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Polynomial identities

X := {x1, x2, . . .} is a countable set and F is a field
F 〈X 〉 is the free associative algebra over F generated by X

Definition
An element f (x1, . . . , xs) ∈ F 〈X 〉 is a polynomial identity for an
F -algebra A if f (a1, . . . ,as) = 0A for all ai ∈ A.
If an F -algebra A satisfies a non-trivial polynomial identity, then
we say that A is a PI algebra.
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Examples

A commutative algebra is PI since it satisfies
[x1, x2] := x1x2 − x2x1

A nilpotent algebra of degree n is PI since it satisfies
x1x2 · · · xn

A finite dimensional algebra of dimension n is PI since it
satisfies

Stn+1(x1, x2, . . . , xn+1) :=
∑

σ∈Sn+1

sgn(σ)xσ(1) · · · xσ(n+1)

The Grassmann algebra on a countable dimension
F -vector space (char F 6= 2) is PI
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A first line of research

Assume that A is a PI algebra. What can one say on the
algebraic structure of A?

Theorem [Isaacs-Passmann, 1973]
Let FG be the group algebra of a group G over a field F of
characteristic p. Then FG is PI if, and only if, G has a p-abelian
subgroup of finite index.
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Focus on Id(A)

Describe
Id(A) := {f | f ∈ F 〈X 〉 f is PI for A}

for any PI algebra A

This is quite difficult!!!

The algebraic structure of Id(A)

Id(A) is a T-ideal of F 〈X 〉, namely a two-sided ideal closed
under endomorphisms of F 〈X 〉.
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The characteristic zero case and Specht’s Problem

Theorem [Kemer, 1991]
Let F be a field of characteristic zero and A a PI algebra. Then

Id(A) = 〈fi | fi ∈ F 〈X 〉 fi multilinear〉T .

Furthermore Id(A) is finitely generated (Specht’s Problem).

So it is enough to consider

⊕n∈N(Pn ∩ Id(A)),

where Pn := spanF{xτ(1) · · · xτ(n) | τ ∈ Sn}.
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Polynomial identities for matrices

Id(Mn(F ))

Id(M2(F )) = 〈[[x1, x2]2, x3],St4〉T

Id(Mn(F )) = 〈 ? 〉T if n ≥ 3
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Let us refine our thoughts: PI equivalent algebras

In general, algebras satisfying the same polynomial
identities are not isomorphic.

Definition
Two F -algebras A and B are PI-equivalent if Id(A) = Id(B).

Definition
Given a T -ideal (set) S of F 〈X 〉, the class of all algebras A such
that S ⊆ Id(A) for all f ∈ S is called the variety V = V(S)
determined by S. Let us write Id(V) = S.
An algebra A generates V if Id(A) = Id(V) (write V = var(A)).

Main Goal
To classify varieties
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Codimension Sequence

Definition [Regev, 1972]
Let A be an F -algebra. The non-negative integer

cn(A) := dimF
Pn

Pn ∩ Id(A)

is said to be the n-th codimension of the algebra A.

The sequence (cn(A))n∈N depends on Id(A) rather than A ,
thus it is constant on PI-equivalence classes and can
therefore be used as an invariant.
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The exponent of a PI algebra

Theorem [Regev, 1972]
If the algebra A satisfies an identity of degree d ≥ 1, then

cn(A) ≤ (d − 1)2n n ≥ 1.

Definition
Let A be a PI algebra. Then the exponent of A is (if there exists)

exp(A) := lim
m→+∞

m
√

cm(A).

Conjecture [Amitsur, ’80]

For any PI algebra A, exp(A) exists and is an integer.
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Existence of the exponent

Theorem [Giambruno-Zaicev, 1998-1999]
Let A be a PI algebra. Then the exponent of A exists and is an
integer.

They provide a method to compute it.
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Importance of the exponent in classifying varieties

The most important feature of the exponent is that it
provides an integral scale allowing to measure the growth
of any variety.

Now we start by distributing all varieties into layers
according to their exponent.
Let S ⊆ F 〈X 〉. It could be that if we consider a subset
S ⊂ T ⊆ F 〈X 〉 we get a strictly smaller variety with a
strictly smaller exponent.
If this always happens, V(S) is called a minimal variety.
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Minimal varieties

Definition
A variety V is minimal of exponent d ≥ 2 if exp(V) = d and
exp(U) < d for any proper subvariety U ⊂ V.

Theorem [Giambruno-Zaicev, 2003]
Let V be a variety of algebras of exponent d ≥ 2. The following
statements are equivalent:

(i) V is minimal;
(ii) Id(V) is the product of verbally prime T -ideals;
(iii) V = var(Gr(A)), where A is a suitable minimal

superalgebra and Gr(A) is its Grassmann envelope.
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Graded algebras

Definition
Let G be a group and F be a field. An (associative) F -algebra A
is called G-graded if

A = ⊕g∈GA(g),

where A(g) is an F -supaspace of A and A(g)A(h) ⊆ A(gh) for
every g,h ∈ G.
When G = Z2, A is said to be a superalgebra.
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Examples

The Grassmann algebra

Gr = 〈1,e1,e2, . . . |eiej = −ejei for all i , j ≥ 1〉

so a basis is given by

B := {1,ei1 · · · eik |1 ≤ i1 < i2 < . . . < ik}.

Set

Gr (0) := span{ei1 · · · ei2k |1 ≤ i1 < . . . < i2k , k ≥ 0},

Gr (1) := span{ei1 · · · ei2k+1 |1 ≤ i1 < . . . < i2k+1, k ≥ 0}.

Then Gr = Gr (0) ⊕Gr (1). In particular, Gr (0) = Z (Gr).
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Elementary grading on Mn(F )

Let G be a group and (g1, . . . ,gn) ∈ Gn. Consider the
algebra Mn(F ) graded by

g−1
1 g1 = 1G g−1

1 g2 g−1
1 g3 . . . g−1

1 gn

g−1
2 g1 g−1

2 g2 = 1G g−1
2 g3 . . . g−1

2 gn
...

...
...

g−1
n g1 g−1

n g2 . . . . . . g−1
n gn = 1G

 .

This grading on Mn(F ) is called elementary.
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Graded polynomial identities

G is a group
F 〈X 〉G is the free associative G-graded algebra of
countable rank over F (here, if G = {g1,g2, . . .}, the set X
decomposes as X = ∪s

i=1X (gi ) , where
X (gi ) = {x (gi )

1 , x (gi )
2 , . . .})

Definition

An element f (x (g1)
1 , . . . , x (g1)

t1 , . . . , x (gs)
1 , . . . , x (gs)

ts ) ∈ F 〈X 〉gr is a
graded polynomial identity for the G-graded algebra A if
f (a(g1)

1 , . . . ,a(g1)
t1 , . . . ,a(gs)

1 , . . . ,a(gs)
ts ) = 0A for all ai ∈ A.
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The graded version of Specht’s Problem

Let us consider the TG-ideal of graded polynomial identities of a
G-graded algebra A

IdG(A) := {f | f ∈ F 〈X 〉G f ≡ 0 on A}.

Theorem [Aljadeff-Kanel Belov, 2010]
Let F be a field of characteristic zero and A be a PI algebra
graded by a finite group G. Then

IdG(A) = 〈fi | fi ∈ F 〈X 〉gr fi multilinear〉TG .

Furthermore IdG(A) is finitely generated (Graded Specht’s
Problem).
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Graded codimensions

Assume that char F = 0. As in the ungraded case, it is enough
to consider the spaces of multilinear G-graded polynomials in

the variables x
(gi1

)

1 , . . . , x (gin )
n

PG
n := Span{x

(gi1
)

σ(1) · · · x
(gin )

σ(n) | σ ∈ Sn gi1 , . . . ,gin ∈ G}.

Definition
The non-negative integer

cG
n (A) := dimF

PG
n

PG
n ∩ IdG(A)

is said to be the n-th G-graded codimension of the algebra A.
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Polynomial identities versus graded polynomial
identities

If A is a G-graded algebra which is PI, then it satisfies a
graded polynomial identity.

The converse is, in general, not true: it is enough to
consider the free algebra generated by two indeterminates
with the trivial grading.

Theorem [Giambruno-Regev, 1985]

If A is a PI-algebra graded by a finite group G, then

cn(A) ≤ cG
n (A) ≤ |G|ncn(A) n ≥ 1.
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The graded exponent

Definition
Let A be a PI algebra graded by a finite group G. Then the
graded exponent of A is (if there exists)

expG(A) := lim
m→+∞

m
√

cG
m(A).

Benanti-Giambruno-Pipitone [J. Algebra 269 (2003),
422–438]: G = Z2 and A is finitely generated
Aljadeff-Giambruno-La Mattina [J. Reine Angew. Math.
650 (2011), 83–100]: G is finite abelian and A is
finite-dimensional
Giambruno-La Mattina [Adv. Math. 225 (2010), 859–881]:
G is finite abelian and A is PI
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Theorem [Aljadeff-Giambruno, 2013]
Let A be a PI algebra graded by a finite group G. Then the
graded exponent of A exists and is an integer.
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The graded problem

Classify the minimal varietes of PI algebras graded by a finite
group G of fixed graded exponent

Definition

A variety VG of G-graded PI algebras is said to minimal of
graded exponent d if expG(VG) = d and expG(UG) < d for
every proper subvariety UG ⊂ VG.
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Motivations

To construct a theory which generalizes that of ordinary
polynomial identities.

The additional graded structure and realted objects may
provide significant information on quite general objects.
For instance, Kemer in his fundamental work [Transl. Math.
Monograph, vol. 87, Amer. Math. Soc. , Providence, RI,
1991] proved that for any non-trivial variety there exists a
finite-dimensional superalgebras A (on an extension of F )
such that the T-ideal of the variety coincides with the
T-ideal of polynomial identities of Gr(A).
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Generators of minimal supervarieties

Theorem [Di Vincenzo-S., 2012]

Let VZ2 be a variety PI superalgebras of finite basic rank. If VZ2

is minimal of Z2-graded exponent d ≥ 2, then VZ2 = varZ2(B),
where B is a suitable minimal superalgebra.
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Minimal superalgebras

Definition [Giambruno-Zaicev, 2003]
Let F be an algebraically closed field. An F -superalgebra A is
called minimal if it is finite dimensional and A = Ass + J where
(1) Ass = A1 ⊕ · · · ⊕ An with A1, . . . ,An simple superalgebras;
(2) there exist homogeneous elements

w12, . . . ,wn−1,n ∈ J(0) ∪ J(1) and minimal graded
idempotents e1 ∈ A1, . . . ,en ∈ An such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1, i = 1, . . . ,n − 1

and
w12w23 · · ·wn−1,n 6= 0;

(3) w12, . . . ,wn−1,n generate J as two-sided ideal of A.
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Simple Superalgebras

Mk ,l :=

(
A B
C D

)
, where k ≥ l ≥ 0, k 6= 0, A ∈ Mk ,

D ∈ Ml , B ∈ Mk×l and C ∈ Ml×k , endowed with the grading

M(0)
k ,l :=

(
A 0
0 D

)
and M(1)

k ,l :=

(
0 B
C 0

)
;

Mm(F ⊕ tF ), where t2 = 1 with grading (Mm, tMm),

where, for any pair of positive integers m and s, the symbol
Mm×s means the F -vector space of all rectangular matrices
with m rows and s columns, and Mm := Mm×m.
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Simple graded simple components

Proposition
Let A = Ass + J be a minimal superalgebra. If
Ass = A1 ⊕ · · · ⊕ An, where Aj = Mkj ,lj for all j , then A is
isomorphic (as superalgebra) to UT (k1 + l1, . . . , kn + ln)
equipped with a suitable elementary grading.

Open question
Is it true that the supervariety generated by a minimal
superalgebra is minimal with respect to its graded exponent?
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Strategy

Let A be a minimal superalgebra and let VZ2 := varZ2(A).

Let UZ2 ⊆ VZ2 such that expZ2(VZ2) = expZ2(UZ2).
We aim to show that UZ2 = VZ2 .
Now UZ2 has finite basic rank. Hence, by Kemer’s result,
UZ2 is generated by a finite dimensional superalgebra B′.
On the other hand, there exists a minimal superalgebra B
such that IdZ2(B′) ⊆ IdZ2(B) and expZ2(B′) = expZ2(B).
Consequently, IdZ2(A) ⊆ IdZ2(B) and expZ2(A) = expZ2(B).
This implies that Ass = Bss.
We have to prove that IdZ2(A) = IdZ2(B).
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Proposition [Di Vincenzo-S., 2012]

Let A := (UT (α1, . . . , αn), | |A) and B := (UT (α1, . . . , αn), | |B).
If IdZ2(A) ⊆ IdZ2(B), then A ∼= B.

This result has been generalized in Di Vincenzo-Spinelli [J.
Algebra 415 (2014), 50–64] for gradings on upper block
triangular matrix algebras induced by a finite abelian group
under suitable restrictions
Aljadeff-Haile [Trans. Amer. Math. Soc. 366 (2014),
1749–1771]: simple G-graded algebras
David [J. Algebra 367 (2012), 120–141]: semisimple
G-graded algebras
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A first positive result

Theorem [Di Vincenzo-S., 2012]
Let A = Ass + J be a minimal superalgebra. If
Ass = A1 ⊕ · · · ⊕ An, where Aj = Mkj ,lj for all j , then varZ2(A) is
minimal of graded exponent dimF Ass.
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Minimal varieties vs minimal supervarieties

Giambruno-Zaicev [Adv. Math. 174 (2003), 310–323]
proved that a variety of finite basic rank is minimal if, and
only if, it is generated by an upper block triangular matrix
algebra UT (d1, . . . ,dn) and

Id(UT (d1, . . . ,dn)) = Id(Md1) · · · Id(Mdn )

Minimal superalgebras in which all the summands of the
semisimple part are simple graded simple generate
minimal supervarieties, but in general they do not generate
the same supervariety not even if they have the same
graded components A1, . . . ,An. Hence we cannot hope
that the T2-ideal of superidentities of these minimal
superalgebras is factorable.
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The case with two graded simple summands

Theorem [Di Vincenzo-S., 2012]
Let A = Ass + J be a minimal superalgebra such that
Ass = A1 ⊕ A2. Then IdZ2(A) = IdZ2(A1) · IdZ2(A2) if one of the
following conditions is satisfied:

at least one between A1 and A2 is non-simple as algebra;
A1 and A2 are both simple Z2-simple and there exists
1 ≤ i ≤ 2 such that Ai = Mki ,ki .

Theorem [Di Vincenzo-S., 2012]
Let A = Ass + J be a minimal superalgebra such that
Ass = A1 ⊕ A2. Then the supervariety generated by A is
minimal of graded exponent dimF (A1 ⊕ A2).
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On the structure of minimal superalgebras

It has been shown that a minimal superalgebra
A = (A1 ⊕ . . .⊕ An) + J has the following vector space
decomposition:

A =
⊕

1≤i≤j≤n

Aij ,

where A11 := A1, . . . ,Ann := An and, for all i < j ,

Aij := Aiwi,i+1Ai+1 · · ·Aj−1wj−1,jAj .

Moreover J = ⊕i<jAij and AijAkl = δjkAil , where δjk is the
Kronecker delta.
For every 1 ≤ k < l ≤ n set

A(k ,l) :=
⊕

k≤i≤j≤l

Aij ,

which is a minimal superalgebra as well.
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A factorization property

Theorem [Di Vincenzo-da Silva-S., 2016]
Let A = Ass + J be a minimal superalgebra. If
Ass = A1 ⊕ · · · ⊕ An and there exists 1 ≤ h ≤ n such that
A1, . . . ,Ah are non-simple graded simple and Ah+1, . . . ,An are
simple graded simple algebras, then

IdZ2(A) = IdZ2(A1) · · · IdZ2(Ah) · IdZ2(A(h+1,n)).

On the other hand, if h < n and A1, . . . ,Ah are simple graded
simple and Ah+1, . . . ,An are non-simple graded simple
algebras, then

IdZ2(A) = IdZ2(A(1,h)) · IdZ2(Ah+1) · · · IdZ2(An).
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Another positive result

Theorem [Di Vincenzo-da Silva-S., 2016]
Let A = Ass + J be a minimal superalgebra. If
Ass = A1 ⊕ · · · ⊕ An and there exists 1 ≤ h ≤ n such that
A1, . . . ,Ah are non-simple graded simple and Ah+1, . . . ,An are
simple graded simple algebras (or vice versa), then the
supervariety generated by A is minimal of graded exponent
dimF (Ass).
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A crucial example

Consider R := UT6 endowed with the Z2-grading induced by
the automorphism φ (of order 2) defined on Eij by

φ(Eij) := Eρ(i),ρ(j), ρ := (12)(34)(56).

Take the subalgebra A of R having as a linear basis the set

BA := {E11+E22,E33,E44,E55+E66,E13,E24,E35,E46,E15,E26},
which is homogeneous. Its Wedderburn-Malcev decomposition
is Ass = A1 ⊕ A2 ⊕ A3, where

A1 = 〈E11 + E22〉 ∼= F (e1 := E11 + E22);
A2 = 〈E33,E44〉 ∼= F ⊕ tF , where t2 = 1, with grading
(F , tF ) (e2 := E33 + E44);
A3 = 〈E55 + E66〉 ∼= F (e3 := E55 + E66)

and Jacobson radical J(A) = 〈E13,E24,E35,E46,E15,E26〉 is
generated as an ideal by the homogeneous elements

w12 := E13 + E24, w23 := E35 + E46.
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Consider S := UT4 endowed with the Z2-grading induced by
the automorphism ψ defined by

ψ(Eij) := Eσ(i),σ(j), σ := (23).

Take the subalgebra B of S having as a linear basis the set

BB := {E11,E22,E33,E44,E12, ,E13,E24,E34,E14}.

B is a minimal superalgebra with graded simple summands of
Bss, where

B1 = 〈E11〉 ∼= F (e1 := E11);
B2 = 〈E22,E33〉 ∼= F ⊕ tF , where t2 = 1, with grading
(F , tF ) (e2 := E22 + E33);
B3 = 〈E44〉 ∼= F (e3 := E44)

and Jacobson radical J(B) = 〈E12,E13,E24,E34,E14〉 generated
as an ideal by the homogeneous elements

w12 := E12 + E13, w23 := E24 + E34.
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Ass = Bss and expZ2(A) = 4 = expZ2(B)

There is a graded epimorphism from A to B. Consequently,

IdZ2(A) ⊆ IdZ2(B)

The graded polynomial g := [y1, y2]z3[y4, y5] lies in IdZ2(B)
but [e1,w12](E33 − E44)[w23,e3] 6= 0A Hence

IdZ2(A) 6= IdZ2(B)

varZ2(A) is not minimal.
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The case with three graded simple addends

Di Vincenzo-da Silva-Spinelli [Math. Z., in press] have
completely described the isomorphism types of minimal
superalgebras whose maximal semisimple homogeneous
subalgebra is the sum of three graded simple algebras.

A minimal superalgebra A belonging to this class
generates a minimal supervariety of fixed graded exponent
except for one case
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Theorem [Di Vincenzo-da Silva-S., 2017]
Let A = Ass + J(A) be a minimal superalgebra such that
Ass = A1 ⊕ A2 ⊕ A3 with

A1 = Mk ,l , A2 = Mm(F ⊕ tF ) and A3 = Mr ,s.

(a) If A13 is irreducible as an (A1,A3)-bimodule, then A
generates a minimal supervariety of superexponent
dimF (A1 ⊕ A2 ⊕ A3);

(b) if A13 is not irreducible as an (A1,A3)-bimodule, then A
generates a minimal supervariety of superexponent
dimF (A1 ⊕ A2 ⊕ A3) if, and only if, either k = l or r = s.
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Minimal G-graded algebras

Definition
Let F be an algebraically closed field. A G-graded algebra A is
called minimal if it is finite-dimensional and A = Ass + J(A)
where
(i) Ass = A1 ⊕ · · · ⊕ An, with A1, . . . ,An G-simple algebras;
(ii) there exist homogeneous elements w12, . . . ,wn−1,n ∈ J(A)

and minimal homogeneous idempotents
e1 ∈ A1, . . . ,en ∈ An such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1 1 ≤ i ≤ n − 1

and
w12w23 · · ·wn−1,n 6= 0A;

(iii) w12, . . . ,wn−1,n generate J(A) as a two-sided ideal of A.
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Zp-simple algebras

Let G = 〈ε〉 ∼= Zp and

D =



a1 a2 · · · ap−1 ap

ap a1
. . . ap−1

...
. . . . . . . . .

...

a3
. . . . . . a2

a2 a3 · · · ap a1


, where a1,a2, . . . ,ap ∈ F ,

with its natural grading induced by the p-tuple
(1G, ε, ε

2, . . . , εp−1).



Introduction and Motivations
Minimal varieties

Minimal Varieties of Graded PI Algebras

The Graded Objects
Minimal varieties of PI superalgebras
The case G = Zp

Proposition

Let F be an algebraically closed field and G = 〈ε〉 ∼= Zp a group
of prime order p. If A is a finite-dimensional G-simple algebra,
then it is isomorphic to one of the following G-graded algebras:
(i) Mn with an elementary grading;
(ii) D ⊗Mr with the grading induced by the trivial grading on

Mr and the natural one on D. In other words, in this case,
A is isomorphic to the homogeneous subalgebra Mr (D) of
Mpr with the grading induced by the (pr)-tuple
(1G, ε, ε

2, . . . , εp−1︸ ︷︷ ︸, . . . ,1G, ε, ε
2, . . . , εp−1︸ ︷︷ ︸︸ ︷︷ ︸

r times

).
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The graded algebra UTZp(A1, . . . ,Am)

Assume that G = 〈ε〉 ∼= Zp and F is algebraically closed.

Given an m-tuple (A1, . . . ,Am) of G-simple algebras, let

Γ0 := {i |Ai is simple graded simple}, Γ1 := [1,m] \ Γ0.

For every k ∈ [1,m], let us denote the size of Ak by

sk :=

{
nk if k ∈ Γ0 and Ak

∼= Mnk ,

pnk if k ∈ Γ1 and Ak
∼= Mnk (D) ⊆ Mpnk

and set ν0 := 0, νk :=
∑k

1=1 si and Blk := [νk−1 + 1, νk ]
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Let

UT (A1, . . . ,Am) := {(aij) ∈ UT (s1, . . . , sm)|akk ∈ Mnk (D), k ∈ Γ1}

and αk : [1, sk ] −→ G be the map inducing the elementary
grading on Ak . In particular, if k ∈ Γ1,

(αk (1), . . . , αk (sk )) := (1G, ε, . . . , ε
p−1︸ ︷︷ ︸, . . . ,1G, ε, . . . , ε

p−1︸ ︷︷ ︸︸ ︷︷ ︸
nk times

).

Let us define the maps

α : [1, νm] −→ G, i 7−→ αk (i − νk−1)

and, for any m-tuple g̃ := (g1, . . . ,gm) ∈ Gm,

αg̃ : [1, νm] −→ G, i 7−→ gkα(i),

where k ∈ [1,m] is the (unique) integer such that i ∈ Blk .
Let us denote any such G-graded algebra by
UTG(A1, . . . ,Am).
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A characterization theorem

Theorem [Di Vincenzo-da Silva-S., 2017]
Let F be a field of characteristic zero and G a group of prime
order p. A variety of G-graded PI-algebras of finite basic rank is
minimal of G-exponent d if, and only if, it is generated by a
G-graded algebra UTG(A1, . . . ,Am) satisfying
dimF (A1 ⊕ · · · ⊕ Am) = d .
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