SKEW LATTICES AND SET-THEORETIC SOLUTIONS OF THE YANG-BAXTER EQUATION

(joint work with Karin Cvetko-Vah)

Charlotte Verwimp

Advances in Group Theory and Applications June 25-28, 2019, Lecce

Definition

A **set-theoretic solution** of the Yang-Baxter equation is a pair (X,r) such that X is a non-empty set and $r: X \times X \to X \times X: (x,y) \mapsto (\sigma_X(y), \gamma_V(x))$ is a map where

$$(r \times id_X) \circ (id_X \times r) \circ (r \times id_X) = (id_X \times r) \circ (r \times id_X) \circ (id_X \times r).$$

Definition

A **set-theoretic solution** of the Yang-Baxter equation is a pair (X,r) such that X is a non-empty set and $r: X \times X \to X \times X: (x,y) \mapsto (\sigma_X(y), \gamma_V(x))$ is a map where

$$(r \times id_X) \circ (id_X \times r) \circ (r \times id_X) = (id_X \times r) \circ (r \times id_X) \circ (id_X \times r).$$

▶ **Left non-degenerate**: σ_X is bijective, for all $X \in X$

Definition

A **set-theoretic solution** of the Yang-Baxter equation is a pair (X,r) such that X is a non-empty set and $r: X \times X \to X \times X: (x,y) \mapsto (\sigma_X(y), \gamma_V(x))$ is a map where

$$(r \times id_X) \circ (id_X \times r) \circ (r \times id_X) = (id_X \times r) \circ (r \times id_X) \circ (id_X \times r).$$

- ▶ **Left non-degenerate**: σ_X is bijective, for all $X \in X$
- ▶ **Right non-degenerate**: γ_X is bijective, for all $X \in X$

Definition

A **set-theoretic solution** of the Yang-Baxter equation is a pair (X,r) such that X is a non-empty set and

$$r: X \times X \to X \times X: (x,y) \mapsto (\sigma_X(y), \gamma_y(x))$$
 is a map where

$$(r \times id_X) \circ (id_X \times r) \circ (r \times id_X) = (id_X \times r) \circ (r \times id_X) \circ (id_X \times r).$$

- ▶ **Left non-degenerate**: σ_X is bijective, for all $X \in X$
- ▶ **Right non-degenerate**: γ_X is bijective, for all $X \in X$
- Involutive: $r^2 = id_{X^2}$

Definition

A **set-theoretic solution** of the Yang-Baxter equation is a pair (X,r) such that X is a non-empty set and

$$r: X \times X \to X \times X: (x,y) \mapsto (\sigma_X(y), \gamma_y(x))$$
 is a map where

$$(r \times id_X) \circ (id_X \times r) \circ (r \times id_X) = (id_X \times r) \circ (r \times id_X) \circ (id_X \times r).$$

- ▶ **Left non-degenerate**: σ_X is bijective, for all $X \in X$
- ▶ **Right non-degenerate**: γ_X is bijective, for all $X \in X$
- Involutive: $r^2 = id_{\chi^2}$
- Idempotent: $r^2 = r$

Definition

A **set-theoretic solution** of the Yang-Baxter equation is a pair (X,r) such that X is a non-empty set and $r: X \times X \to X \times X: (x,y) \mapsto (\sigma_X(y), \gamma_V(x))$ is a map where

$$(r \times id_X) \circ (id_X \times r) \circ (r \times id_X) = (id_X \times r) \circ (r \times id_X) \circ (id_X \times r).$$

- ▶ **Left non-degenerate**: σ_X is bijective, for all $X \in X$
- ► **Right non-degenerate**: γ_X is bijective, for all $X \in X$
- Involutive: $r^2 = id_{X^2}$
- Idempotent: $r^2 = r$
- Cubic: $r^3 = r$

SKEW LATTICES

Definition

A **skew lattice** (SL) is a set S endowed with a pair of idempotent and associative operations \land and \lor which satisfy the absorption laws

$$x \wedge (x \vee y) = x = x \vee (x \wedge y)$$
 and $(x \wedge y) \vee y = y = (x \vee y) \wedge y$.

Notation: (S, \wedge, \vee)

SKEW LATTICES

Definition

A **skew lattice** (SL) is a set S endowed with a pair of idempotent and associative operations \land and \lor which satisfy the absorption laws

$$x \wedge (x \vee y) = x = x \vee (x \wedge y)$$
 and $(x \wedge y) \vee y = y = (x \vee y) \wedge y$.

Notation: (S, \wedge, \vee)

Examples

Lattices

SKEW LATTICES

Definition

A **skew lattice** (SL) is a set S endowed with a pair of idempotent and associative operations \land and \lor which satisfy the absorption laws

$$x \wedge (x \vee y) = x = x \vee (x \wedge y)$$
 and $(x \wedge y) \vee y = y = (x \vee y) \wedge y$.

Notation: (S, \wedge, \vee)

Examples

- Lattices
- $(\{0,1,2\},\wedge,\vee)$, where

\wedge	0	1	2) 1	
0	0	0	0	C) C) 1	2
1	0	1	1	1	1	1	2
2	0	2	2	2	2 2	1 1 1 2 1	2

Definition

A skew lattice (S, \land, \lor) is called a **strong distributive solution** of the Yang-Baxter equation if (S, r) is a set-theoretic solution of the Yang-Baxter equation, where

$$r: S \times S \rightarrow S \times S : (x, y) \mapsto (x \wedge y, x \vee y).$$

Remark: (S, r) is cubic

```
 \{ \mbox{Strongly and co-strongly distributive SL} \} \\ \mbox{\{Strong distributive solution\}} \\ \mbox{\{Distributive and cancellative SL} \}
```

{Strongly and co-strongly distributive SL}

40

{Strong distributive solution}

#

{Distributive and cancellative SL}

Strongly distributive:
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

 $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$

{Strongly and co-strongly distributive SL}

40

{Strong distributive solution}

#

{Distributive and cancellative SL}

Strongly distributive:
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

 $(x \lor y) \land z = (x \land z) \lor (y \land z)$

Co-strongly distributive:
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

 $(x \land y) \lor z = (x \lor z) \land (y \lor z)$

{Strongly and co-strongly distributive SL} 40 {Strong distributive solution} {Distributive and cancellative SL} **Strongly distributive:** $X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$ $(X \vee V) \wedge Z = (X \wedge Z) \vee (V \wedge Z)$ Co-strongly distributive: $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ $(X \wedge Y) \vee Z = (X \vee Z) \wedge (Y \vee Z)$ **Distributive:** $X \wedge (y \vee z) \wedge X = (X \wedge y \wedge X) \vee (X \wedge Z \wedge X)$

 $X \vee (V \wedge Z) \vee X = (X \vee V \vee X) \wedge (X \vee Z \vee X)$

 $\{ \mbox{Strongly and co-strongly distributive SL} \} \\ \{ \mbox{Strong distributive solution} \}$

11-1

{Distributive and cancellative SL}

Strongly distributive:
$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

 $(X \vee y) \wedge z = (X \wedge z) \vee (Y \wedge z)$

Co-strongly distributive:
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

 $(x \land y) \lor z = (x \lor z) \land (y \lor z)$

$$(X \wedge Y) \vee Z = (X \vee Z) \wedge (Y \vee Z)$$

Distributive:
$$X \wedge (y \vee z) \wedge X = (X \wedge y \wedge X) \vee (X \wedge Z \wedge X)$$

 $X \vee (y \wedge z) \vee X = (X \vee y \vee X) \wedge (X \vee Z \vee X)$

Cancellative:
$$x \lor y = x \lor z$$
 and $x \land y = x \land z \Rightarrow y = z$
 $x \lor z = y \lor z$ and $x \land z = y \land z \Rightarrow x = y$

Definition

A skew lattice (S, \land, \lor) is called a **left (resp. right) distributive solution** of the Yang-Baxter equation if (S, r) is a set-theoretic solution of the Yang-Baxter equation, where

$$r: S \times S \rightarrow S \times S: (x,y) \mapsto (x \wedge y, y \vee x)$$
 (resp. $(y \wedge x, x \vee y)$).

Remark: (S, r) is idempotent

```
{Left cancellative and distributive SL}

=
{Left distributive solution}

{Right cancellative and distributive SL}

=
{Right distributive solution}
```

```
{Left cancellative and distributive SL}
                      {Left distributive solution}
              {Right cancellative and distributive SL}
                     {Right distributive solution}
Left cancellative: x \lor y = x \lor z and x \land y = x \land z \Rightarrow y = z
```

{Left cancellative and distributive SL}

=
{Left distributive solution}

{Right cancellative and distributive SL}

=
{Right distributive solution}

Left cancellative: $x \lor y = x \lor z$ and $x \land y = x \land z \Rightarrow y = z$ **Right cancellative:** $x \lor z = y \lor z$ and $x \land z = y \land z \Rightarrow x = y$

{Left cancellative and distributive SL} {Left distributive solution} {Right cancellative and distributive SL} {Right distributive solution} **Left cancellative:** $x \lor y = x \lor z$ and $x \land y = x \land z \Rightarrow y = z$ **Right cancellative:** $x \lor z = y \lor z$ and $x \land z = y \land z \Rightarrow x = y$ **Distributive:** $X \wedge (y \vee z) \wedge X = (X \wedge y \wedge X) \vee (X \wedge z \wedge X)$ $X \vee (V \wedge Z) \vee X = (X \vee V \vee X) \wedge (X \vee Z \vee X)$

Definition

A skew lattice (S, \land, \lor) is called a **weak distributive solution** of the Yang-Baxter equation if (S, r) is a set-theoretic solution of the Yang-Baxter equation, where

$$r: S \times S \rightarrow S \times S : (x,y) \mapsto (x \wedge y \wedge x, x \vee y \vee x).$$

Remark: (S, r) is idempotent

{Simply cancellative, distributive and lower symmetric SL} = {Weak distributive solution}

{Simply cancellative, distributive and lower symmetric SL}

=

{Weak distributive solution}

Simply cancellative: $x \lor y \lor x = x \lor z \lor x$ and

$$X \wedge y \wedge X = X \wedge Z \wedge X \Rightarrow y = Z$$

{Simply cancellative, distributive and lower symmetric SL}

=

{Weak distributive solution}

Simply cancellative: $x \lor y \lor x = x \lor z \lor x$ and

 $X \wedge y \wedge X = X \wedge Z \wedge X \Rightarrow y = Z$

Distributive: $X \wedge (y \vee z) \wedge X = (X \wedge y \wedge X) \vee (X \wedge Z \wedge X)$

$$X \lor (y \land z) \lor X = (X \lor y \lor X) \land (X \lor Z \lor X)$$

{Simply cancellative, distributive and lower symmetric SL}

=

{Weak distributive solution}

Simply cancellative: $x \lor y \lor x = x \lor z \lor x$ and

 $X \wedge y \wedge X = X \wedge Z \wedge X \Rightarrow y = Z$

Distributive: $X \wedge (y \vee z) \wedge X = (X \wedge y \wedge X) \vee (X \wedge Z \wedge X)$

 $X \lor (y \land z) \lor X = (X \lor y \lor X) \land (X \lor Z \lor X)$

Lower symmetric: $x \lor y = y \lor x \Rightarrow x \land y = y \land x$

SOLUTIONS FROM GENERAL SKEW LATTICES

Proposition

Let (S, \land, \lor) be a skew lattice. Then, (S, r) is an idempotent set-theoretic solution of the Yang-Baxter equation, where

$$r: S \times S \rightarrow S \times S : (x,y) \mapsto ((x \wedge y) \vee x,y).$$

SOLUTIONS FROM GENERAL SKEW LATTICES

Proposition

Let (S, \land, \lor) be a skew lattice. Then, (S, r) is an idempotent set-theoretic solution of the Yang-Baxter equation, where

$$r: S \times S \rightarrow S \times S : (x,y) \mapsto ((x \wedge y) \vee x,y).$$

Corollary

Let (S, \land, \lor) be a skew lattice. The map $r(x,y) = (x\lfloor y \rfloor, y)$ is an idempotent set-theoretic solution of the Yang-Baxter equation.

 $x[y] := (y \land x \land y) \lor x \lor (y \land x \land y)$ lower update of x by y

Strongly and co-strongly distributive SL

Strong distributive solution

Cancellative, distributive SL

Strongly and co-strongly distributive SL

Strong distributive solution

Cancellative, distributive SL

Left cancellative, distributive SL

Left distributive solution

Strongly and co-strongly distributive SL

Strong distributive solution

Cancellative, distributive SL

Left cancellative, distributive SL

Left distributive solution

Right cancellative, distributive SL

Right distributive solution

Strongly and co-strongly distributive SL

Strong distributive solution

Cancellative, distributive SL

Left cancellative, distributive SL = Left distributive solution

Simply cancellative, distributive, lower symmetric SL =
Weak distributive solution

Right cancellative, distributive SL

=
Right distributive solution

QUESTION

Can we use skew lattices to generalize the notions of braces and cycle sets?

CONSTRUCTION

Proposition

Let (I, \leq) be a totally ordered set, $\{A_i \mid i \in I\}$ a family of pairwise disjoint sets and $S = \bigcup_{i \in I} A_i$. For any $i, j \in I$, $x \in A_i$ and $y \in A_j$ define

$$X \wedge y = \left\{ \begin{array}{ll} x & if \ i < j \\ y & if \ j \le i \end{array} \right., \qquad X \vee y = \left\{ \begin{array}{ll} y & if \ i < j \\ x & if \ j \le i \end{array} \right..$$

Then, (S, \wedge, \vee) is a cancellative and distributive skew lattice.

Thank you for your attention!