Bounded Engel elements in groups satisfying an identity

Maria Tota (joint work with R. Bastos, N. Mansuroglu and A. Tortora)

Università degli Studi di Salerno Dipartimento di Matematica

"AGTA Lecce 2017" Lecce, September 8th, 2017

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

Golod, Gupta-Sidki, Grigorchuck

A residually finite *periodic* group is NOT locally finite.

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

Golod, Gupta-Sidki, Grigorchuck

A residually finite *periodic* group is NOT locally finite.

Let $w = w(x_1, \ldots, x_m)$ be a nonempty word in the free group generated by x_1, \ldots, x_m .

A group G is said to satisfy the identity $w \equiv 1$ if $w(g_1, \ldots, g_m) = 1$ for all $g_1, \ldots, g_m \in G$.

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

Golod, Gupta-Sidki, Grigorchuck

A residually finite *periodic* group is NOT locally finite.

Let $w = w(x_1, \ldots, x_m)$ be a nonempty word in the free group generated by x_1, \ldots, x_m .

A group G is said to satisfy the identity $w \equiv 1$ if $w(g_1, \ldots, g_m) = 1$ for all $g_1, \ldots, g_m \in G$.

If $w = x^n$ then G satisfies the identity $w \equiv 1$ iff the exponent of G divides n.

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

Golod, Gupta-Sidki, Grigorchuk

A residually finite periodic group is NOT locally finite.

Question

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

Golod, Gupta-Sidki, Grigorchuk

A residually finite periodic group is NOT locally finite.

Question

Let G be a residually finite periodic group satisfying an identity. Is G locally finite?

From the positive answer of the RBP

A residually finite group of finite exponent is locally finite.

Golod, Gupta-Sidki, Grigorchuk

A residually finite periodic group is NOT locally finite.

Question

Let G be a residually finite periodic group satisfying an identity. Is G locally finite?

Zelmanov, 2016

A residually finite p-group, for p a prime, which satisfies an identity is locally finite.

Question

Let G be a residually finite periodic group satisfying an identity. Is G locally finite?

Engel version of the question

Question

Let G be a residually finite periodic group satisfying an identity. Is G locally finite?

Engel version of the question

Let G be a residually finite Engel group satisfying an identity. Is G locally nilpotent?

A group G is an Engel group (resp. an *n*-Engel group) if all its elements are Engel (resp. *n*-Engel).

An element $g \in G$ is called a (left) Engel element if for any $x \in G$ there exists a positive integer n = n(x,g) such that $[x,_n g] = 1$. If n can be chosen independently of x, then g is called a (left) n-Engel element, or a bounded (left) Engel element.

Engel version of the question

Let G be a residually finite Engel group satisfying an identity. Is G locally nilpotent?

Periodic case

A residually finite *periodic* Engel group satisfying an identity is locally nilpotent.

Engel version of the question

Let G be a residually finite Engel group satisfying an identity. Is G locally nilpotent?

Periodic case

A residually finite *periodic* Engel group satisfying an identity is locally nilpotent.

Positive answer in another special case (Wilson)

A residually finite *n*-Engel group is locally nilpotent.

Positive answer in a more general case (Bastos, Mansuroglu, Tortora, T.)

Let G be a residually finite group satisfying an identity. Suppose that G is generated by a commutator closed set X of bounded Engel elements.

Then G is locally nilpotent.

A subset X of a group is commutator closed if $[x, y] \in X$ for any $x, y \in X$.

Positive answer in a more general case (Bastos, Mansuroglu, Tortora, T.)

Let G be a residually finite group satisfying an identity. Suppose that G is generated by a commutator closed set X of bounded Engel elements.

Then G is locally nilpotent.

A subset X of a group is commutator closed if $[x, y] \in X$ for any $x, y \in X$.

A group is locally graded if every nontrivial finitely generated subgroup has a proper subgroup of finite index.

Positive answer in a more general case (Bastos, Mansuroglu, Tortora, T.)

Let G be a residually finite group satisfying an identity. Suppose that G is generated by a commutator closed set X of bounded Engel elements.

Then G is locally nilpotent.

A subset X of a group is commutator closed if $[x, y] \in X$ for any $x, y \in X$.

Theorem (Bastos, Mansuroglu, Tortora, T.)

Let G be a locally graded group satisfying an identity. Suppose that G is generated by a *normal* commutator closed set X of bounded Engel elements. Then G is locally nilpotent.

A group is locally graded if every nontrivial finitely generated subgroup has a proper subgroup of finite index.

Maria Tota

Bounded Engel elements in groups satisfying an identity

A group is a *nil group* if all its elements are bounded Engel.

Let G be a locally graded nil group satisfying an identity. Then G is locally nilpotent.

A group is a *nil group* if all its elements are bounded Engel.

Corollary

Let G be a locally graded *periodic* Engel group satisfying an identity.

Then G is locally nilpotent.

Let G be a locally graded nil group satisfying an identity. Then G is locally nilpotent.

A group is a *nil group* if all its elements are bounded Engel.

Corollary

Let G be a locally graded *periodic* Engel group satisfying an identity.

Then G is locally nilpotent.

BUT (Juhasz, Rips)

A nil group satisfying an identity might not be locally nilpotent.

Let G be a locally graded nil group satisfying an identity. Then G is locally nilpotent.

A group is a *nil group* if all its elements are bounded Engel.

Corollary

Let G be a locally graded *periodic* Engel group satisfying an identity.

Then G is locally nilpotent.

BUT (Juhasz, Rips)

A nil group satisfying an identity might not be locally nilpotent.

Question

Let G be a locally graded nil group. Is G locally nilpotent?

Let G be a locally graded nil group satisfying an identity. Then G is locally nilpotent.

A group is a *nil group* if all its elements are bounded Engel.

Corollary

Let G be a locally graded *periodic* Engel group satisfying an identity.

Then G is locally nilpotent.

BUT (Juhasz, Rips)

A nil group satisfying an identity might not be locally nilpotent.

Open Question

Let G be a locally graded nil group. Is G locally nilpotent?

Theorem (Bastos, Mansuroglu, Tortora, T.)

Let G be a locally graded group satisfying an identity. Suppose that G is generated by a *normal* commutator closed set X of bounded Engel elements. Then G is locally nilpotent.

Let E(G) be the set of all bounded Engel elements of G.

Is E(G) a subgroup?

Theorem (Bastos, Mansuroglu, Tortora, T.)

Let G be a locally graded group satisfying an identity. Suppose that G is generated by a *normal* commutator closed set X of bounded Engel elements.

Then G is locally nilpotent.

Let E(G) be the set of all bounded Engel elements of G.

Is E(G) a subgroup?

Let G be a locally graded group satisfying an identity.

Let HP(G) the Hirsch-Plotkin radical.

E(G) subgroup $\Rightarrow E(G) \subseteq HP(G)$

Theorem (Bastos, Mansuroglu, Tortora, T.)

Let G be a locally graded group satisfying an identity. Suppose that G is generated by a *normal* commutator closed set X of bounded Engel elements.

Then G is locally nilpotent.

Let E(G) be the set of all bounded Engel elements of G.

Is E(G) a subgroup?

Let G be a locally graded group satisfying an identity.

Let HP(G) the Hirsch-Plotkin radical.

E(G) subgroup $\Rightarrow E(G) \subseteq HP(G)$

Problem

Find a locally graded group G satisfying an identity such that $E(G) \neq \{1\}$ and $HP(G) = \{1\}$.

THANK YOU!

R. Bastos, N. Mansuroglu, A. Tortora, and M. Tota, *Bounded Engel elements in groups satisfying an identity*, Arch. Math. (2017), accepted.