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Normal structure 1

Let G = G (Φ, ) be a Chevalley�Demazure group scheme with a

reduced irreducible root system Φ, e. g. G = SLn or Sp2n.

If R is a �eld, then G (R) is closed to be simple (except a few

cases).

Let R be a ring (commutative, with 1) and I an ideal of R . Then

there is a natural homomorphism ρI : G (R)→ G (R/I ), hence

Ǧ (R, I ) = Ker ρI and Č (R, I ) = ρ−1I (Center)

are normal subgroups.

De�ne E (I ) = 〈xα(r) | α ∈ Φ, r ∈ R〉 and Ě (R, I ) = E (I )E(R).

The latter is called the relative elementary subgroup.

If G = SLn, then xα(r) di�ers from the identity matrix in 1

nondiagonal place (α parametrizes the place, r is the entry).
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Normal structure 2

Suppose that

I Φ 6= A1,

I 2 is invertible in R if Φ = Bn,Cn,F4, and

I 6 is invertible in R if Φ = G2.

Theorem
Given a subgroup H 6 G (R), normalized by E (R), there exists a

unique ideal I of R such that

Ě (R, I ) 6 H 6 Č (R, I ).

Moreover, [Č (R, I ),E (R)] = Ě (R, I ), hence all subgroups in the

sandwich are normalized by E (R).



Contents

Let G be an algebraic group scheme over a ring K , and let E be a

subfunctor satisfying the conditions formulated below. E. g. G is a

simply connected Chevalley�Demazure group scheme over Z with a

root system Φ 6= A1 and E its elementary subgroup.

Results

1. Normality of E (R) in G (R) and commutator formulas.

2. Bounded width of commutators.

3. Nilpotent structure of G (R)/E (R).

http://alexei.stepanov.spb.ru/publicat.html
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Notation

I G is the category of groups;

I R is the category of K -algebras (commutative with 1);

I I is the category of pairs (K -algebra,ideal);

I G is a representable functor R → G;
I E is a subfunctor of G (i. e. E (R) 6 G (R) and inclusion is a

natural transformation);

I Ǧ : I → G is given by Ǧ (R, I ) = Ker
(
G (R)→ G (R/I )

)
;

I Ě is a subfunctor of Ǧ such that Ě (R,R) = E (R);
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Notation

I G is the category of groups;

I R is the category of K -algebras (commutative with 1);

I I is the category of pairs (K -algebra,ideal);

I G is a representable functor R → G;
I E is a subfunctor of G (i. e. E (R) 6 G (R) and inclusion is a

natural transformation);
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Axioms 1

Property (normality)

Ě (R, I ) / E (R).

Property (surjectivity)

Ě preserves surjective maps.

Property (generation)

Ě (R, I )Ě (R, J) = Ě (R, I + J).
If R = R ′ + I , then E (R ′)Ě (R, I ) = E (R).
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Axioms 2

Property (Gauss decomposition)

There exists an open cover of G by principal open subschemes Gi ,
i = 1, . . . ,m, which are contained in E . (Note that

G (R) =
m⋃
i=1
Gi (R) for all �elds R , not for all K -algebras).

Let S be a multiplicative subset of R .

RS = S−1R is the localization of R at S .
λS : R → RS denotes the natural homomorphism.

Property (clearing denominators)

Let a ∈ Ǧ (R[t], tR[t]). Suppose that λS(a) ∈ E (RS [t]). Then there

exists s ∈ S such that a(st) ∈ Ě (R[t], tR[t]).
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Results 1

Theorem (Normality)

[Ǧ (R, I ),E (R)] 6 Ě (R, I ) and Ě (R, I ) / G (R).

Let S be a functorial generating set of Ě , i. e. S : I → Sets is a

subfunctor of Ě and S(R, I ) generates the group Ě (R, I ).

Theorem (width of commutators)

There exists a constant L ∈ N, such that for any K -algebra R , ideal

I of R , a ∈ G (R), and b ∈ Ě (R, I ) (or a ∈ Ǧ (R, I ) and

b ∈ Ẽ (R) ) the commutator [a, b] can be written as a product of

6 L elements of S(R, I ).
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Results 2

Let I1, . . . , Im be ideals of a K -algebra R .

Theorem (multicommutator formula)

[Ě (R, I1), Ǧ (R, I2), . . . , Ǧ (R, Im)] 6

[Ě (R, I1 . . . Im−1), Ě (R, Im)]·E (R, I1 . . . Im) =: EE (R, I1 . . . Im−1, Im).

Theorem (nilpotent structure of K1)

If dimR 6 d , then

[Ǧ (R, I0), Ǧ (R, I1), . . . , Ǧ (R, Id)] 6 EE (R, I0 . . . Id−1, Id).
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