Split reductive groups over rings and their relatives

Alexei Stepanov

Let $G = G(\Phi, _)$ be a Chevalley–Demazure group scheme with a reduced irreducible root system Φ , e.g. $G = SL_n$ or Sp_{2n} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $G = G(\Phi, _)$ be a Chevalley-Demazure group scheme with a reduced irreducible root system Φ , e.g. $G = SL_n$ or Sp_{2n} . If R is a field, then G(R) is closed to be simple (except a few cases).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $G = G(\Phi, _)$ be a Chevalley-Demazure group scheme with a reduced irreducible root system Φ , e.g. $G = SL_n$ or Sp_{2n} . If R is a field, then G(R) is closed to be simple (except a few cases).

Let R be a ring (commutative, with 1) and I an ideal of R. Then there is a natural homomorphism $\rho_I : G(R) \to G(R/I)$, hence

$$\check{G}(R,I) = \operatorname{Ker} \rho_I$$
 and $\check{C}(R,I) = \rho_I^{-1}(Center)$

are normal subgroups.

Let $G = G(\Phi, _)$ be a Chevalley-Demazure group scheme with a reduced irreducible root system Φ , e.g. $G = SL_n$ or Sp_{2n} . If R is a field, then G(R) is closed to be simple (except a few cases).

Let R be a ring (commutative, with 1) and I an ideal of R. Then there is a natural homomorphism $\rho_I : G(R) \to G(R/I)$, hence

$$\check{G}(R,I) = \operatorname{Ker}
ho_I$$
 and $\check{C}(R,I) =
ho_I^{-1}(Center)$

are normal subgroups. Define $E(I) = \langle x_{\alpha}(r) \mid \alpha \in \Phi, r \in R \rangle$ and $\check{E}(R, I) = E(I)^{E(R)}$. The latter is called the relative elementary subgroup. If $G = SL_n$, then $x_{\alpha}(r)$ differs from the identity matrix in 1 nondiagonal place (α parametrizes the place, r is the entry).

Suppose that

- $\Phi \neq A_1$,
- 2 is invertible in R if $\Phi = B_n, C_n, F_4$, and
- 6 is invertible in R if $\Phi = G_2$.

Theorem

Given a subgroup $H \leq G(R)$, normalized by E(R), there exists a unique ideal I of R such that

$$\check{E}(R,I) \leqslant H \leqslant \check{C}(R,I).$$

Moreover, $[\check{C}(R, I), E(R)] = \check{E}(R, I)$, hence all subgroups in the sandwich are normalized by E(R).

(日) (四) (主) (主) (主) (の)

Contents

Let G be an algebraic group scheme over a ring K, and let E be a subfunctor satisfying the conditions formulated below. E.g. G is a simply connected Chevalley–Demazure group scheme over \mathbb{Z} with a root system $\Phi \neq A_1$ and E its elementary subgroup.

Contents

Let G be an algebraic group scheme over a ring K, and let E be a subfunctor satisfying the conditions formulated below. E. g. G is a simply connected Chevalley–Demazure group scheme over \mathbb{Z} with a root system $\Phi \neq A_1$ and E its elementary subgroup. **Results**

- 1. Normality of E(R) in G(R) and commutator formulas.
- 2. Bounded width of commutators.
- 3. Nilpotent structure of G(R)/E(R).

http://alexei.stepanov.spb.ru/publicat.html

- G is the category of groups;
- \mathcal{R} is the category of *K*-algebras (commutative with 1);

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• \mathcal{I} is the category of pairs (*K*-algebra, ideal);

- G is the category of groups;
- \mathcal{R} is the category of *K*-algebras (commutative with 1);
- ► *I* is the category of pairs (*K*-algebra,ideal);
- G is a representable functor $\mathcal{R} \to \mathcal{G}$;
- ► E is a subfunctor of G (i.e. E(R) ≤ G(R) and inclusion is a natural transformation);

ション ふゆ アメリア メリア しょうくしゃ

- G is the category of groups;
- \mathcal{R} is the category of *K*-algebras (commutative with 1);
- ► *I* is the category of pairs (*K*-algebra,ideal);
- G is a representable functor $\mathcal{R} \to \mathcal{G}$;
- ► E is a subfunctor of G (i.e. E(R) ≤ G(R) and inclusion is a natural transformation);

ション ふゆ く 山 マ チャット しょうくしゃ

• $\check{G}: \mathcal{I} \to \mathcal{G}$ is given by $\check{G}(R, I) = \text{Ker}(G(R) \to G(R/I));$

- G is the category of groups;
- \mathcal{R} is the category of *K*-algebras (commutative with 1);
- ► *I* is the category of pairs (*K*-algebra,ideal);
- G is a representable functor $\mathcal{R} \to \mathcal{G}$;
- ► E is a subfunctor of G (i.e. E(R) ≤ G(R) and inclusion is a natural transformation);

- $\check{G}: \mathcal{I} \to \mathcal{G}$ is given by $\check{G}(R, I) = \text{Ker}(G(R) \to G(R/I));$
- \check{E} is a subfunctor of \check{G} such that $\check{E}(R,R) = E(R)$;

Property (normality) $\check{E}(R, I) \triangleleft E(R)$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Property (normality) $\check{E}(R, I) \triangleleft E(R)$.

Property (surjectivity) \check{E} preserves surjective maps.

Property (normality) $\check{E}(R, I) \triangleleft E(R)$.

Property (surjectivity) \check{E} preserves surjective maps.

Property (generation) $\check{E}(R, I)\check{E}(R, J) = \check{E}(R, I + J).$ If R = R' + I, then $E(R')\check{E}(R, I) = E(R).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Property (Gauss decomposition)

There exists an open cover of G by principal open subschemes \mathcal{G}_i , i = 1, ..., m, which are contained in E. (Note that $G(R) = \bigcup_{i=1}^m \mathcal{G}_i(R)$ for all fields R, not for all K-algebras).

Property (Gauss decomposition)

There exists an open cover of G by principal open subschemes \mathcal{G}_i , $i = 1, \ldots, m$, which are contained in E. (Note that $G(R) = \bigcup_{i=1}^{m} \mathcal{G}_i(R)$ for all fields R, not for all K-algebras). Let S be a multiplicative subset of R. $R_S = S^{-1}R$ is the localization of R at S. $\lambda_S : R \to R_S$ denotes the natural homomorphism.

Property (Gauss decomposition)

There exists an open cover of G by principal open subschemes \mathcal{G}_i , i = 1, ..., m, which are contained in E. (Note that $G(R) = \bigcup_{i=1}^{m} \mathcal{G}_i(R)$ for all fields R, not for all K-algebras).

Let S be a multiplicative subset of R.

 $R_S = S^{-1}R$ is the localization of R at S.

 $\lambda_S: R
ightarrow R_S$ denotes the natural homomorphism.

Property (clearing denominators)

Let $a \in \check{G}(R[t], tR[t])$. Suppose that $\lambda_{S}(a) \in E(R_{S}[t])$. Then there exists $s \in S$ such that $a(st) \in \check{E}(R[t], tR[t])$.

Theorem (Normality) $[\check{G}(R, I), E(R)] \leq \check{E}(R, I)$ and $\check{E}(R, I) \triangleleft G(R)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Normality) $[\check{G}(R, I), E(R)] \leq \check{E}(R, I)$ and $\check{E}(R, I) \triangleleft G(R)$. Let S be a functorial generating set of \check{E} , i.e. $S : \mathcal{I} \rightarrow Sets$ is a subfunctor of \check{E} and S(R, I) generates the group $\check{E}(R, I)$.

Theorem (Normality)

 $[\check{G}(R, I), E(R)] \leqslant \check{E}(R, I)$ and $\check{E}(R, I) \triangleleft G(R)$.

Let S be a functorial generating set of \check{E} , i. e. $S : \mathcal{I} \to Sets$ is a subfunctor of \check{E} and S(R, I) generates the group $\check{E}(R, I)$.

Theorem (width of commutators)

There exists a constant $L \in \mathbb{N}$, such that for any K-algebra R, ideal I of R, $a \in G(R)$, and $b \in \check{E}(R, I)$ (or $a \in \check{G}(R, I)$ and $b \in \widetilde{E}(R)$) the commutator [a, b] can be written as a product of $\leq L$ elements of S(R, I).

Let I_1, \ldots, I_m be ideals of a K-algebra R. Theorem (multicommutator formula)

 $[\check{E}(R, I_1), \check{G}(R, I_2), \dots, \check{G}(R, I_m)] \leq [\check{E}(R, I_1 \dots I_{m-1}), \check{E}(R, I_m)] \cdot E(R, I_1 \dots I_m) =: EE(R, I_1 \dots I_{m-1}, I_m).$

Let I_1, \ldots, I_m be ideals of a K-algebra R. Theorem (multicommutator formula)

 $[\check{E}(R, I_1), \check{G}(R, I_2), \dots, \check{G}(R, I_m)] \leq [\check{E}(R, I_1 \dots I_{m-1}), \check{E}(R, I_m)] \cdot E(R, I_1 \dots I_m) =: EE(R, I_1 \dots I_{m-1}, I_m).$

Theorem (nilpotent structure of K_1) If dim $R \leq d$, then

 $[\check{G}(R, I_0), \check{G}(R, I_1), \ldots, \check{G}(R, I_d)] \leqslant EE(R, I_0 \ldots I_{d-1}, I_d).$