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Metahamiltonian groups

In 1966, G.M. Romalis and N.F. Sesekin introduced
metahamiltonian groups.

They say a group G is metahamiltonian if:

∀H ≤ G , H 6∈ A⇒ H / G

where A is the class of abelian groups.

We will use H to denote the class of metahamiltonian groups,
which is trivially SH-closed, but not closed by extensions or even
direct products.
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Metahamiltonian groups

Restricting out attention to locally soluble groups to exclude Tarski
groups, they proved

Theorem 1. [G.M. Romalis - N.F. Sesekin, 1966]

Let G be a locally soluble metahamiltonian group. Then G is
soluble, the derived length of G is at most 3 and the commutator
subgroup G ′ is �nite with prime-power order.

A simpli�ed proof of the result in the larger class of locally graded
groups can be found in a paper by F. De Mari and F. de Giovanni
(2006) about groups with few normalizers of non-abelian
subgroups.
A group G is locally graded if all of its non-trivial �nitely generated
subgroup have proper subgroups of �nite index.
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The class H can also be shown to be L-closed, i.e.:

Proposition

Let G be a group whose �nitely generated subgroups are
metahamiltonian. Then G itself is metahamiltonian.
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Generalized metahamiltonian groups

Some natural extensions of the class of metahamiltonian groups are
studied in a paper by M. De Falco, F. de Giovanni and C. Musella
in 2009.

Theorem 2. [M. De Falco - F. de Giovanni - C. Musella, 2009]

Let G be a locally graded minimal-non-H group. Then G is �nite.

Of course such a group is either perfect (one example is A5) or
soluble of derived length at most 4.
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Generalized metahamiltonian groups

They also proved

Theorem 3. [M. De Falco - F. de Giovanni - C. Musella, 2009]

Let G be a �nitely generated hyper(abelian-or-�nite) group whose
�nite homomorphic images are in H. Then G is metahamiltonian.

and

Theorem 4. [M. De Falco, F. de Giovanni, C. Musella, 2009]

Let G be a locally graded group satisfying the minimal condition on
non-metahamiltonian subgroups. Then G is either �ernikov or
metahamiltonian.
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k-metahamiltonian groups

Let
H0 = A

be the class of all abelian groups.
We de�ne, recursively, the class Hk in the following way.
A group G is in the class Hk if and only if

∀H ≤ G , H 6∈ Hk−1 ⇒ H / G

and refer to groups in the class Hk as k-metahamiltonian groups.
With k = 1 we have the usual metahamiltonian groups.
Obviously we have:

H0 ⊆ H1 ⊆ H2 ⊆ . . .
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Properties of k-metahamiltonian groups

Theorem 5. [F. de Giovanni, D.E., M. Trombetti 2019]

Let G be a locally graded Hk -group. Then the commutator
subgroup G ′ is �nite and if G is soluble, its derived length does not
exceed 3k .

Many other interesting properties of metahamiltonian groups can
be proved also for Hk -groups:

There exist non soluble H2-groups, e.g. A5, and H2-groups
whose commutator subgroup is not of prime-power order, e.g.
GL(2, 3) whose commutator subgroup is SL(2, 3) which is a
group of order 24 = 23 · 3.
Every locally graded minimal-non-Hk group is �nite.
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Properties of k-metahamiltonian groups

The class Hk is a local class.

Finitely generated Hk -groups are polycyclic-by-�nite.

Locally graded groups satisfying the minimal condition on
non-k-metahamiltonian subgroups are necessarily �ernikov or
k-metahamiltonian.

Polycyclic-by-�nite groups whose �nite homomorphic images
all lie in the class Hk are Hk .
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Groups with �nitely many normalizers of

non-k-metahamiltonian subgroups

F. De Mari and F. de Giovanni proved the following result
concerning groups whose non-abelian subgroups have �nitely many
normalizers.

Theorem 6. [F. de Giovanni - F. De Mari, 2006]

Let G be a group with �nitely many normalizers of non-abelian
subgroups. Then G has �nite commutator subgroup.

This can be extended to

Theorem 7. [F. de Giovanni, D.E., M. Trombetti 2019]

Let G be a group with �nitely many normalizers of subgroups
which are not Hk . Then G has �nite commutator subgroup.
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∞-metahamiltonian groups

One can also de�ne the class

H∞ =
⋃
k∈N

Hk .

Notice now that if G is in this class, G cannot have any in�nite
descending chain of subgroups:

G = G0 > G1 > G2 > . . . with Gi+1 6 Gi

As a matter of fact, one can show that H∞ is precisely the class of
groups with a bound on the length of such "bad" chains.
Notice that we already know that

H∞ ⊆ FA

i.e. ∞-metahamiltonian groups have �nite commutator subgroup.
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∞-metahamiltonian groups

We can also show the converse (i.e. FA ⊆ H∞, hence the equality
of the classes).

For if G is a group such that |G ′| = n = pn11 . . . pnll , then any
descending chain {Gi} of subgroups of G related by Gi+1 6 Gi is
bounded in length by f (n) = n1 + n2 + . . .+ nl and so G is Hf (n).

The fact that a group with bound f (n) on the length of this type of
chains is Hf (n) can be proved by induction on n1 + . . .+ nl . The
basis of induction is the observation that groups with commutator
of prime order are necessarily metahamiltonian.

Dario Esposito



∞-metahamiltonian groups

We can also show the converse (i.e. FA ⊆ H∞, hence the equality
of the classes).

For if G is a group such that |G ′| = n = pn11 . . . pnll , then any
descending chain {Gi} of subgroups of G related by Gi+1 6 Gi is
bounded in length by f (n) = n1 + n2 + . . .+ nl and so G is Hf (n).

The fact that a group with bound f (n) on the length of this type of
chains is Hf (n) can be proved by induction on n1 + . . .+ nl . The
basis of induction is the observation that groups with commutator
of prime order are necessarily metahamiltonian.

Dario Esposito



∞-metahamiltonian groups

We can also show the converse (i.e. FA ⊆ H∞, hence the equality
of the classes).

For if G is a group such that |G ′| = n = pn11 . . . pnll , then any
descending chain {Gi} of subgroups of G related by Gi+1 6 Gi is
bounded in length by f (n) = n1 + n2 + . . .+ nl and so G is Hf (n).

The fact that a group with bound f (n) on the length of this type of
chains is Hf (n) can be proved by induction on n1 + . . .+ nl . The
basis of induction is the observation that groups with commutator
of prime order are necessarily metahamiltonian.

Dario Esposito



Groups whose non-normal subgroups belong to a class X

Actually, we can start from any SH-closed class of groups X and
de�ne:

X0 = X

and, for any k ∈ N, say that a group G is in the class Xk if and
only if:

∀H ≤ G , H 6∈ Xk−1 ⇒ H / G .

We can then also de�ne the class X∞ as
⋃
k∈N

Xk .
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Groups whose non-normal subgroups belong to a class X

If one assumes that X satis�es the following properties

SHL-closed

X ⊆ FA

Minimal-non-X groups are �nite

Polycyclic-by-�nite groups whose �nite homomorphic images
are X are also X

Then all properties in the list also hold for Xk for any k ∈ N

Dario Esposito



Groups whose non-normal subgroups belong to a class X

If one assumes that X satis�es the following properties

SHL-closed

X ⊆ FA

Minimal-non-X groups are �nite

Polycyclic-by-�nite groups whose �nite homomorphic images
are X are also X

Then all properties in the list also hold for Xk for any k ∈ N

Dario Esposito



Groups whose non-normal subgroups belong to a class X

If one assumes that X satis�es the following properties

SHL-closed

X ⊆ FA

Minimal-non-X groups are �nite

Polycyclic-by-�nite groups whose �nite homomorphic images
are X are also X

Then all properties in the list also hold for Xk for any k ∈ N

Dario Esposito



Thank you for the attention!!!

Dario Esposito


