L-algebras and their groups

Wolfgang Rump

How is it possible that a mathematical structure
with a single binary operation, based on a single
equation (associativity) appears on every showplace
in mathematics, most often in an essential way?

To be sure: We are talking about groups! —
Are there other structures of that kind?

1. L-algebras and logic

Given that groups are invincible, let us exhibit a
structure with a single operation, based, too, on
a single equation, less trivial than associativity, a
structure that contributes a missing aspect to many
oroups: order. Just as associativity allows to built
finite strings, the cycloid equation

(-y)-(@-2)=(y-z) (y-2) (L)

oives a blueprint for infinite braid-like structures. It
occurs in several ways in connection with right /(-
groups (e. g., Garside groups and various function
spaces), geometry, and quantum theory.




The “L” stands for logic: Replacing - by an arrow
for “implication”, (L) asserts the equivalence (“=")
of two logical propositions:

(z—=y) = (@—=2)=Wy—r)—=(y—2)| (L)

To make the operation “—" into a relation “<”
(x entails y), we need an element 1 which stands
for truth: z entails y if and only if z — vy is true:

Ty &= xv—>y=1

A logical unit 1 has to satisty

1 —x=uz, r—or=x—1=1 (U)

From (L) and (U) it follows that entailment < is
reflexive and transitive. To get a partial order, we
assume

roy=y—r=1 = x=y (E)

Definition 1. A set (X; —) with (L), (U), and (E)
is said to be an L-algebra.

Thus every L-algebra comes with a partial order.
The element 1 is always the greatest element of X.

Definition 2. An L-algebra X is discrete if the
clements in X ~\ {1} are pairwise incomparable.
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Let (X;-) be a discrete L-algebra. For any pair of
distinct z,y € SHX) := X ~ {1} we built a mesh

Z
T - -
and iterate the procedure. Eq. (L) guarantees that

the construction yields a lower semimodular lattice.
The generic case looks as follows:

Recall that a lattice is said to

be lower semimodular if
whenever zVy covers y, then @
x covers x N\ y.



We obtain a labelled lattice, an L-algebra which
can be regarded as the Cayley graph of a monoid
S(X), the self-similar closure of X. Now this
construction generalizes to arbitrary L-algebras.

Definition 3. An L-algebra (X; —) is said to be
self-similar if for all z,y € X there is an element
z < ywithy = 2 =u.

Such an element z depends uniquely on x and y.
The new operation zy := z is then associative!
Moreover,

ry —>z=x— (y = 2) (A)

Thus, logically, the multiplication stands for a non-
commutative conjunction. The mesh relation

T
X - i

leads to another, commutative operation

ANy =@ —=y)z=(y— )y (H)

which makes X into a A-semilattice. Thus xz A y
gives the classical conjunction. In what follows,
we return to our former notation, writing - instead
of —. Replacing xy - z in (A) by x - yz, we have the
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following cocycle equation

voyz=((z2) y)(x-2), S)

which is equivalent to the first of the equations

TYT =y (1)
ry-z=x-(y-2) (A)
(@ -y)lz=(y- )y (H)

Proposition 1. A self-similar L-algebra X 1is
equivalent to a monoid with a second operation -

satisfying (I), (A), and (H).

The unit element of the monoid is the logical unit 1.
Note that (A) and (H) imply (L):

(zy)-(2-2) 2 (@y)rz L oz D (ya)y2).

The implication

r-y=y-r=1=—= x=y (E)

can be obtained from the equations as follows:
(H)
r=1lr=(zr-yr = (y-z)y=1ly=y.

Theorem 1 (2008). Every L-algebra X is an
L-subalgebra of a self-similar L-algebra S(X), so
that X generates the monoid S(X). These two
properties determine S(X), up to isomorphism.
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S(X) is called the self-similar closure of X.
Thus any L-algebra embeds into a bigger structure
S (X)) with more operations to simplify calculations.
For example, the A-operation satisfies

z-(yNz)=(x-y)A(z- 2 (1)
(xAy)-z=(z-y) - (z-2), (2)
a commutative version of
voyz=((z-2)-y)(e -2 )
xy-z=x-(y-2) (A)
The equation
(@ y)-(z-2)=(y-2) (y-2) (L)

has the remarkable property that it extends from
any set X to the free monoid M(X), using only
the equations (S) and (A), and 1 -2 = x. For an
L-algebra X, this can be used to construct the self-
similar closure by a surjection M(X) — S(X).

Definition 4. An L-algebra X is A-closed if it is
closed with respect to A in S(X).

The A-closure C'(X) in S(X) is again an L-algebra.
Moreover, there is a simple characterization:

Proposition 2. An L-algebra X is A-closed if
and only if it satisfies Eqs. (1) and (2).
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2. The structure group
An L-algebra X is self-similar iff S(X) = X. Then

Toyr =y (1)
implies that X is right cancellative. By
(2 y)x = (y- )y, (H)

X satisfies the left Ore condition. So X has a group
G(X) of left fractions z 'y (z,y € X). For an
arbitrary L-algebra X, we call G(X) := G(S(X))
the structure group of X.

Question: Which groups arise as the structure
eroup of an L-algebra?

Theorem 2 (2016). The structure group of an
L-algebra 1s torsion-free.

Example 1. The braid group B,, with n strings
is a structure group. For example, consider the two
generators of Bj:

X | X

Y
/ /
/
/ /
/ /
ryr = yay

Then
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The braid group Bj is the structure group of the
L-algebra X = {1, z,y, zy, yx}, given by

x -y =y, Y- T = yx.
For example,

vy 2 ((y-2)-2)(@-y) = (yz-z)oy = lay = 2y

_ _ ()
yr-zy=y- (v -zy)=y- 2y = .

The partial order of X is given by
/N
x Y
| |

yx LY

The A-closure C'(X) is a lattice (“benzene ring”):
/N
3|7 Y
|

yx LY

N

TYT
an [-algebra with zero. (A smallest element in
a lattice is usually denoted by 0.)

Similarly, every finite Coxeter group gives rise
to an L-algebra with 0, and with the corresponding
Artin group as its structure group.
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The braid group B,, is a right /-group, that is,
a group with a lattice order satistying

(xVy)z =22V yz.

If z(x Vy) = zx V zy also holds, the group is said
to be lattice-ordered or briefly, an /-group.

Example 2. The negative cone
G ={rxreG|z<1}
of a right /-group G is a self-similar L-algebra:
aj-y::yaj_l/\l.

Therefore, any right £-group is a structure group (of
its negative cone). Indeed, we even have

Proposition 3. Any right (-group is a two-sided
group of fractions of its negative cone.

In particular, any right /-group is a structure group,
hence torsion-free. For a while, it was not known
whether the braid group B,, is torsion-free. This
was first proved by Fadell, Fox, and Neuwirth (1962)
by topological arguments. Direct proots were given

by Rolfsen-Zhu (1998) and Dehornoy (1998, 2004 ),
using the Garside structure.

With the concept of right /-group, a one-line proof
becomes possible:



Proposition 4. Any right £-group 1is torsion-free.

Proof. If ¢ = 1, then h .= 1V gV ---V g'!
satisfies hg = h. Whence g = 1. ]

Note that braid groups are right ¢-groups, but the
structure group of an L-algebra need not even carry
a partial order.

3. Commutative L-algebras

An element g of a right f-group G is said to be
normal if it satisfies g(z A y) = gx A gy for all
x,y € G. The normal elements form an /-group
N(G), the quasi-centre of G. For a braid group
By, the quasi-centre is (0), the infinite cyclic group
generated by the smallest element 0 of its L-algebra.
The centre of B, is (0?).

Definition 5. A normal element u of a right /-
oroup (5 is said to be a strong order unit if every
x € (G is majorized by some u" with n € N.

Examples. In the abelian /-group of continuous
functions on a compact space, the positive constants
are strong order units. In a braid group B, the
Garside element 07! is a strong order unit.

Since each L-algebra embeds into a monoid, we
have a natural commutativity concept for L-algebras:
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Definition 6. Let X be an L-algebra. We say that
X is commutative if its self-similar closure S(X)
is commutative as a monoid.

Commutative L-algebras with 0 are equivalent to
MV-algebras, introduced by Chang in 1958 as
models for many-valued logic. (Truth values are
in the interval [0, 1] instead of {0, 1}.)

Viewed as L-algebras, known facts on MV-algebras
become more transparent, and new aspects arise.

Proposition 5. An L-algebra X s commutative
iof and only if the following are satisfied:

<y (K)
rVy =@y -y=Yy -z (V)

Eq. (V) then makes X into a V-semilattice. If
there is a smallest element, X is even a lattice:

Proposition 6. Let X be an MV-algebra.

(a) X s a distributive lattice.
(b) y — x -y is a lattice homomorphism X — X.
(¢c) x — x-y is a lattice homomorphism X — X.

Mundici proved (1986) that every MV-algebra can
be represented as an interval in an abelian ¢-group.
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In terms of L-algebras, this famous result reduces to
a property of the structure group:

Theorem 3. For an MV-algebra X, the natural
map X — G(X) embeds X as an interval [0, 1]
into G(X), and 0 is a strong order unit in G(X).

Proof. As a commutative self-similar L-algebra,
S(X) is cancellative. Hence S(X) — G(X) is an

embedding. If z € X and x < a < 1in S(X), then
a=aVx=(a-x) x By
vy -z=1-(y-2) (A)

and induction, a-x € X. Whence a = (a-x)-z € X.
So X is an interval in S(X), hence in G(X). [

Theorem 3 extends to f-groups G(X ) (which gives
Dvurecenskij’s 2002 generalization) and even to right
(-groups (which applies, e. g., to Garside groups and
para-unitary groups).

Every MV-algebra X has a natural involution
xf=x-0
which is an lattice anti-automorphism:
(xVy) =z" Ay’

ey =y,
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4. Measure theory

The functorial property of the structure group of an
L-algebra is closely related to (commutative or non-
commutative) measure theory. In classical terms, a
measure is a o-additive function

p: L (X)— RT

from a o-algebra (X)) of measurable sets to the
non-negative reals. Let us replace the o-algebra
< (X) by any Boolean algebra. Sometimes it is
also more reasonable to work with additive instead
of o-additive measures, or to consider values in the
extended reals or in the unit interval I := [0, 1]. So
one would consider a measure

: B — 1

from a Boolean algebra % to the unit interval I.
Note that both % and I are MV-algebras. Indeed,
a Boolean algebra is equivalent to an MV-algebra
satisfying the sharpness equation

z-(z-y)=z-y
This equation implies that x - * = x*, which yields
rVat=(r-x") - z¥=z"-2"=1land x A" =
(x - 2%)r = 'z = (z - 0)z = 0. The L-algebra
structure of I = [0, 1] is given by
r-y:=min{l —x+y,1}.
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The structure group G(I) of I is the additive group
of reals R, with the embedding I — R given by
x +— x — 1. For a Boolean algebra &, the structure
group G(4) is a Specker group, which can be
identified with a group of Z-valued step functions
on Spec A.

Definition 7. Let X, Y be MV-algebras, viewed
as subalgebras of S(X) and S(Y). We define a
measure [: X — Y to be a map which satisfies
p(xy) = p(x)p(y) for all z,y € X with zy € X.

The condition zy € X is equivalent to y* < x.
For a Boolean algebra, this stands for disjointness
of x and y. An intrinsic condition for measures:

Proposition 7. A measure : X — Y between
MV-algebras 1s equivalent to a function which

satisfies p(x - y) = w(x) - wly) and plx) > u(y)
forall x >y in X.

In terms of the structure group:

Theorem 4. Fvery measure (1: X — Y between
MV-algebras extends uniquely to a group homo-
morphism G(u): G(X) — G(Y). Conversely,
any group homomorphism f: G(X) — G(Y) with
f(X) CY restricts to a measure j1: X — Y.
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The next result interpretes any MV-algebra as a
generalized measure space. Recall first that
every MV-algebra is a distributive lattice. There is
a duality

Spec: D — Sp (3)
between distributive lattices and spectral spaces,

the same spaces which also arise as prime spectra of
commutative rings.

The functor Spec extends the well-known Stone
duality between Boolean algebras and Stone spaces.
If a spectral space X is endowed with the patch
topology, we obtain a Stone space X together with
a bijective continuous map X — X.

For a distributive lattice D, this yields a natural
embedding into a Boolean algebra B(D).

Theorem 5. Let X be an MV-algebra. There is
a unique measure p: B(X) — X with ulx = 1x.

We call y the canonical measure px of X.

Example 3. The canonical measure of I := [0, 1] is
an additive measure puy: B(I) — I which uniquely
extends to the Lebesgue measure on the Borel
sets of [I.

More group theory is in the wake of MV-algebras.
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With measures p: X — Y as morphisms, MV-
algebras form a category MV. For any u, we call

Kerp =4z e X | pulx) =1}
the kernel of p. To understand the next result,
we mention that there is a concept of ideal for any

L-algebra X, so that ideals I of X correspond to
surjective morphisms X — X/I.

Proposition 8. Let u: X — Y be a measure of

MV-algebras. Then Ker o 1s an tdeal of X, and
w factors through X — X/Ker p.

So we can restrict ourselves to pure measures,
that is, measures with trivial kernel. For example,
the canonical measure of an MV-algebra is pure.

Definition 8. For an MV-algebra X, let Go(X)
be the group of invertible measures pu: X — X,
viewed as a subgroup of G(X). The group m(X)
of @ € Gy(X) with uxa = py will be called the
fundamental group of X.

There is a covering theory of MV-algebras X
for which py: B(X) — X is a universal covering.
In particular, we have a canonical representation:

X = B(X)/m(X)

Coverings of X correspond to subgroups of 71 (X).
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5. Three types of algebraic logic

MV-algebras formalize Lukasiewicz’ many-valued
logic (Chang 1958), with truth values in the unit
interval I. For the “working mathematician”, this
means that a proposition holds for all MV-algebras
if it is valid in the MV-algebra I. We have seen that
this type of logic is equivalent to measure theory
in a wide sense.

Now MV-algebras are commutative L-algebras.
So one could expect that quantum measuring,
usually formalized in terms of operator algebras, is
covered by non-commutative L-algebras. This is in
fact true, and it does by no means exhaust the ambit
of L-algebras.

Note that quantum theory has also been found
to be a matter of logic. Birkhoff and von Neumann
extracted it as the logic of quantum mechanics
(Ann. Math., 1936). Now classical (Boolean) logic

generalizes in three major ways:

logic models subject

intuitionistic locales general topology
Lukasiewicz | MV-algebras | measure theory

orthomodular| wvon Neumann

quantum lattices algebras
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The models in the table (locales, MV-algebras, and
orthomodular lattices) are L-algebras.

MV-algebras as generalized measure spaces have
already been mentioned. It remains to give a brief
description of the L-algebras arising in topology
and quantum theory.

6. Locales

In the standard model of classical logic, propositions
are represented by the subsets A of a fixed set X.
Negation corresponds to the complement X ~ A.
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For intuitionistic logic, X is a topological space,
and propositions correspond to open sets U in X.
The negation U’ of U is given by the largest open
set which is disjoint to U, that is, U’ = X ~ U. In
general, double negation leads to a proper inclusion:

Ucu’.

Open sets form a complete lattice &(X) (a locale)
which determines X in many cases (e. g., if X is
Hausdorft). Every locale is a Brouwerian semi-
lattice, that is, a A-semilattice X with greatest
element 1 and an operation — satisfying

TANYL 2z << TLY—=2

Algebras (X; —, 1) which embed into a Brouwerian
semilattice are called Hilbert algebras. Henkin’s
1950 theorem states that Hilbert algebras formalize
the deduction theorem: A proposition x implies
y if and only if x — ¥ is true in any Hilbert algebra.
Here is another characterization:

Proposition 9. A Hilbert algebra is equivalent
to an L-algebra which is self-distributive:

v-(y-z)=(x-y) - (r-2)

Brouwerian semilattices coincide with N-closed
Hilbert algebras.
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So we have inclusions of categories:
Top C Loc C BS C Hilb C LAlg
For a topological space X, the map
OX)— GOX))

into the structure group is given by double negation,
a lattice homomorphism (Glivenko’s theorem).

7. Quantum logic

Propositions in quantum logic are represented by

closed subspaces of a Hilbert space, negation being

the orthogonal complement. The closed subspaces

form an orthomodular lattice (OML), that is,
r<y = zV(z-Ay) =y.

More generally, the projections of a von Neumann
algebra A form an OML.

Proposition 10. An OML 1is equivalent to an
L-algebra with 0 which satisfies

-0y = y-x=x

Here - 0 = 2. Moreover, such an L-algebra is

A-closed. The lattice operations are given by
rVy=(z"-y)- z, Ay = (z-Vy)
As in the case of MV-algebras, OMLs embed into

their structure group:
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Theorem 6. The structure group of an OML X
is a right {-group with negative cone S(X). The
natural map X — G(X) embeds X as an interval
0,1] into G(X), and 07! is a strong order unit.

The element 07! is singular in the following sense:

Definition 9. We call an element s > 1 of a right
(-group singular if st < 2y = yx = Ay holds
for all z,y < 1.

Now a singular strong order unit of a right /-
group is necessarily unique. So we obtain a group-
theoretic characterization of OMLs (von Neumann
algebras; up to duality and trivial factors My(C)):

Theorem 7. Up to isomorphism, X — G(X) is
a one-to-one correspondence between OMLs X
and right £-groups which admait a singular strong
order unit.

More details: Von Neumann algebras, L-algebras,

Baer x-monoids, and Garside groups, Forum Math. 30
(2018), no. 4, 973-995
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