

$$r(a,b) = (\gamma(b),ab)$$

with  $\gamma$  idempotent endomorphism of S, is such that  $r^5 = r^3$ .

▶ *Militaru solutions*: If f and g idempotent maps from a set S into itself such that fg = gf, then the solution P-YBE defined by

$$r(a,b) = (g(b), f(a))$$

is such that  $r^4 = r^2$ . Note that here ab = f(a).

▶ If S is such that abc = adbc, for all  $a, b, c \in S$ , then the solution to the P-YBE defined by

$$r(a,b) = (\gamma(b),ab)$$

with  $\gamma$  idempotent endomorphism of S, is such that  $r^5 = r^3$ .

▶ Militaru solutions: If f and g idempotent maps from a set S into itself such that fg = gf, then the solution P-YBE defined by

$$r(a,b) = (g(b), f(a))$$

is such that  $r^4 = r^2$ . Note that here ab = f(a).

▶ If S is such that abc = adbc, for all  $a, b, c \in S$ , then the solution to the P-YBE defined by

$$r(a,b) = (\gamma(b),ab)$$

with  $\gamma$  idempotent endomorphism of S, is such that  $r^5 = r^3$ .

## A new method to construct solutions to the YBE

We introduce a new method to construct solutions of the Yang-Baxter equation defined on the Cartesian product of two sets S and T through solutions of the pentagon equation.

In particular, we show how to obtain a solution of the YBE involving a solution s of the PE and a solution t of the R-YBE.

## A new method to construct solutions to the YBE

We introduce a new method to construct solutions of the Yang-Baxter equation defined on the Cartesian product of two sets S and T through solutions of the pentagon equation.

In particular, we show how to obtain a solution of the YBE involving a solution s of the PE and a solution t of the R-YBE.

### We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha : T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b)$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$a b_{u} c_{v} = a \theta_{b} \alpha_{v}(c) b_{u} c_{v}$$

$$\theta_{a} \theta_{b} \alpha_{u} = \theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)}$$

$$\theta_{a}(bc) = \theta_{a\theta_{b} \alpha_{u}(c)}(bc)$$

$$a_{u} b_{v} = \alpha_{\theta_{wv}(u)} (a \alpha_{v} (b))$$

$$\theta_{a} = \alpha_{u} \theta_{a}$$

We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha : T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b)$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$a b_{u} c_{v} = a \theta_{b} \alpha_{v}(c) b_{u} c_{v}$$

$$\theta_{a} \theta_{b} \alpha_{u} = \theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)}$$

$$\theta_{a}(bc) = \theta_{a\theta_{b} \alpha_{u}(c)}(bc)$$

$$a_{u} b_{v} = \alpha_{\theta_{wv}(u)}(a\alpha_{v}(b))$$

$$\theta_{a} = \alpha_{u} \theta_{a}$$

We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha: T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b)$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$a b_{u}c_{v} = a\theta_{b}\alpha_{v}(c) b_{u}c_{v}$$

$$\theta_{a}\theta_{b}\alpha_{u} = \theta_{\alpha_{v}(b)}\alpha_{\theta_{u}(v)}$$

$$\theta_{a}(bc) = \theta_{a\theta_{b}\alpha_{u}(c)}(bc)$$

$$a_{u}b_{v} = \alpha_{\theta_{wv}(u)} (a\alpha_{v}(b))$$

$$\theta_{a} = \alpha_{u}\theta_{a}$$

We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha: T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b),$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$a b_{u} c_{v} = a \theta_{b} \alpha_{v}(c) b_{u} c_{v}$$

$$\theta_{a} \theta_{b} \alpha_{u} = \theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)}$$

$$\theta_{a}(bc) = \theta_{a\theta_{b} \alpha_{u}(c)}(bc)$$

$$a_{u} b_{v} = \alpha_{\theta_{wv}(u)} (a \alpha_{v} (b))$$

$$\theta_{a} = \alpha_{u} \theta_{a}$$

We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha: T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b),$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$\begin{aligned} a \, b_u \, c_v &= a \theta_b \alpha_v(c) \, b_u c_v \\ \theta_a \theta_b \alpha_u &= \theta_{\alpha_v(b)} \alpha_{\theta_u(v)} \\ \theta_a(bc) &= \theta_{a\theta_b \alpha_u(c)}(bc) \\ a_u b_v &= \alpha_{\theta_{wv}(u)} \left( a \alpha_v(b) \right) \\ \theta_a &= \alpha_u \theta_a \end{aligned}$$

We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha: T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b),$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$\begin{aligned} a \, b_u \, c_v &= a \theta_b \alpha_v(c) \, b_u c_v \\ \theta_a \theta_b \alpha_u &= \theta_{\alpha_v(b)} \alpha_{\theta_u(v)} \\ \theta_a(bc) &= \theta_{a\theta_b \alpha_u(c)}(bc) \\ a_u b_v &= \alpha_{\theta_{wv}(u)} \left( a \alpha_v(b) \right) \\ \theta_a &= \alpha_u \theta_a \end{aligned}$$

We introduce the following definition.

#### Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let  $\alpha: T \to S^S$  be a map, set  $\alpha_u := \alpha(u)$ , for every  $u \in T$ , and set

$$a_{u}b_{v}:=\alpha_{u}(a)\alpha_{\theta_{v}(u)}(b),$$

for all  $a, b \in S$  and  $u, v \in T$ . If the following conditions hold

$$\begin{aligned} a \, b_u c_v &= a \theta_b \alpha_v(c) \, b_u c_v \\ \theta_a \theta_b \alpha_u &= \theta_{\alpha_v(b)} \alpha_{\theta_u(v)} \\ \theta_a(bc) &= \theta_{a\theta_b \alpha_u(c)}(bc) \\ a_u b_v &= \alpha_{\theta_{wv}(u)} \left( a \alpha_v(b) \right) \\ \theta_a &= \alpha_u \theta_a \end{aligned}$$

## Theorem (Catino, Mazzotta, S., 2019)

Let  $(s,t,\alpha)$  be a pentagon triple. Then the map given by

$$r(a, u; b, v) = (\theta_a \alpha_u(b), vu; a\alpha_u(b), \theta_v(u))$$

for all  $(a, u), (b, v) \in S \times T$  is a solution of the YBE.

This result is a special case of a more general construction.

### Theorem (Catino, Mazzotta, S., 2019)

Let  $(s, t, \alpha)$  be a pentagon triple. Then the map given by

$$r(a, u; b, v) = (\theta_a \alpha_u(b), vu; a\alpha_u(b), \theta_v(u)),$$

for all  $(a, u), (b, v) \in S \times T$  is a solution of the YBE.

This result is a special case of a more general construction.

## Theorem (Catino, Mazzotta, S., 2019)

Let  $(s, t, \alpha)$  be a pentagon triple. Then the map given by

$$r(a, u; b, v) = (\theta_a \alpha_u(b), vu; a\alpha_u(b), \theta_v(u)),$$

for all  $(a, u), (b, v) \in S \times T$  is a solution of the YBE.

This result is a special case of a more general construction.

#### Consider

- ► S a semigroup with the properties abdbc = abc and  $a^3 = a^2$ ,  $k \in S$ , and  $s(a,b) = (ab, k^2)$  the solution of the PE on S (it is not a solution to the QYBE);
- T a semigroup with the property adbc = abc and t(u, v) = (u, vu) a solution R-QYBE on T;
- $ightharpoonup lpha_u(a) = k^2$ , for every  $a \in S$  and  $u \in T$ .

Hence, the map given by

$$r(a, u; b, v) = (k^2, vu; ak^2, u)$$

#### Consider

- ▶ S a semigroup with the properties abdbc = abc and  $a^3 = a^2$ ,  $k \in S$ , and  $s(a,b) = (ab,k^2)$  the solution of the PE on S (it is not a solution to the QYBE);
- T a semigroup with the property adbc = abc and t(u, v) = (u, vu) a solution R-QYBE on T;
- $\alpha_u(a) = k^2$ , for every  $a \in S$  and  $u \in T$ .

Hence, the map given by

$$r(a, u; b, v) = (k^2, vu; ak^2, u)$$

#### Consider

- ▶ S a semigroup with the properties abdbc = abc and  $a^3 = a^2$ ,  $k \in S$ , and  $s(a,b) = (ab,k^2)$  the solution of the PE on S (it is not a solution to the QYBE);
- T a semigroup with the property adbc = abc and t(u, v) = (u, vu) a solution R-QYBE on T;
- $ightharpoonup \alpha_u(a) = k^2$ , for every  $a \in S$  and  $u \in T$ .

Hence, the map given by

$$r(a, u; b, v) = (k^2, vu; ak^2, u)$$



#### Consider

- ▶ S a semigroup with the properties abdbc = abc and  $a^3 = a^2$ ,  $k \in S$ , and  $s(a,b) = (ab,k^2)$  the solution of the PE on S (it is not a solution to the QYBE);
- ► T a semigroup with the property adbc = abc and t(u, v) = (u, vu) a solution R-QYBE on T;
- $ightharpoonup \alpha_u(a) = k^2$ , for every  $a \in S$  and  $u \in T$ .

Hence, the map given by

$$r(a, u; b, v) = (k^2, vu; ak^2, u),$$

Thanks for your attention!