RATIONALITY OF GROUPS AND INTEGRAL GROUP RINGS

Andreas Bächle

Advances in Group Theory and Applications 2017

NOTATION.

G finite group

 $\mathbb{Z}G$ integral group ring of G

 $U(\mathbb{Z}G)$ group of units of $\mathbb{Z}G$

CONTENTS

- 1. Rationality of Groups
- 2. Centers of Integral Group Rings
- 3. Solvable Groups
- 4. Frobenius Groups
- 5. References

DEFINITIONS. $x \in G$.

$$x \ rational \ in \ G \qquad \qquad :\Leftrightarrow \qquad \forall \ j \in \mathbb{Z} : \ x^j \sim x \ (j,o(x))=1$$

$$x \text{ semi-rational in } G :\Leftrightarrow \exists m \in \mathbb{Z} \ \forall j \in \mathbb{Z}: \ x^j \sim x \text{ or } x^j \sim x^m$$

$$x$$
 inverse semi-rational in $G:\Leftrightarrow$ $\forall j\in\mathbb{Z}: x^j\sim x \text{ or } x^j\sim x^{-1}$

G is called *rational* $:\Leftrightarrow$ \forall $x \in$ G: x is rational in G etc.

For $\chi \in Irr(G)$, $x \in G$ set

$$\mathbb{Q}(\chi) := \mathbb{Q}(\{\chi(y) \colon y \in G\})$$
$$\mathbb{Q}(x) := \mathbb{Q}(\{\psi(x) \colon \psi \in \mathsf{Irr}(G)\}).$$

G rational

$$\Leftrightarrow$$
 CT(G) $\in \mathbb{Q}^{h \times h}$

G semi-rational

$$\Leftrightarrow \forall x \in G: [\mathbb{Q}(x):\mathbb{Q}] \leq 2$$

G inverse semi-rational

$$\Leftrightarrow \forall x \in G: \quad \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d_x}), d_x \in \mathbb{Z}_{\geq 0}$$

$$\Leftrightarrow \forall x \in \operatorname{Irr}(G): \mathbb{Q}(x) \subseteq \mathbb{Q}(\sqrt{-d_x}), d_x \in \mathbb{Z}_{\geq 0}$$

$$\Leftrightarrow \quad \forall \chi \in \operatorname{Irr}(G) : \mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}}), d_{\chi} \in \overline{\mathbb{Z}}_{\geq 0}$$

$$\mathsf{CT}(\mathsf{G}) = \left(\begin{array}{c} \cdots \\ \end{array} \right) \quad \mathsf{CT}(\mathsf{G}) = \left(\begin{array}{c} \cdots \\ \cdots \\ \end{array} \right) \quad \mathsf{CT}(\mathsf{G}) = \left(\begin{array}{c} \cdots \\ \cdots \\ \end{array} \right)$$

$$\mathsf{CT}(\mathsf{G}) = \left(\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \end{array}\right)$$

$$\mathsf{TT}(\mathsf{G}) = \left[\begin{array}{c} & & & & \\ & & & & \\ & & & & \end{array}\right]$$

EXAMPLES.

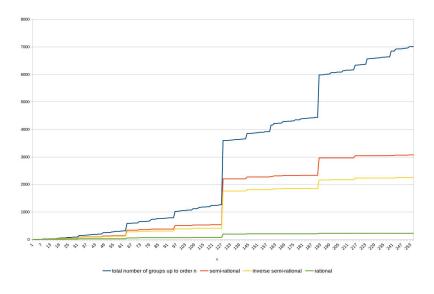
- \triangleright S_n is rational.
- ▶ $P \in \text{Syl}_p(S_n)$. $P \text{ rational } \Leftrightarrow p = 2$. $P \text{ inverse semi-rational } \Leftrightarrow p \in \{2,3\}$.
- ▶ $P \in \text{Syl}_p(\text{GL}(n, p^f))$. $P \text{ rational} \Leftrightarrow p = 2 \text{ and } n \leq 12$. P inverse semi-rational $\Rightarrow p = 2 \text{ and } n \leq 24 \text{ or } p = 3 \text{ and } n \leq 18$.

DEFINITION.

 $\pi(G) = \{p \text{ prime} : p \mid |G|\}, \text{ the prime spectrum of } G.$

Then $|\pi(S_n)| \longrightarrow \infty$ for $n \to \infty$.

	G rational	G inverse semi-rational	G semi-rational
G solvable	\Longrightarrow $\pi(G) \subseteq \{2,3,5\}$ Gow, 1976	\Longrightarrow ? $\pi(G) \subseteq \{2,3,5,7,\frac{13}{3}\}$ Chillag-I	\Rightarrow ? $\pi(G) \subseteq \{2, 3, 5, 7, 13, \frac{17}{17}\}$ Dolfi, 2010
G odd	G = 1	G semi-rational ←⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010	
G simple	3 groups Feit-Seitz, 1989	25 groups	all A_n + 41 groups Alavi-Daneshkhah, 2016
<i>G</i> ≤ 511	≈ 1%	≈ 46%	≈ 61%



$$\pm G \subseteq U(\mathbb{Z}G)$$
 - "trivial units"
 $\pm G = U(\mathbb{Z}G) \Leftrightarrow G$ abelian with $\exp G \mid 4$ or $\exp G \mid 6$ or G Hamiltonian 2-group (Higman, 1940)

$$\begin{array}{lll} \pm Z(G) \subseteq Z(U(\mathbb{Z}G)) & - & \text{``trivial central units''} \\ \pm Z(G) = Z(U(\mathbb{Z}G)) & \Leftrightarrow : & \textit{G cut group} \\ & & & \text{(all central units trivial)} \end{array}$$

$$\left[\mathsf{U}(\mathbb{Z}G) : \left\langle \ (\mathbb{Z}G)^1, \mathsf{Z}(\mathsf{U}(\mathbb{Z}G)) \ \right\rangle \right] < \infty$$
 often up to f.i. covered by "biby "bicyclic cyclic units" & "Bass units"

THEOREM (Ritter-Sehgal, et.al.) For a finite group G TFAE

- (1) G is cut.
- (2) $\forall \chi \in Irr(G)$: $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\sqrt{-d_{\chi}})$, $d_{\chi} \in \mathbb{Z}_{\geq 0}$.
- (3) G is inverse semi-rational.
- (4) $K_1(\mathbb{Z}G)$ is finite.

In particular: $G \text{ cut } \Rightarrow G/N \text{ cut for all } N \leq G.$

Тнеокем (Bakshi-Maheshwary-Passi, 2016) $G \neq 1$ cut-group

- (1) $2 \in \pi(G)$ or $3 \in \pi(G)$.
- (2) If G is nilpotent, then G is a $\{2,3\}$ -group.
- (3) If G is metacyclic, then G is in a list of 52 groups.

THEOREM (Maheshwary, 2016) Let G be a solvable cut group.

- (1) If |G| is odd $\Longrightarrow \pi(G) \subseteq \{3,7\}$ and all elements of G are of prime power order.
- (2) If |G| is even and all elements of G are of prime power order $\Longrightarrow \pi(G) \subseteq \{2,3,5,7\}.$

THEOREM (B., 2017) Let G be a solvable cut group. Then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

THEOREM (B., 2017) Let G be a solvable cut group. Then $\pi(G) \subseteq \{2, 3, 5, 7\}$.

Strategy of proof.

- $\pi(G) \subseteq \{2, 3, 5, 7, 13\}$ (Chillag-Dolfi).
- ▶ Let *G* be a minimal counterexample, $V \subseteq G$ minimal.
- ▶ Then $G \simeq V \rtimes G/V$, G/V is again cut.
- ▶ The $\mathbb{F}_{13}[G/V]$ -module V has the "12-eigenvalue property".
- ▶ Derive restrictions on field of character values of V.
- ▶ By a result of Farias e Soares such a module cannot exist for a solvable group G/V.

THEOREM (B., 2017). Let K be a Frobenius complement.

- (1) If |K| is even ...
- (2) If |K| is odd ...

THEOREM (B., 2017). Let K be a Frobenius complement.

(1) If |K| is even and the compelement of a cut Frobenius group G, then G is isomorphic to a group in the series on the left $(b, c, d \in \mathbb{Z}_{>1})$ or one of the groups on the right.

(a)
$$C_3^b \times C_2$$

(b) $C_3^{2b} \times C_4$

$$(\alpha)$$
 $C_5^2 \times Q_8$

(b)
$$C_3^{2b} \times C_4$$

(
$$\alpha$$
) $C_5^2 \times Q_8$
(β) $C_5^2 \times (C_3 \times C_4)$

(c)
$$C_3^{2b} \times Q_8$$

(
$$\gamma$$
) $C_5^2 \times SL(2,3)$
(δ) $C_7^2 \times SL(2,3)$

(d)
$$C_5^c \times C_4$$

(e)
$$C_7^{\tilde{d}} \times C_6$$

(f)
$$C_7^{2d} \times (Q_8 \times C_3)$$

Conversely, for each of the above structure descriptions, there is a unique cut Frobenius group.

(2) If |K| is odd ...

THEOREM (B., 2017). Let K be a Frobenius complement.

- (1) If |K| is even ...
- (2) If |K| is odd, then there is a cut Frobenius group G if and only if $K \simeq C_3$ and the kernel F is a group admitting a fixed-point free automorphism σ of order 3 such that
 - (a) F is a cut 2-group. In particular, $|F| = 2^{2a}$, $a \in \mathbb{Z}_{\geq 1}$ and F is an extension of an abelian group of exponent a divisor of 4 by an an abelian group of exponent a divisor of 4.
 - (b) F is an extension of an elementary abelian 7-group by an elementary abelian 7-group, $\exp F = 7$ and σ fixes each cyclic subgroup of F.

Strategy of proof. *G* cut Frobenius group with complement *K*.

- K is also cut.
- ▶ Show that *K* is solvable, so $\pi(G) \subseteq \{2, 3, 5, 7\}$.
- ▶ Determine possible structures of $P \in Syl_p(K)$.
- Determine possible structures of K.
- Use irreducible representations of these complements to describe structure of some G.
- Decide which subdirect products of the groups above are cut Frobenius groups.

REFERENCES

- A. BÄCHLE, Integral group rings of solvable groups with trivial central units, 2017, arXiv:1701.04347 [math.GR].
- G.K. BAKSHI, S. MAHESHWARY, I.B.S. PASSI, Integral group rings with all central units trivial, J. Pure Appl. Algebra, **221**(8), 1955-1965, 2017, arXiv:1606.06860 [math.RA].
- D. CHILLAG, S. DOLFI, Semi-rational solvable groups, J. Group Theory **13**(4), 535-548, 2010.
- S. Maheshwary, Integral group rings with all central units trivial: solvable groups, 2016, arXiv:1612.08344 [math.RA].
- J. RITTER, S.K. SEHGAL, *Integral group rings with trivial central units*, Proc. Amer. Math. Soc. **108**(2), 327-329, 1990.