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Def. A connected graded algebra A = ;> A;, is Artin-Schelter
regular (or AS regular) if

(i) Ahas finite global dimension d, that is, each graded
A-module has a free resolution of length at most d.

(ii) A has finite Gelfand-Kirillov dimension, meaning that the
integer-valued function i — dimg A; is bounded by a
polynomial in i.

(iii) A is Gorenstein, that is, Ext), (K, A) = 0 for i # d and
Ext? (K, A) = K.

AS regular algebras were introduced and studied first in
[AS, ATV1, ATV2] in 90’s. The problems of classification
and finding new classes of regular algebras are central for
noncommutative algebraic geometry. Whend < 3 all
regular algebras are classified. The problem of
classification is difficult and remains open even for regular
algebras of g/dim = 5.



Theorem

Let A = k(X) /(R) be a quantum binomial algebra, | X| = n

The following conditions are equivalent:

(1) Aisan Artin-Schelter regular algebra, where R is a Gr bner
basis.

(2) A is a Yang-Baxter algebra, that is the automorphism
R =R(R) : V¥2 — V®2is a solution of the Yang-Baxter
equation.

(3) Ais a binomial skew polynomial ring, with respect to some
enumeration of X.

(3) The Hilbert series of A is

1

HA(Z) = m

Each of these conditions implies that A is Koszul and a Noetherian
domain.



Definition

Let V = SpamX. Let R C k(X) be a set of quadratic binomials,

satisfying the following conditions:

B1 Eachf €  has the shape f = xy — c,xi/'x’, where ¢y, € k*
and x,y,x",y € X.

B2 Each monomial xy of length 2 occurs at most once in 2.

The (involutive) automorphism R = R(R) : V&2 —; V&2

associated with N is defined as

R(x®Yy) =cyy’ @x', and R(y @ ¥') = (cxy) X @y
iff xy —coy'x’ € R.
R(x®y) =x®y iff xy doesnotoccurin R.

The algebra A = k(X) / (R) is a quantum binomial algebra if the
relations are square-free and the associated quadratic set (X, r) is
nondegerate. A is a Yang-Baxter algebra (Manin,1988), if the map
R =R(R) : V¥2 — V¥2 is a solution of the YBE,

R12R23R12 — R23R12R23.
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Settings: X = {x1, -+ ,x,} is a finite alphabet; K is a
field, W is an antichain of monomials in X"

We study classes (X, W) consisting of associative graded
K-algebras A = K(X) /I generated by X and with a fixed
obstructions set W. Our study is related to the following
(at least):
(i) A classical combinatorial problem in algebra- the study of

algebraic objects presented via generators and relations.

(i) Main Question.
When the class €(X, W) contains an s.f.p. AS regular
algebra?

(iii) An Old Open Question.
If a finitely generated graded K-algebra A has polynomial
growth, and finite global dimension 4, is it true that
GKdimA =d = gldimA?
True, whenever the monomial algebra Ay € C(X, W) has
finite global dimension, see Theorem A.
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Definitions and Conventions.

Let X = {x1,x2, -+ ,x,} be a finite alphabet. X* and X" denote,
resp., the free monoid, and the free semigroup generated by X,
(Xt = X* — {1}). We consider two orderings on X*.

1. The lexicographic order < on X+, x1 < xp < -+ < Xy.
u < v iff either v=ub,be X", or

u=axb, v=aycwithx <y, x,y € X, a,b,c € X*.
2. The deg-lex ordering = on X*, x,, < x,_1 < -+ < xp < X7 .
u <o iff lul <|ov|or|ul =yl and u > v.

Conv. All Grobner bases of (associative) ideals I in K(X) and all
Lyndon-Shyrshov Lie bases of Lie ideals ] in Lie(X) will be
considered with respect to ” < ”-the deg-lex well-ordering
on X*.
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Ap.o.C on X" is defined as:
a C b <= aisa proper subword of b, i.e. b = uav, |b| > |a| .

Let W C X™. If no two elements of W are comparable w.r.t.
C, Wis called an antichain of monomials.

A word a € X* is W-normal (W-standard) if u € a,Yu € W.
N =N(W) := {a € X* | ais W-normal}.

The set 91(W) is closed under taking sub-words.

Let I be an ideal in K(X), A = K(X)/I, I the set of all
highest monomials of elements of I, w.r.t. <. The set of
obstructions W = W(I) is the subset of all words in I which
are minimal w.r.t. C:

W) ={uel|vCu vel=v=u}.

W is the unique maximal antichain of monomials in I.



Remarks

W(I) depends on the ideal I, as well as, on the order < on X™.
Let A = K(X) /1. The theory of Grobner bases implies that there
is an isomorphism of K-vector spaces

K(X) = SpangM(W) 1, A = Spang™(W).

W = W(I) is also called the set of obstructions for N, or the set of
obstructions for A.

NB. It is known that the ideal I has unique reduced Groebner basis
Go={fu=u+h,|uew, h < u h, in normal form mod Gy —fu},

In other words, W = Gy.
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non-isomorphic regular algebras: A, B.

(i) A =K(X)/I, where

1= (fl,fz), f1 = xzy—yxz, 11 = XXy € |4%
h=x*+y’x fo=2xyy € W.

R ={fi,f2} 1isthereduced Grobner basis of I

W=%R is the set of obstructions for A

N=N(W) = {x <uxy <y} istheset of Lyndon atoms

N(W) = {y*(xy)*2x*s | a; > 0} the normal K-basis of A

A € €(X, W) is an AS-regular algebra of g/dim A = 3, type
A.
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w1 = [xxy] = [x, [x,y]] = xxy — 2xyx + yxx; Wy = xxy € W
wy = [xyy] = [[x,y],y] = xyy — 2yxy + yyx; W2 = xyy € W.
R = {wy, wy} is the reduced Grobner basis of I

W is the obstructions set for B,

N(W) = {y* (xy)*2x* | a; > 0} the normal K-basis of B

B = Ug, the enveloping algebra of the 3-dimensional Lie
algebra g = Lie(x,y)/ ([xxy], [xyy])Lie, with a K-basis

[N] = {x, [x,y],y}, hence B is AS regular.

g =~ b3, the 3-dimensional Heisenberg algebra with a K-basis
x,y,t, and relations [x,y] = ¢, [x,t] =0, [y, {] = 0.
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First results-the general case when A = K(X) /I in
¢(X, W) has polynomial growth and finite global
dimension. We prove that

Given the class €(X, W), such that the monomial algebra
Aw = K(X)/(W) € ¢(X, W) has

gldim Ay = d < co, GKdim Ay < co. Then

Every A € €(X, W) satisfies

gl.dimA = GKdimA =d, and

(W] <d(d—-1)/2.
In particular, A is standard finitely presented (s.f.p.).
Remark. In general, gl.dim A < gl. dim Ay (always) and I
have examples when gl. dim A < gl. dim Ay. Surprisingly,
when Ay has gldim Ay = d < o0 and polynomial growth,
the global dimension gl. dim A does not depend on the shape

of the defining relations of A but only on the set of obstructions
w.



Anick. The set of n-chains on W is defined recursively.

A (—1)-chain is the monomial 1, a 0-chain is any element of X,
and a 1-chain is a word in W. An (n + 1)-prechain is a word

w € X, which can be factored in two different ways

w = uvg = ust such thatt € W, uis an n — 1 chain, uv is an
n-chain, and s is a proper left segment of v. An (n + 1)-prechain
is an (n + 1)-chain if no proper left segment of it is an
n-prechain. In this case the monomial g is called the tail of the
n-chain w.

Theorem [Anick] Suppose W C X is an antichain of
monomials. The monomial algebra Ay = K(X) /(W) has
gldim Aw = d iff there are no d-chains on W but there exists a
d — 1 chain on W.
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of X, X={y1 < yuf, st W={yyi |1 <i<j<n}
In this case A is Koszul.



Classes €(X, W), where W is an anticahin of Lyndon words are
of special interest.



A nonperiodic word u € X is a Lyndon word if it is
minimal (with respect to <) in its conjugate class

u=ab,abe X = u< ba.

L denotes the set of Lyndon words in X ™. By definition

X C L.
Example. X = {x < y}. The Lyndon words of length < 5 are:

X, Y, XY, XXy, XyYy,
XXXY, XXYY, XYYY,
XXYXY, Xyxyyy, xkyl,k +1=5,1<kl<4.

Some Facts. (1) If 2 < b are Lyndon words then ab is a Lyndon
word, soa < ab < b.

(2) Letw € L. If w = ab, where b is the longest proper right
segment of w with b € L thena € L. This is the (right) standard
factorization of w and denoted as w = (a,b) = (a,b),.(Used for
the standard Lie bracketing of Lyndon words).



Obstructions set W, Lyndon Atoms N = N(W). Duality
W +— N(W)

Definition. Given an antichain W of Lyndon words, the set of
W-normal Lyndon words is denoted by N = N(W), and is called
a the set of Lyndon atoms corresponding to W.

N =N(W W) (L.

We study classes ¢(X, W) of associative graded K-algebras A
generated by X and with a fixed obstructions set W consisting
of Lyndon words in the alphabet X. Clearly, the monomial algebra
Apon = K(X) /(W) € €(X, W). Moreover, all algebras A in
€(X, W) share the same PBW type K-basis 0, built out of the
Lyndon atoms N. In general, the set N may be infinite. N
”controls” the GKdim A, and W “controls” gl dim Ao

A has polynomial growth of degree d iff [N| = d, moreover
¢ldim A < ¢gldim Ay < |W| — 1, whenever W is a finite set.



Relations between W and N(W), Lyndon pairs (N, W)

Each antichain W C L determines uniquely a set of Lyndon
atoms N = N(W) C L. It satisfies

Cl. XCN.
C2. YveLVueN,vCu=—veEN.
C3. ueN<=uelL and u ¢ (W).

Conversely, each set N of Lyndon words satisfying conditions
C1 and C2 determines uniquely an antichain of Lyndon
monomials W = W(N), such that condition C3 holds, and N is
exactly the set of Lyndon atoms corresponding to W.

In this case (N, W) will be called a Lyndon pair.



Open Question 1. Is it true that if A is an (s.f.p.)
Artin-Schelter regular algebra there exists an appropriate
ordering < on X, so that the obstructions set W of A
consists of Lyndon words?

True for the class of Z?-graded AS-regular algebras
A = K(x1,x2) /I of global dimension 5.
(Floystad-Watne,2011, G.S. Zhou, D.M. Lu, 2013)
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When the class €(X, W) contains AS-regular algebras?

Some answers.

(1) If “Yes” then N is finite, |[N| = d, hence |W| < d(d —1)/2.
This is not sufficient.

(2) €(X, W) contains an abundance of AS-regular algebras,
whenever |W| =d(d —1)/2. Here N = X, gldimA =n
(ThmII) e.g. n = 8, €(X, W) contains > 2400 AS-reg.alg.

(3) €(X, W) contains at least one AS-regular algebra,
whenever |W| = (d — 1), N is connected, here gldim A = d,
see Thm III.

(4) €(X,W) contains an AS-regular algebra of g/ldim A = |N|,
whenever g = Lie(X)/([W]), has a K-basis [N], or
equivalently [W] is a GS-Lie basis (this can be effectively
verified). Here A = Ug. In this case N is connected.



(5) €(X, W(Fibs)) contains the monomial Fibonacci -Lyndon
algebra Fs, GKdim F¢ = gl. dim Fg = 6, but does not
contain a Z,-graded AS-regular algebras.
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Proposition 1.

> (1) There exists a one-to-one correspondence between the
set W of all antichains W of Lyndon words with
XMW = @ and the set IN of all sets N C L satisfying C1
and C2.
p: W -—N W — N(W)
pl: N—W N — W(N).
N(W(N)) =N; W(N(W)) =W
» (2) If N € N is a finite set of order d, then the antichain
W = W(N) is also finite with |W| < d(d — 1) /2.

NB. w € W standard bracketing w = a.b, = a,b € N,a < b.

» (3) Each finite antichain W € W determines
Apon = K(X)/ (W), gldim Apon < |W]|+ 1.

» (4) Each N € N determines uniquely Ao, = K(X)/ (W),
with def. relations W = W(N) and Lyndon atoms N.

GKdim Apn = d <= |N| =d.



Suppose N = {l; <L, <I3--- < lj} is a set of Lyndon
words closed under taking Lyndon subwords.
m=max{|}j| |1 <i<d}

We say that N is connected if
NﬂLs #Q, Vs <m.

This is a necessary condition for ”&(X, W) contains the
enveloping algebra U = Ug of a Lie algebra g”.

Lemma. Suppose (N, W) is a Lyndon pair. If the class §(X, W)
contains the enveloping algebra U = Ug of a Lie algebra g then
N is a connected set of Lyndon atoms, and [N] is a K-basis for g.
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let N be the set of normal Lyndon word, N = 91 L is not
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Theorem Il. Let W C X' be an antichain of monomials,
let N be the set of normal Lyndon word, N = 91 L is not
necessarily finite.

(1) Wis an anticain of Lyndon words iff the set of normal
words 9 = 91(W) has the shape

N= (k... 5> >LeN, s>1,k>0,1<i<s},

Suppose that W is an antichain of Lyndon words, so

(N, W) is a Lyndon pair. Let A = K(X) /I € €(X, W). Then
(2) GKdimA=d <= |N|=d, N={h >L>--->1;}.

In this case the following conditions hold.

(2.a) gldimA =d = GKdim A;
(2.b) Ha(t) = TTi<i<g 1/(1 —tH);
(2.c) Aiss.f.p. with d—1<]W|< d@d-1)
(3) €(X, W) contains AS regular algebras, whenever

dd—1)

Wl =
W) =55

r |[W| =d—1, and N is connected.



Proposition 2.
Suppose g = Lie(X) /] is a Lie algebra, U = Ug = K(X)/I. Let
W be the set of obstructions for U, let Ay = K(X) /(W),
0N = N(I), N = N(W) = nNNL.
(1) (N, W) is a Lyndon pair, N is connected. Ay is a monomial
algebra defined by Lyndon words, in the sense of GIE.
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Suppose g = Lie(X) /] is a Lie algebra, U = Ug = K(X)/I. Let

W be the set of obstructions for U, let Ay = K(X) /(W),

N=N(I),N=NW)=nNL.

(1) (N, W) is a Lyndon pair, N is connected. Ay is a monomial
algebra defined by Lyndon words, in the sense of GIE.

(2) Assume that | is generated by homogeneous Lie elements,
so U is canonically graded. Then U, and Ay are in the class
¢(X, W). FAEQ.

(a) U = Ugis an Artin-Schelter regular algebra.
(b) The algebra U has polynomial growth.
(c

) The Lie algebra g is finite dimensional.
d) The set of Lyndon atoms N is finite.

(
(3) Each of these equiv. conditions implies that U is s.f.p., and
d—1<|W|<d(d-1)/2, where d=|N]|,

¢ldim(U) = GKdim(U) = dimg g = [N| = d.
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Let (N, W) be a Lyndon pair, [N| =d,sod —1 < |W| < @
(1) FAEQ:
(i) |[W| =d —1and N is a connected set of Lyndon atoms;
(i) X = {x <y}, and (up to isomorph. of mon. algebras Aw):
N={x<xy<x?<---<ayfi?2<y};
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Theorem IlI.
Let (N, W) be a Lyndon pair, [N| =d,sod —1 < |W| < @
(1) FAEQ:
(i) |[W| =d —1and N is a connected set of Lyndon atoms;
(i) X = {x <y}, and (up to isomorph. of mon. algebras Aw):
N={x<xy<x?<---<ayfi?2<y};
(i) X={x <y}, W= {xyxyt|0<i<d-3}U{xy '}
¢(X, W) contains U = UL,;_1, where L;_; is the filiform
Lie algebra of dim. 4 and nilpotency class d — 1. U is an
AS-regular algebra with g/ dim U = d.
(2) FAEQ
(i) W] = d(d—1)/2;
(ii) W= {xix]- ’ 1 §i<j§ d};
(i) N=X,sod = n.
¢(X, W) contains an abundance of (non isomorphic) PBW
AS regular algebras: each of them is a skew polynomial
ring with square-free binomial relations (GI), and defines a
solution of the YBE.



Monomial Lie algebras

Let W be an antichain of Lyndon words, let ] = ([W]);, be the
Lie ideal

generated by [W] = {[w] | w € W} in Lie(X). The Lie algebra
g = Lie(X) /] is called a monomial Lie algebra defined by Lyndon
words, or shortly, a monomial Lie algebra. We call g a a standard
monomial Lie algebra and denote it by gy if [W] is a
Grobner-Shirshov basis of the Lie ideal J. In this case

Ug € €(X, W).



Theorem IV
X = {x <y}, (N, Ws) is a Lyndon pair in X . J; = ([Ws])Lie
gs = Lie(X)/]s, Is is the two-sided ideal I; = ([W;]sss) in K(X),
so Us; = Ugs = K(X) /I is the enveloping of gs.
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isomorphism of monomial algebras Ay.

(b) Foreachj, 1 <j<4,Uisan AS regular algebra of
gldim U; = 6, U; € €(X, Wj).

(c) For5 < j < 8 thealgebra U; is an AS regular algebra of
¢ldim U; < 5, in particular U, is not in €(X, W;).
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isomorphism of monomial algebras Ay.



Theorem |V

X = {x <y}, (N, Ws) is a Lyndon pair in X . J; = ([Ws])Lie

gs = Lie(X)/]s, Is is the two-sided ideal I; = ([W;]sss) in K(X),

so Us; = Ugs = K(X) /I is the enveloping of gs.

(1) Let [N| = 6. Then

(a) There are eight Lyndon pairs (N;, W;),1 <j < 8, up to
isomorphism of monomial algebras Ay.

(b) Foreachj, 1 <j<4,Uisan AS regular algebra of
gldim U; = 6, U; € €(X, Wj).

(c) For5 < j < 8 thealgebra U; is an AS regular algebra of
¢ldim U; < 5, in particular U, is not in €(X, W;).

(2) |N| =7. Then

(a) There are 30 Lyndon pairs (N;, W;),1 < i < 30, up to
isomorphism of monomial algebras Ay.

(b) Foreachi, 1 <i<9,U; =K(X)/([Wilass) is an AS regular
algebra, gldim U; =7, U; € €(X, W(i)).
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(c) Each class €(X, W;), 12 < i < 30 does not contain any AS
regular algebra U presented as an enveloping U = Ug of a
Lie algebra.
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Monomial Lie algebras of dimension 6

> gEMNy
(641) N x<3y<x’y<ay<xy’><y
W .x4y, xsyxzy, xzyxy, xyxyz, xy3
(642) N x<xty<xP<xy<axy?<y
W

By, 2y, 2y, xyxg? P



Monomial Lie algebras of dimension 6

»geMy
(641) N x<3y<x’y<ay<xy’><y
W xty, Byxty, Xyxy, xyxy?, xy®
(642) N x<xty<xP<xy<axy?<y
W By, yxy?, ¥*yPxy, xyxy? xy®

» g € 15, Filiform Lie algebras of dimension 6.

(653) N x<ay<xy? <axy’ <xy* <y
W xyxy' ™!, 0<i <3, x°

(654) N x<uxy<xyxy?> <xy> <xy’<y
W

X2y, xyxyxy?, xyxy?xy?, xy*xy>, xy*



Each of the remaining classes €(X, W) does not contain
enveloping of a Lie algebra.

(6.5.5) N x<x?y<xPyxy <xy<xy’?<y
Wy, 2y, (Py)2xy, Py(xy)?, xyxy?, oy
(6.7.6) N x<Xy<xy?y<x’y<axy<y
Wy, (Py)Py, Py(cy)?, Py, xy?
(6.7.7) N x < x%y < xPyxy < xPyxyxy < xy < y
Wy, (Py)’xy, (Pyxy)xy, Py (xy)® xy®
(6.7.8) N Fex <xy < xyxy? < xyxyxy* < xy* <y
Wy, xyxyxy?, xyxytxy(y?)?, xy(xy®)’,

Fibonacci algebra



Standard Monomial Lie algebras of dimension 7;[W] is a
GS basis only for N7 through Ny

74.1
74.2

(741)  Ni={x<3y<x’y<x?y?* <xy<xy* <y}, m=4;

(742) No={x<3y<x’y<xy<xy> <xp> <y}, m=4

(743) Ny={x<xy<x®pP <xy<xy* <xy’ <y}, m=4

(754) Ny={x<xy<xyxy’> <xy? <xy’ <xy* <y}, m=5

(755) Ns={x<xy<xy<xy?<xy’ <xy* <y}, m=5

(75.6) Ne={x <x?y<xy <axyxyy <xy*> <xy’ <y}, m=5

(75.7)  Nyp={x<x?y <x’yxy < x’y*> <xy <xy* <y}, m=5

(75.8)  Ng={x <x%y <x2y* <axy <axyxy> <xy* <y}, m=5

(769) No={x<xy<xy?<xy <xyt<xy° <y}, m=6
Wo = {xy'xy™,0 < i < 4} U{xy®}

(75.10)x N = {x < 2y < xPyxy < xy < x> < xy°> < y}

(7511)x N ={x <%y < x?y <xy < xyaxy* < xy*> <y}

(7.6.12)x N = {x < xy < xyxy* < xyxy® < xy* < xy° < y}



N = {x < x%y < ¥*yxy < xy < xyxy? < xy* < y}

N = {x < 2%y < x%y? < *y?xy < xy < xy? < y}
N={x<uxy <axy? <axyxy’ <xy’ <ay* <y}

N = {x < xy < ayay® < xy* < (ap?) (xy®) < xy® <y}
N={x<x?y <y <y < (xp?)(xy®) < x> <y}

N = {x < xy < (xy) (xyxy?) < xyxy? < xy* < xy® <y}
N = {x < 2%y < (x%y) (x%?) < x*y* < xy < xy* < y}

N = {x < ¥y < xy < xy(xyxy?) < xyxy? < x> < y}

N = {x < x%y < xy < ayay? < (xyxy?) (xy?) < 2y < y}
N = {x < xy < xyxy? < (xyxyz)(xy2) < xy2 < xy3 <y}
N = {x < xy < xyxyxy? < xyxy < xyxyPay? < xy? <y}
N={x <uxy < xy? <xy < (xy®) xy4 <xy4<y}

N = {x < xy < xyaxyxyxy? < xyxyxy? < xyxy? < xy* < y}
N = {x < xy < xy* < xy?xyxy® < xy?xy® < xy® <y}

N = {x <xy < xy? < xp?xy® < (xy?xy®) (xy®) < xy® <y}
N = {x, xy, xyxy?, xyxy>xy?, xyxy>xy*xy?, xy* < y}

N = {x, xy, xyxyxy?, xyxyxy>xyxy?, xyxy?, xy* < y}

NE, = {X,Y, XY, XYy, Xyxyy, XYxyyxyy, yxyyxyxyyxyy}.



