ENGEL ELEMENTS IN THE FIRST GRIGORCHUK GROUP

Marialaura Noce

University of Salerno - University of the Basque Country

(joint work with G. Fernández-Alcober and A. Tortora)

Advances in Group Theory and Applications

September, 05th -08th Lecce

Engel groups

- 2 Automorphisms of a *d*-adic tree
- 3 The Grigorchuk group
- 4 Engel elements in the Grigorchuk group
- 5 Work in progress

Let G be a group. We say that g ∈ G is a right Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [g, nx] = 1, where

$$[g, x] = g^{-1}g^x$$
 and $[g, {}_nx] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

- If *n* can be chosen independently of *x*, we say that *g* is a *bounded right Engel element*.
- Similarly g is (bounded) left Engel if for any $x \in G$, $\exists n = n(g, x) \ge 1$ such that [x, ng] = 1 ($\exists n = n(g) \ge 1$ such that [x, ng] = 1).
- The group *G* is said to be an Engel group if all its elements are right Engel or left Engel.

Let G be a group. We say that g ∈ G is a right Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [g, nx] = 1, where

$$[g, x] = g^{-1}g^x$$
 and $[g, {}_nx] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

- If *n* can be chosen independently of *x*, we say that *g* is a *bounded right Engel element*.
- Similarly g is (bounded) left Engel if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, ng] = 1 (∃n = n(g) ≥ 1 such that [x, ng] = 1).
- The group *G* is said to be an Engel group if all its elements are right Engel or left Engel.

 Let G be a group. We say that g ∈ G is a right Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [g, nx] = 1, where

$$[g,x] = g^{-1}g^x$$
 and $[g, {}_nx] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

- If *n* can be chosen independently of *x*, we say that *g* is a *bounded right Engel element*.
- Similarly g is (bounded) left Engel if for any $x \in G$, $\exists n = n(g, x) \ge 1$ such that [x, ng] = 1 ($\exists n = n(g) \ge 1$ such that [x, ng] = 1).
- The group *G* is said to be an Engel group if all its elements are right Engel or left Engel.

 Let G be a group. We say that g ∈ G is a right Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [g, nx] = 1, where

$$[g,x] = g^{-1}g^x$$
 and $[g, {}_nx] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

- If *n* can be chosen independently of *x*, we say that *g* is a *bounded right Engel element*.
- Similarly g is (bounded) left Engel if for any $x \in G$, $\exists n = n(g, x) \ge 1$ such that [x, ng] = 1 ($\exists n = n(g) \ge 1$ such that [x, ng] = 1).
- The group G is said to be an Engel group if all its elements are right Engel or left Engel.

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ right Engel elements of G \}$
- $\overline{L}(G) = \{$ bounded left Engel elements of $G \}$
- $\bar{R}(G) = \{ \text{bounded right Engel elements of } G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ right Engel elements of G \}$
- $\overline{L}(G) = \{$ bounded left Engel elements of $G \}$
- $\bar{R}(G) = \{$ bounded right Engel elements of $G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ \text{right Engel elements of } G \}$
- $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$
- $\bar{R}(G) = \{$ bounded right Engel elements of $G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ \text{right Engel elements of } G \}$
- $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$
- $\bar{R}(G) = \{ \text{bounded right Engel elements of } G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ \text{right Engel elements of } G \}$
- $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$
- $\bar{R}(G) = \{ \text{bounded right Engel elements of } G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ \text{right Engel elements of } G \}$
- $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$
- $\bar{R}(G) = \{ \text{bounded right Engel elements of } G \}$

Engel groups

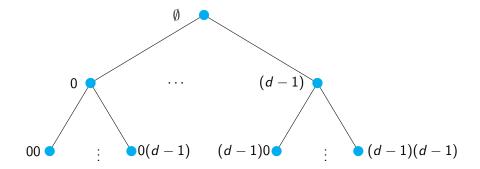
2 Automorphisms of a *d*-adic tree

- 3 The Grigorchuk group
- 4 Engel elements in the Grigorchuk group

5 Work in progress

Automorphisms of a *d*-adic tree

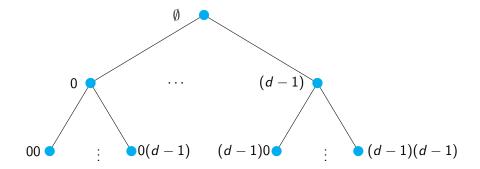
A tree is a connected graph with no cycles.



We denote this tree with $\mathcal{T}(d)$.

Automorphisms of a *d*-adic tree

A tree is a connected graph with no cycles.



We denote this tree with $\mathcal{T}(d)$.

- A vertex is a word in X^* , i.e. the set of all words in the alphabet $X = \{0, \dots, d-1\}$. Moreover X^n is the set of all words of length n.
- An automorphism is a bijective map from X* to X* which preserves incidence.
- The set of all of these automorphisms is a group

Aut \mathcal{T} .

- A vertex is a word in X^* , i.e. the set of all words in the alphabet $X = \{0, \dots, d-1\}$. Moreover X^n is the set of all words of length n.
- An automorphism is a bijective map from X* to X* which preserves incidence.
- The set of all of these automorphisms is a group

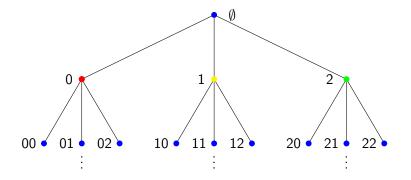
Aut \mathcal{T} .

- A vertex is a word in X^* , i.e. the set of all words in the alphabet $X = \{0, \dots, d-1\}$. Moreover X^n is the set of all words of length n.
- An automorphism is a bijective map from X* to X* which preserves incidence.
- The set of all of these automorphisms is a group

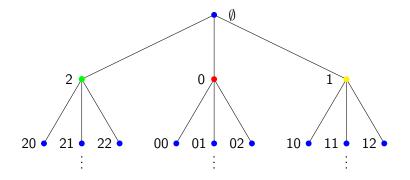
- A vertex is a word in X^* , i.e. the set of all words in the alphabet $X = \{0, \dots, d-1\}$. Moreover X^n is the set of all words of length n.
- An automorphism is a bijective map from X* to X* which preserves incidence.
- The set of all of these automorphisms is a group

Aut \mathcal{T} .

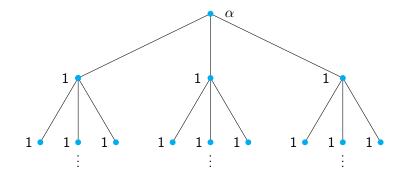
Let d = 3. Consider the following automorphism:



Let d = 3. Consider the following automorphism:



Let $\alpha = (012)$. The portrait of this automorphism is



If u is a vertex of \mathcal{T} , the *stabilizer* of u is:

$$\operatorname{st}(u) = \{f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u\}.$$

We can generalize and define stabilizers of levels:

 $\operatorname{st}(n) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \ \forall u \in X^n \}.$

If u is a vertex of \mathcal{T} , the *stabilizer* of u is:

$$\operatorname{st}(u) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \}.$$

We can generalize and define stabilizers of levels:

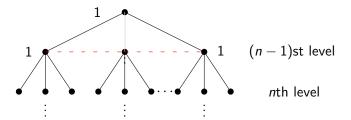
$$\operatorname{st}(n) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \ \forall u \in X^n \}.$$

If u is a vertex of \mathcal{T} , the *stabilizer* of u is:

$$\operatorname{st}(u) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \}.$$

We can generalize and define stabilizers of levels:

$$\operatorname{st}(n) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \ \forall u \in X^n \}.$$

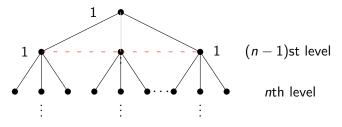


If u is a vertex of \mathcal{T} , the *stabilizer* of u is:

$$\operatorname{st}(u) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \}.$$

We can generalize and define stabilizers of levels:

$$\operatorname{st}(n) = \{ f \in \operatorname{Aut} \mathcal{T} \mid f(u) = u \ \forall u \in X^n \}.$$



If $n \in \mathbb{N}$, we can define a map

$$\psi_n : \operatorname{st}(n) \longrightarrow \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}.$$

Moreover, we have

$$\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}.$$

If $n \in \mathbb{N}$, we can define a map

$$\psi_n : \operatorname{st}(n) \longrightarrow \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}.$$

Moreover, we have

$$\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}.$$

11 / 24

Engel groups

2 Automorphisms of a *d*-adic tree

3 The Grigorchuk group

4 Engel elements in the Grigorchuk group

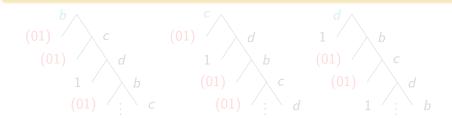
5 Work in progress

Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

Let us consider $\mathcal{T}(2)$.

 $\Gamma = \langle a, b, c, d \rangle$



Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$



Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$



Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

$$a = (01), \psi(b) = (a, c), \psi(c) = (a, d) \psi(d) = (1, b)$$



The Grigorchuk group

Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

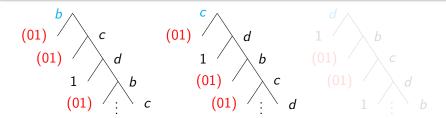
$$a = (01), \psi(b) = (a, c), \psi(c) = (a, d) \psi(d) = (1, b)$$

The Grigorchuk group

Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

$$a = (01), \psi(b) = (a, c), \psi(c) = (a, d) \psi(d) = (1, b)$$

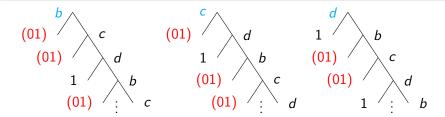


The Grigorchuk group

Let us consider $\mathcal{T}(2)$.

$$\Gamma = \langle a, b, c, d \rangle$$

$$a = (01), \psi(b) = (a, c), \psi(c) = (a, d) \psi(d) = (1, b)$$



Γ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite
- $\psi : \operatorname{st}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$ It is regular branch over $K = \langle [a, b] \rangle^{\Gamma}$ (i.e. $\psi(K) \supseteq K \times K$)

Γ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite
- ψ : st_Γ(1) → Γ × Γ
 It is regular branch over K = ⟨[a, b]⟩^Γ (i.e. ψ(K) ⊇ K × K)

Γ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite
- $\psi : \operatorname{st}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$ It is regular branch over $K = \langle [a, b] \rangle^{\Gamma}$ (i.e. $\psi(K) \supseteq K \times K$)

$\boldsymbol{\Gamma}$ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite

ψ : st_Γ(1) → Γ × Γ It is regular branch over K = ⟨[a, b]⟩^Γ (i.e. ψ(K) ⊇ K × K)

$\boldsymbol{\Gamma}$ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite

• $\psi : \operatorname{st}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$ It is regular branch over $K = \langle [a, b] \rangle^{\Gamma}$ (i.e. $\psi(K) \supseteq K \times K$)

 $\boldsymbol{\Gamma}$ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite

• $\psi : \operatorname{st}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$ It is regular branch over $K = \langle [a, b] \rangle^{\Gamma}$ (i.e. $\psi(K) \supseteq K \times K$)

 Γ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite
- $\psi : \mathsf{st}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$

It is regular branch over $K = \langle [a, b] \rangle^{\Gamma}$ (i.e. $\psi(K) \supseteq K \times K$)

$$\Gamma = \langle a
angle \ltimes \mathsf{st}_{\Gamma}(1)$$

 Γ has the following properties:

- It is finitely generated
- It is a 2-group
- It is infinite
- $\psi : \operatorname{st}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$ It is regular branch over $K = \langle [a, b] \rangle^{\Gamma}$ (i.e. $\psi(K) \supseteq K \times K$)

Engel groups

- 2 Automorphisms of a *d*-adic tree
- 3 The Grigorchuk group
- 4 Engel elements in the Grigorchuk group

5 Work in progress

$$h = (1, ab, ca, d) \in (\Gamma \times \Gamma \times \Gamma \times \Gamma)$$

- As a consequence, $H = \Gamma \wr D_8$ is not an Engel group.
- <u>Remark</u>: Every involution in a 2-group is a left Engel element.
- Then, L(H) is not a subgroup.

$$h = (1, ab, ca, d) \in (\Gamma \times \Gamma \times \Gamma \times \Gamma)$$

- As a consequence, $H = \Gamma \wr D_8$ is not an Engel group.
- <u>Remark</u>: Every involution in a 2-group is a left Engel element.
- Then, L(H) is not a subgroup.

$$h = (1, ab, ca, d) \in (\Gamma \times \Gamma \times \Gamma \times \Gamma)$$

- As a consequence, $H = \Gamma \wr D_8$ is not an Engel group.
- <u>Remark</u>: Every involution in a 2-group is a left Engel element. • Then I(H) is not a subgroup
- Then, L(H) is not a subgroup.

$$h = (1, ab, ca, d) \in (\Gamma \times \Gamma \times \Gamma \times \Gamma)$$

- As a consequence, $H = \Gamma \wr D_8$ is not an Engel group.
- <u>Remark</u>: Every involution in a 2-group is a left Engel element.
- Then, L(H) is not a subgroup.

Theorem (Bartholdi, 2015)

The Grigorchuk group is not Engel.

The proof uses GAP.

Theorem (Fernández-Alcober, N, Tortora) We have

$$\overline{L}(\Gamma) = R(\Gamma) = \overline{R}(\Gamma) = \{1\}.$$

Key facts used during the proof

- Γ is regular branch over K;
- K contains an element that is not left Engel.

Theorem (Fernández-Alcober, N, Tortora)

Theorem (Fernández-Alcober, N, Tortora)

Theorem (Fernández-Alcober, N, Tortora)

Theorem (Fernández-Alcober, N, Tortora)

Engel groups

- 2 Automorphisms of a *d*-adic tree
- 3 The Grigorchuk group
- 4 Engel elements in the Grigorchuk group

5 Work in progress

$$G = \langle a, b \rangle$$

$$G = \langle a, b \rangle$$

•
$$a = (1 \dots p)$$
.
• $\mathbf{e} = (e_1, \dots, e_{p-1}) \in (\mathbb{Z}/p\mathbb{Z})^{p-1}$ is a nonzero vector

$$\psi(b) = (a^{e_1}, \ldots, a^{e_{p-1}}, b).$$

$$G = \langle a, b \rangle$$

$$G = \langle a, b \rangle$$

$$\psi(b) = (a^{e_1}, \ldots, a^{e_{p-1}}, b).$$

Theorem (Fernández-Alcober, N, Tortora)

Let G be a nontorsion GGS group with nonconstant defining vector \mathbf{e} . Then, $R(G) = \{1\}$.

• What about the other GGS groups?

Regarding the Grigorchuk group:

• Can we find a GAP-free proof of the fact that the only left Engel elements in Γ are the involutions?

• What about the other GGS groups?

Regarding the Grigorchuk group:

• Can we find a GAP-free proof of the fact that the only left Engel elements in Γ are the involutions?

• What about the other GGS groups?

Regarding the Grigorchuk group:

• Can we find a GAP-free proof of the fact that the only left Engel elements in Γ are the involutions?

GRAZIE PER L'ATTENZIONE! :) Eskerrik asko!