Identities with derivation of the algebra of upper triangular matrices of size two

Carla Rizzo

Dipartimento di Matematica Palermo

Lecce, September 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三 のへで

1/27

Hopf algebra

Let *F* be a field, charF = 0, and let *H* be a Hopf algebra over *F* with comultiplication $\Delta : H \rightarrow H \otimes H$.

Sweedler's notation

For all $h \in H \exists h_{(1)}^i, h_{(2)}^i \in H$ such that

$$\Delta(h) = \sum_i h^i_{(1)} \otimes h^i_{(2)}.$$

This is abbreviated to

$$\Delta(h) = h_{(1)} \otimes h_{(2)}.$$

If $n \ge 1$, we write

$$\Delta_n(h) = h_{(1)} \otimes \cdots \otimes h_{(n+1)}.$$

イロト イポト イミト イミト 一日

Hopf algebra

Let *F* be a field, charF = 0, and let *H* be a Hopf algebra over *F* with comultiplication $\Delta : H \rightarrow H \otimes H$.

Sweedler's notation

For all $h \in H \exists h_{(1)}^i, h_{(2)}^i \in H$ such that

$$\Delta(h) = \sum_i h^i_{(1)} \otimes h^i_{(2)}.$$

This is abbreviated to

 $\Delta(h) = h_{(1)} \otimes h_{(2)}.$

If $n \ge 1$, we write

$$\Delta_n(h) = h_{(1)} \otimes \cdots \otimes h_{(n+1)}.$$

Hopf algebra

Let *F* be a field, charF = 0, and let *H* be a Hopf algebra over *F* with comultiplication $\Delta : H \rightarrow H \otimes H$.

Sweedler's notation

For all $h \in H \exists h_{(1)}^i, h_{(2)}^i \in H$ such that

$$\Delta(h) = \sum_{i} h^{i}_{(1)} \otimes h^{i}_{(2)}.$$

This is abbreviated to

$$\Delta(h) = h_{(1)} \otimes h_{(2)}.$$

If $n \ge 1$, we write

$$\Delta_n(h) = h_{(1)} \otimes \cdots \otimes h_{(n+1)}.$$

イロト イポト イミト イミト 一日

Hopf algebra

Let *F* be a field, charF = 0, and let *H* be a Hopf algebra over *F* with comultiplication $\Delta : H \to H \otimes H$.

Sweedler's notation

For all $h \in H \exists h_{(1)}^i, h_{(2)}^i \in H$ such that

$$\Delta(h) = \sum_{i} h^{i}_{(1)} \otimes h^{i}_{(2)}.$$

This is abbreviated to

$$\Delta(h) = h_{(1)} \otimes h_{(2)}.$$

If $n \ge 1$, we write

$$\Delta_n(h) = h_{(1)} \otimes \cdots \otimes h_{(n+1)}.$$

イロト イポト イミト イミト 一日

Hopf algebra

Example

Let L be any F-Lie algebra.

The universal enveloping algebra, U(L), of L becomes a Hopf algebra by defining for all $x \in L$:

- Comultiplication $\Delta: U(L) \to U(L) \otimes U(L)$ as $\Delta(x) = x \otimes 1 + 1 \otimes x,$
- Counite $\epsilon : U(L) \rightarrow F$ as $\epsilon(x) = 0$,
- Antipode $S: U(L) \rightarrow U(L)$ as S(x) = -x.

3

イロト イポト イヨト イヨト

H-modulo algebra

Definition

An associative algebra A is an H-module algebra or an algebra with an H-action, if A is a left H-module with action

$$h \otimes a \rightarrow h \cdot a$$

for all $h \in H$, $a \in A$, such that

$$h \cdot (ab) = (h_{(1)} \cdot a)(h_{(2)} \cdot b)$$

for all $h \in H$ and $a, b \in A$, where $\Delta(h) = h_{(1)} \otimes h_{(2)}$.

Derivations of an algebra

Let A be an F-associative algebra.

Definition

A derivation of A is a linear map $D: A \rightarrow A$ such that

$$D(ab) = D(a)b + aD(b), \quad \forall a, b \in A.$$

In particular D is an inner derivation induced by $x \in A$ if

$$D(a) = [x, a], \quad \forall a \in A.$$

The set

$$Der(A) = \{D : A \rightarrow A | D \text{ is a derivation}\}$$

is a Lie algebra.

Derivations of an algebra

Let A be an F-associative algebra.

Definition

A derivation of A is a linear map $D: A \rightarrow A$ such that

$$D(ab) = D(a)b + aD(b), \quad \forall a, b \in A.$$

In particular D is an inner derivation induced by $x \in A$ if

$$D(a) = [x, a], \quad \forall a \in A.$$

The set

$$Der(A) = \{D : A \rightarrow A | D \text{ is a derivation}\}$$

is a Lie algebra.

H-modulo algebra

Example

Let U(L) be the universal enveloping algebra of a F-Lie algebra L.

Let A be an F-associative algebra such that L acts on A as derivation.

The L-action on A can be naturally extended to the following U(L)-action

$$x_1 \dots x_n \cdot a = x_1 \cdot (\dots \cdot (x_n \cdot a) \dots)$$

for all $x_1, \ldots, x_n \in L$ and $a \in A$.

A is an U(L)-modulo algebra called algebra with derivation.

H-modulo algebra

Example

Let U(L) be the universal enveloping algebra of a F-Lie algebra L.

Let A be an F-associative algebra such that L acts on A as derivation.

The *L*-action on *A* can be naturally extended to the following U(L)-action

$$x_1 \ldots x_n \cdot a = x_1 \cdot (\cdots \cdot (x_n \cdot a) \ldots)$$

for all $x_1, \ldots, x_n \in L$ and $a \in A$.

A is an U(L)-modulo algebra called algebra with derivation.

H-polynomials

Given a countable set $X = \{x_1, x_2, ...\}$ and a basis $B = \{\beta_i | i \in I\}$ of H.

We denote by $F\langle X|H\rangle$ the associative algebra over F freely generated by the set

$$\{x^{\beta_i} = \beta_i(x) | x \in X, \beta_i \in B\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ つくの

7/27

H-polynomials

Given a countable set $X = \{x_1, x_2, ...\}$ and a basis $B = \{\beta_i | i \in I\}$ of H.

We denote by $F\langle X|H\rangle$ the associative algebra over F freely generated by the set

$$\{x^{\beta_i}=eta_i(x)|x\in\mathsf{X},eta_i\in\mathsf{B}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

7/27

H-polynomials

If $h = \sum_{i \in I} \alpha_i \beta_i \in H$, $\alpha_i \in F$, where only a finite number of α_i are nonzero, then we put

$$x^h := \sum_{i \in I} lpha_i x^{eta_i}.$$

We let H act on $F\langle X|H\rangle$ as follows

$$h(x_{j_1}^{eta_{i_1}}\dots x_{j_n}^{eta_{i_n}}):=x_{j_1}^{h_{(1)}eta_{i_1}}\dots x_{j_n}^{h_{(n)}eta_{i_n}}$$

where $h \in H$, $\Delta_{n-1}(h) = h_{(1)} \otimes \cdots \otimes h_{(n)}$ and $\beta_{i_1}, \ldots, \beta_{i_n} \in B$.

H-polynomials

If $h = \sum_{i \in I} \alpha_i \beta_i \in H$, $\alpha_i \in F$, where only a finite number of α_i are nonzero, then we put

$$x^h := \sum\limits_{i \in I} lpha_i x^{eta_i}$$

We let H act on $F\langle X|H\rangle$ as follows

$$h(x_{j_1}^{\beta_{i_1}} \dots x_{j_n}^{\beta_{i_n}}) := x_{j_1}^{h_{(1)}\beta_{i_1}} \dots x_{j_n}^{h_{(n)}\beta_{i_n}}$$

where $h \in H$, $\Delta_{n-1}(h) = h_{(1)} \otimes \dots \otimes h_{(n)}$ and $\beta_{i_1}, \dots, \beta_{i_n} \in B$.

イロト イロト イヨト イヨト ニヨー のくつ

8/27

H-polynomials

Let A be an associative algebra with H-action.

Universal property

Any set theoretical map $\varphi : X \to A$ extends uniquely to a homomorphism $\overline{\varphi} : F\langle X|H \rangle \to A$ such that $\overline{\varphi}(f^h) = h \cdot \overline{\varphi}(f)$, for any $f \in F\langle X|H \rangle$ and $h \in H$.

Definition

 $F\langle X|H\rangle$ is called the free algebra on X with H-action or free H-modulo algebra, and its elements are called H-polynomials.

H-polynomials

Let A be an associative algebra with H-action.

Universal property

Any set theoretical map $\varphi : X \to A$ extends uniquely to a homomorphism $\overline{\varphi} : F\langle X|H \rangle \to A$ such that $\overline{\varphi}(f^h) = h \cdot \overline{\varphi}(f)$, for any $f \in F\langle X|H \rangle$ and $h \in H$.

Definition

 $F\langle X|H\rangle$ is called the free algebra on X with H-action or free H-modulo algebra, and its elements are called H-polynomials.

H-identities

Let A be an associative algebra with H-action.

Definition

 $f = f(x_1, ..., x_n) \in F\langle X | H \rangle$ is an *H*-identity of *A*, and we write $f \equiv 0$, if

$$f(a_1,\ldots,a_n)=0$$

for all $a_1, \ldots, a_n \in A$.

$Id^{H}(A) = \{ f \in F\langle X | H \rangle | f \equiv 0 \text{ on } A \}$

is the T^H -ideal of $F\langle X|H\rangle$ of all H-identities of A.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 10 / 27

H-identities

Let A be an associative algebra with H-action.

Definition

 $f = f(x_1, ..., x_n) \in F\langle X | H \rangle$ is an *H*-identity of *A*, and we write $f \equiv 0$, if

$$f(a_1,\ldots,a_n)=0$$

for all $a_1, \ldots, a_n \in A$.

$$Id^{H}(A) = \{ f \in F\langle X | H \rangle | f \equiv 0 \text{ on } A \}$$

is the T^{H} -ideal of $F\langle X|H\rangle$ of all H-identities of A.

H-polynomials and H-identities

Example

Le U(L) be the universal enveloping algebra of a F-Lie algebra L.

The free algebra

$$F\langle X|U(L)\rangle=F^d\langle X\rangle$$

is the free algebra with derivation.

If A is an F-associative algebra such that L acts on A as derivation. Then the elements of

$$Id^{U(L)}(A) = Id^d(A)$$

are polynomial identities with derivation of A or differential identities of A.

H-polynomials and H-identities

Example

Le U(L) be the universal enveloping algebra of a F-Lie algebra L.

The free algebra

$$F\langle X|U(L)\rangle=F^d\langle X\rangle$$

is the free algebra with derivation.

If A is an F-associative algebra such that L acts on A as derivation. Then the elements of

$$Id^{U(L)}(A) = Id^d(A)$$

are polynomial identities with derivation of A or differential identities of A.

Multilinear *H*-polynomials

The space of multilinear *H*-polynomials in x_1, \ldots, x_n , $n \in \mathbb{N}$,

$$\mathcal{P}_n^H = span\{x_{\sigma(1)}^{h_1} \dots x_{\sigma(n)}^{h_n} | \sigma \in S_n, h_i \in H\},$$

has a natural structure of left S_n -module induced by

$$\sigma(x_i^h) = x_{\sigma(i)}^h, \quad \sigma \in S_n.$$

The space

$$P_n^H(A) = \frac{P_n^H}{P_n^H \cap Id^H(A)}$$

has a structure of left S_n -module.

Multilinear H-polynomials

The space of multilinear *H*-polynomials in x_1, \ldots, x_n , $n \in \mathbb{N}$,

$$\mathcal{P}_n^{\mathcal{H}} = span\{x_{\sigma(1)}^{h_1} \dots x_{\sigma(n)}^{h_n} | \sigma \in \mathcal{S}_n, h_i \in \mathcal{H}\},$$

has a natural structure of left S_n -module induced by

$$\sigma(x_i^h) = x_{\sigma(i)}^h, \quad \sigma \in S_n.$$

The space

$$P_n^H(A) = \frac{P_n^H}{P_n^H \cap Id^H(A)}$$

has a structure of left S_n -module.

H-codimension

Definition

The non-negative integer

$$c_n^H(A) := \dim P_n^H(A), \quad n \ge 1,$$

is called the *n*th *H*-codimension of *A*. The sequence $\{c_n^H(A)\}_{n\geq 1}$ is the *H*-codimension sequence of *A*.

H-cocharacter

Definition

The character, $\chi_n^H(A)$, of $P_n^H(A)$ is called the *n*th *H*-cocharacter of *A*.

The nth H-cocharacter of A can be decompose as

$$\chi_n^H(A) = \sum_{\lambda \vdash n} m_\lambda^H \chi_\lambda,$$

where λ is partition of n, χ_{λ} is the irreducible S_n -character associated to λ , and $m_{\lambda}^H \geq 0$ is the corresponding multiplicity.

H-cocharacter

Definition

The character, $\chi_n^H(A)$, of $P_n^H(A)$ is called the *n*th *H*-cocharacter of *A*.

The nth H-cocharacter of A can be decompose as

$$\chi_n^H(A) = \sum\limits_{\lambda \vdash n} m_\lambda^H \chi_\lambda,$$

where λ is partition of n, χ_{λ} is the irreducible S_n -character associated to λ , and $m_{\lambda}^H \ge 0$ is the corresponding multiplicity.

H-codimension and H-cocharacter

Example

Let L be any F-Lie algebra and let A be an F-associative algebra such that L acts on A as derivation.

$$c_n^{U(L)}(A) = c_n^d(A)$$

is the nth differential codimension of A, and

$$\chi_n^{U(L)}(A) = \chi_n^d(A)$$

is the nth differential cocharacter of A.

Derivations of UT_2

Let $B = \{e_{11} + e_{22}, e_{11} - e_{22}, e_{12}\}$ be a basis of UT_2 . Let

$$\varepsilon(a) = \frac{1}{2}[e_{11} - e_{22}, a]$$

and

$$\delta(a) = \frac{1}{2}[e_{12}, a],$$

for all $a \in UT_2$.

If $a = lpha(e_{11} + e_{22}) + eta(e_{11} - e_{22}) + \gamma e_{12} \in UT_2$, then

$$\varepsilon(a) = \gamma e_{12}$$

and

$$\delta(a) = -\beta e_{12}.$$

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ 16 / 27

Derivations of UT_2

Let $B = \{e_{11} + e_{22}, e_{11} - e_{22}, e_{12}\}$ be a basis of UT_2 . Let

$$\varepsilon(a) = \frac{1}{2}[e_{11} - e_{22}, a]$$

and

$$\delta(a)=\frac{1}{2}[e_{12},a],$$

for all $a \in UT_2$.

If $a = \alpha(e_{11} + e_{22}) + \beta(e_{11} - e_{22}) + \gamma e_{12} \in UT_2$, then $\varepsilon(a) = \gamma e_{12}$

and

$$\delta(a) = -\beta e_{12}.$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 16/27

Derivations of UT_2

Theorem (Coelho, Polcino Milies, 1993)

Any derivation of the algebra of $n \times n$ upper triangular matrices over a field F, $UT_n(F)$, is inner.

 $L = Der(UT_2)$ is the non-abelian Lie algebra of dimension 2 with basis $\{\varepsilon, \delta\}$ such that

 $[\varepsilon, \delta] = \delta.$

<ロト < 部ト < 画ト < 画ト < 画ト < 画 > 画 の Q @ 17 / 27

Derivations of UT_2

Theorem (Coelho, Polcino Milies, 1993)

Any derivation of the algebra of $n \times n$ upper triangular matrices over a field F, $UT_n(F)$, is inner.

 $L = Der(UT_2)$ is the non-abelian Lie algebra of dimension 2 with basis $\{\varepsilon, \delta\}$ such that

$$[\varepsilon, \delta] = \delta.$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

17/27

Differential identities of UT_2

Theorem

Let $UT_2^d(F)$ be the algebra of 2×2 upper triangular matrices over F with $L = Der(UT_2)$ -action. Then

• $Id^{d}(UT_{2}) = \langle [x, y]^{\varepsilon} - [x, y], [x, y]^{\delta}, x^{\alpha}yz^{\beta} \rangle_{T^{d}}$ where $\alpha, \beta \in \{\varepsilon, \delta\}.$

•
$$c_n^d(UT_2) = 2^{n-1}(n+2).$$

Differential identities of UT_2

Notation

- F(X)=the free associative algebra on a countable set X over F
- Id(UT₂)=T-ideal of all (ordinary) polynomials identities of UT₂
- P_n =space of multilinear (ordinary) polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n(UT_2) = \frac{P_n}{P_n \cap Id(UT_2)} = \frac{P_n}{P_n \cap Id^d(UT_2)}$$

Differential identities of UT_2

Notation

- F(X)=the free associative algebra on a countable set X over F
- Id(UT₂)=T-ideal of all (ordinary) polynomials identities of UT₂
- P_n =space of multilinear (ordinary) polynomials of degree n in x_1, \ldots, x_n variables

Differential identities of UT_2

Notation

- F(X)=the free associative algebra on a countable set X over F
- Id(UT₂)=T-ideal of all (ordinary) polynomials identities of UT₂
- P_n =space of multilinear (ordinary) polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n(UT_2) = \frac{P_n}{P_n \cap Id(UT_2)} = \frac{P_n}{P_n \cap Id^d(UT_2)}$$

Differential identities of UT_2

Notation

- E=Lie algebra over F with basis { ε }
- U(E)=universal enveloping algebra of E

• $P_n^{\varepsilon} = P_n^{U(E)}$ = space of multilinear ε -polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n^{\varepsilon}(UT_2) = \frac{P_n^{\varepsilon}}{P_n^{\varepsilon} \cap Id^d(UT_2)}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q (? 27)

Polynomial H-identities Differential identities of UT₂ Differential cocharacter of UT₂

Differential identities of UT_2

Notation

- E=Lie algebra over F with basis { ε }
- U(E)=universal enveloping algebra of E
- $P_n^{\varepsilon} = P_n^{U(E)}$ =space of multilinear ε -polynomials of degree n in x_1, \ldots, x_n variables

 $P_n^{\varepsilon}(UT_2) = \frac{P_n^{\varepsilon}}{P_n^{\varepsilon} \cap Id^d(UT_2)}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 20 / 27

Differential identities of UT_2

Notation

- E=Lie algebra over F with basis { ε }
- U(E)=universal enveloping algebra of E
- $P_n^{\varepsilon} = P_n^{U(E)}$ =space of multilinear ε -polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n^{\varepsilon}(UT_2) = \frac{P_n^{\varepsilon}}{P_n^{\varepsilon} \cap Id^d(UT_2)}$$

Differential identities of UT_2

Notation

- Δ =Lie algebra over F with basis { δ }
- $U(\Delta)$ =universal enveloping algebra of Δ
- $P_n^{\delta} = P_n^{U(\Delta)}$ = space of multilinear δ -polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n^{\delta}(UT_2) = \frac{P_n^{\delta}}{P_n^{\delta} \cap Id^d(UT_2)}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 21 / 27 Polynomial H-identities Differential identities of UT₂ Differential cocharacter of UT₂

Differential identities of UT_2

Notation

- Δ =Lie algebra over F with basis { δ }
- $U(\Delta)$ =universal enveloping algebra of Δ
- $P_n^{\delta} = P_n^{U(\Delta)}$ =space of multilinear δ -polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n^{\delta}(UT_2) = \frac{P_n^{\delta}}{P_n^{\delta} \cap Id^d(UT_2)}$$

Differential identities of UT_2

Notation

- Δ =Lie algebra over F with basis { δ }
- $U(\Delta)$ =universal enveloping algebra of Δ
- $P_n^{\delta} = P_n^{U(\Delta)}$ =space of multilinear δ -polynomials of degree n in x_1, \ldots, x_n variables

•
$$P_n^{\delta}(UT_2) = \frac{P_n^{\delta}}{P_n^{\delta} \cap Id^d(UT_2)}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 21/27

Differential identities of UT_2

Corollary

$P_n^d(UT_2) \cong P_n(UT_2) \oplus P_n^{\varepsilon}(UT_2) \oplus P_n^{\delta}(UT_2)$ as S_n -module.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ◆○へ ○ 22 / 27

Differential PI-exponent of UT_2

Theorem (Gordienko, Kochtov, 2014)

If A is an algebra with derivations satisfying a non trivial differential identity, then there exists

$$\mathsf{Exp}^{d}(A) := \lim_{n \to \infty} (c_{n}^{d}(A))^{\frac{1}{n}} \in \mathbb{Z}_{+}.$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is called differential PI-exponent of A.

Corollary $Exp^{d}(UT_{2}) = 2$

Differential PI-exponent of UT_2

Theorem (Gordienko, Kochtov, 2014)

If A is an algebra with derivations satisfying a non trivial differential identity, then there exists

$$\mathsf{Exp}^{d}(A) := \lim_{n \to \infty} (c_{n}^{d}(A))^{\frac{1}{n}} \in \mathbb{Z}_{+}.$$

It is called differential PI-exponent of A.

Corollary

$$\operatorname{Exp}^{d}(UT_{2}) = 2$$

Cocharacter of UT_2

The *n*th differential cocharacter of UT_2

$$\chi^d_n(U\mathcal{T}_2) = \sum\limits_{\lambda dash n} m^d_\lambda \chi_\lambda$$

is the character of $P_n^d(UT_2)$.

The *n*th ordinary cocharacter of UT_2

$$\chi_n(UT_2) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$$

is the character of $P_n(UT_2)$.

 $P_n^d(UT_2) \cong P_n(UT_2) \oplus P_n^{\varepsilon}(UT_2) \oplus P_n^{\delta}(UT_2)$ as S_n -module.

24 / 27

イロト イロト イヨト ・ヨ

Cocharacter of UT_2

The *n*th differential cocharacter of UT_2

$$\chi^d_n(U{\mathcal T}_2) = \sum\limits_{\lambda dash n} m^d_\lambda \chi_\lambda$$

is the character of $P_n^d(UT_2)$.

The *n*th ordinary cocharacter of UT_2

$$\chi_n(UT_2) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$$

is the character of $P_n(UT_2)$.

 $P_n^d(UT_2) \cong P_n(UT_2) \oplus P_n^{\varepsilon}(UT_2) \oplus P_n^{\delta}(UT_2)$ as S_n -module.

24 / 27

イロト (部) (注) (日) (日)

Cocharacter of UT_2

The *n*th differential cocharacter of UT_2

$$\chi^d_n(U{\mathcal T}_2) = \sum\limits_{\lambda dash n} m^d_\lambda \chi_\lambda$$

is the character of $P_n^d(UT_2)$.

The *n*th ordinary cocharacter of UT_2

$$\chi_n(UT_2) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$$

is the character of $P_n(UT_2)$.

 $P_n^d(UT_2) \cong P_n(UT_2) \oplus P_n^{\varepsilon}(UT_2) \oplus P_n^{\delta}(UT_2)$ as S_n -module.

イロト イヨト イヨト イ

Ordinary cocharacter of UT_2

Theorem

Let $\chi_n(UT_2) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$ be the *n*th (ordinary) cocharacter of UT_2 . Then

$$m_{(n)} = 1;$$

2
$$m_{\lambda} = q + 1$$
 if $\lambda = (p + q, p)$;

3
$$m_{\lambda} = q + 1$$
 if $\lambda = (p + q, p, 1);$

$${}^{\textcircled{0}}$$
 $m_{\lambda}=$ 0 in all other case.

Differential cocharacter of UT_2

Theorem

Let $\chi_n^d(UT_2) = \sum_{\lambda \vdash n} m_\lambda^d \chi_\lambda$ be the *n*th differential cocharacter of UT_2 . Then

< □ ▶ < @ ▶ < E ▶ < E ▶ E 少へで 26 / 27

References

- F. Benanti, A. Giambruno, I. Sviridova, Asymptotics for the multiplicities in the cocharacters of some PI-algebras, Proc. Amer. Math. Soc. 132 (2004), no. 3, 669–679.
- (2) S. P. Coelho, C. Polcino Milies, Derivations of upper triangular matrix rings, Linear Algebra Appl. 187 (1993), 263-267.
- (3) V. Drensky, Free Algebras and PI-Algebras, Grad. Course in Algebra, Springer-Verlag, Singapore, 2000.
- (4) A. S. Gordienko, Amitsur's conjecture for associative algebras with a generalized Hopf action, J. Pure Appl. Algebra 217 (2013), no. 8, 1395-1411.
- (5) A. S. Gordienko, M. V. Kochetov, Derivations, gradings, actions of algebraic groups, and codimension growth of polynomial identities, Algebr. Represent. Theory 17 (2014), no. 2, 539-563.
- (6) S. Mishchenko, A. Valenti, A star-variety with almost polynomial growth, J. Algebra 223 (2000), 66-84.
- (7) A. Valenti, The graded identities of upper triangular matrices of size two, J. Pure Appl. Algebra 172 (2002), 325-335.