Groups in which every non-nilpotent sugroup is self-normalizing

Chiara Nicotera

Lecce 6 settembre 2017

References

- C. Delizia, U. Jezernik, P. Moravec, C. Nicotera, Groups in which every non-abelian subgroup is self-normalizing, Monatsh. Math. (2017) to appear
- C. Delizia, U. Jezernik, P. Moravec, C. Nicotera, Groups in which every non-nilpotent subgroup is self-normalizing, Ars Mathematica Contemporanea, to appear

Self-normalizing subgroups

Definition

A subgroup H of a group G is **self-normalizing** if

 $N_G(H) = \{g \in G | H^g = H\} = H$

Remark

If every non-trivial subgroup of a group ${\it G}$ is self-normalizing, then ${\it G}$ is simple and periodic

Moreover if G is locally finite then either $G = \{1\}$ or |G| = p (prime)

Infinite examples

Tarski p-groups

Self-normalizing subgroups

Definition

A subgroup H of a group G is **self-normalizing** if

$$N_G(H) = \{g \in G | H^g = H\} = H$$

Remark

If every non-trivial subgroup of a group ${\it G}$ is self-normalizing, then ${\it G}$ is simple and periodic

Moreover if G is locally finite then either $G = \{1\}$ or |G| = p (prime)

Infinite examples

Tarski p-groups

Self-normalizing subgroups

Definition

A subgroup H of a group G is **self-normalizing** if

 $N_G(H) = \{g \in G | H^g = H\} = H$

Remark

If every non-trivial subgroup of a group G is self-normalizing, then G is simple and periodic

Moreover if G is locally finite then either $G = \{1\}$ or |G| = p (prime)

Infinite examples

Tarski *p*-groups

Problem (P. Zaleskii, 2015)

Classify the finite groups in which every non-abelian subgroup is self-normalizing

Let G be a finite group in which every **non-abelian** subgroup is self-normalizing. Then G is either soluble or simple

Theorem

- If G is a non-abelian simple group, then every non-abelian subgroup of G is self-normalizing iff $G \simeq \text{Alt}(5)$ or $G \simeq \text{PSL}_2(2^{2n+1})$, $n \ge 1$.
- If G is a soluble non-nilpotent group, then every non-abelian subgroup of G is self-normalizing iff $G = A \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, A is an abelian p'-group, x^p is central and x acts fixed point freely on A.
- If G is a nilpotent group, then every non-abelian subgroup of G is self-normalizing iff G is either abelian or minimal non-abelian p-group for some prime p

Let G be a finite group in which every **non-abelian** subgroup is self-normalizing. Then G is either soluble or simple

Theorem

- If G is a non-abelian simple group, then every non-abelian subgroup of G is self-normalizing iff $G \simeq \mathrm{Alt}(5)$ or $G \simeq \mathrm{PSL}_2(2^{2n+1})$, $n \ge 1$.
- If G is a soluble non-nilpotent group, then every non-abelian subgroup of G is self-normalizing iff $G = A \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, A is an abelian p'-group, x^p is central and x acts fixed point freely on A.
- If G is a nilpotent group, then every non-abelian subgroup of G is self-normalizing iff G is either abelian or minimal non-abelian p-group for some prime p

Let G be a finite group in which every **non-abelian** subgroup is self-normalizing. Then G is either soluble or simple

Theorem

- If G is a non-abelian simple group, then every non-abelian subgroup of G is self-normalizing iff $G \simeq \text{Alt}(5)$ or $G \simeq \text{PSL}_2(2^{2n+1})$, $n \ge 1$.
- If G is a soluble non-nilpotent group, then every non-abelian subgroup of G is self-normalizing iff $G = A \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, A is an abelian p'-group, x^p is central and x acts fixed point freely on A.
- If G is a nilpotent group, then every non-abelian subgroup of G is self-normalizing iff G is either abelian or minimal non-abelian p-group for some prime p

Let G be a finite group in which every **non-abelian** subgroup is self-normalizing. Then G is either soluble or simple

Theorem

- If G is a non-abelian simple group, then every non-abelian subgroup of G is self-normalizing iff $G \simeq \text{Alt}(5)$ or $G \simeq \text{PSL}_2(2^{2n+1})$, $n \ge 1$.
- If G is a soluble non-nilpotent group, then every non-abelian subgroup of G is self-normalizing iff $G = A \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, A is an abelian p'-group, x^p is central and x acts fixed point freely on A.
- If G is a nilpotent group, then every non-abelian subgroup of G is self-normalizing iff G is either abelian or minimal non-abelian p-group for some prime p

Groups in which every non-nilpotent subgroup is self-normalizing

Every nilpotent group lies in the class X

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class \mathfrak{X} also contains.

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- groups in which every non-trivial subgroup is self-normalizing

The class X is subgroup and quotient closed

Groups in which every non-nilpotent subgroup is self-normalizing

Every nilpotent group lies in the class \mathfrak{X}

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class X also contains:

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- 2 groups in which every non-trivial subgroup is self-normalizing

The class X is subgroup and quotient closed

Groups in which every non-nilpotent subgroup is self-normalizing

Every nilpotent group lies in the class \mathfrak{X}

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class \mathfrak{X} also contains.

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- 2 groups in which every non-trivial subgroup is self-normalizing

The class X is subgroup and quotient closed

Groups in which every non-nilpotent subgroup is self-normalizing

Every nilpotent group lies in the class \mathfrak{X}

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class \mathfrak{X} also contains:

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- 2 groups in which every non-trivial subgroup is self-normalizing

The class $\mathfrak X$ is subgroup and quotient closed

Groups in which every non-nilpotent subgroup is self-normalizing

Every nilpotent group lies in the class X

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class \mathfrak{X} also contains:

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- 2 groups in which every non-trivial subgroup is self-normalizing

The class X is subgroup and quotient closed

Groups in which every non-nilpotent subgroup is self-normalizing

Every nilpotent group lies in the class X

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class \mathfrak{X} also contains:

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- 2 groups in which every non-trivial subgroup is self-normalizing

The class \mathfrak{X} is subgroup and quotient closed

Groups in which every **non-nilpotent** subgroup is self-normalizing

Every nilpotent group lies in the class $\mathfrak X$

Groups in which every non-abelian subgroup is self-normalizing are \mathfrak{X} -groups

The class \mathfrak{X} also contains:

- minimal non-nilpotent groups (non-nilpotent groups in which every proper subgroup is nilpotent)
- 2 groups in which every non-trivial subgroup is self-normalizing

The class \mathfrak{X} is subgroup and quotient closed

Groups in which every non-nilpotent subgroup is self-normalizing

Remark 1

Let G be a \mathfrak{X} -group; then

- either G = G'
- or G' is nilpotent (and so G is soluble)

Remark 2

Let G be a \mathfrak{X} -group and F := F(G) be the Fitting subgroup of G; then G = F or F is nilpotent.

Groups in which every non-nilpotent subgroup is self-normalizing

Remark 1

Let G be a \mathfrak{X} -group; then

- either G = G'
- or G' is nilpotent (and so G is soluble)

Remark 2

Let G be a \mathfrak{X} -group and F := F(G) be the Fitting subgroup of G; then G = F or F is nilpotent.

Soluble groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a soluble \mathfrak{X} -group and F:=F(G) be the Fitting subgroup of G. Then:

- ② G is a Fitting group or G/F has prime order;
- if G/G' is finitely generated then G is a Fitting group or G/G' is cyclic of prime-power order;
- ⓐ if G is non-nilpotent then G/G' is a locally cyclic p-group for some prime p and $G' = \gamma_3(G)$.

Soluble groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a soluble \mathfrak{X} -group and F := F(G) be the Fitting subgroup of G. Then:

- $\mathbf{0}$ $G' \leq F$;
- G is a Fitting group or G/F has prime order;
- if G/G' is finitely generated then G is a Fitting group or G/G' is cyclic of prime-power order;
- 4 if G is non-nilpotent then G/G' is a locally cyclic p-group for some prime p and $G' = \gamma_3(G)$.

Proposition

Every infinite polycyclic X-group is nilpoten

Theorem

Let G be a soluble non-periodic group; then G is a \mathfrak{X} -group iff G is nilpotent

Theorem

Let G be a periodic soluble group, and suppose G is not locally nilpotent; then G is a \mathfrak{X} -group iff

- $G = H \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, H is a nilpotent p'-group and x^p acts trivially on H;
- put $\rho_X : h \in H \to h^{-x}h \in H$, for every $\langle x \rangle$ -invariant subgroup K of H either there exists $n \ge 1$ such that $\rho_X^n(K) = 1$, or $\langle \rho_X(K) \rangle = K$.

Theorem

Proposition

Every infinite polycyclic X-group is nilpotent

Theoren

Let G be a soluble non-periodic group; then G is a X-group iff G is nilpotent

Theorem

Let G be a periodic soluble group, and suppose G is not locally nilpotent; then G is a \mathfrak{X} -group iff

- $G = H \times \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, H is a nilpotent p'-group and x^p acts trivially on H;
- put $\rho_X : h \in H \to h^{-x}h \in H$, for every $\langle x \rangle$ -invariant subgroup K of H either there exists $n \ge 1$ such that $\rho_X^n(K) = 1$, or $\langle \rho_X(K) \rangle = K$.

Theorem

Proposition

Every infinite polycyclic X-group is nilpotent

Theorem

Let G be a soluble non-periodic group; then G is a \mathfrak{X} -group iff G is nilpotent

Theorem

Let G be a periodic soluble group, and suppose G is not locally nilpotent; then G is a \mathfrak{X} -group iff

- $G = H \times \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, H is a nilpotent p'-group and x^p acts trivially on H;
- put $\rho_X : h \in H \to h^{-x}h \in H$, for every $\langle x \rangle$ -invariant subgroup K of H either there exists $n \geq 1$ such that $\rho_X^n(K) = 1$, or $\langle \rho_X(K) \rangle = K$.

Theorem

Proposition

Every infinite polycyclic X-group is nilpotent

Theorem

Let G be a soluble non-periodic group; then G is a \mathfrak{X} -group iff G is nilpotent

Theorem

Let G be a periodic soluble group, and suppose G is not locally nilpotent; then G is a \mathfrak{X} -group iff

- $G = H \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, H is a nilpotent p'-group and x^p acts trivially on H;
- put ρ_X : $h \in H \to h^{-x}h \in H$, for every $\langle x \rangle$ -invariant subgroup K of H either there exists $n \ge 1$ such that $\rho_X^n(K) = 1$, or $\langle \rho_X(K) \rangle = K$.

Theorem

Proposition

Every infinite polycyclic X-group is nilpotent

Theorem

Let G be a soluble non-periodic group; then G is a \mathfrak{X} -group iff G is nilpotent

Theorem

Let G be a periodic soluble group, and suppose G is not locally nilpotent; then G is a \mathfrak{X} -group iff

- $G = H \rtimes \langle x \rangle$, where $\langle x \rangle$ is a p-group for some prime p, H is a nilpotent p'-group and x^p acts trivially on H;
- put ρ_X : $h \in H \to h^{-x}h \in H$, for every $\langle x \rangle$ -invariant subgroup K of H either there exists $n \ge 1$ such that $\rho_X^n(K) = 1$, or $\langle \rho_X(K) \rangle = K$.

Theorem

Perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

If G is a perfect \mathfrak{X} -group and F := F(G) is its Fitting subgroup, then G/F is a non-abelian simple group.

Lemma

Let G be a finite simple group. Then G is a \mathfrak{X} -group iff all of its maximal subgroups are \mathfrak{X} -groups.

Proposition

Let G be a finite non-abelian simple group; then G is a \mathfrak{X} -group iff $G\simeq PSL_2(2^n)$, where 2^n-1 is a prime.

Perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

If G is a perfect \mathfrak{X} -group and F := F(G) is its Fitting subgroup, then G/F is a non-abelian simple group.

Lemma

Let G be a finite simple group. Then G is a \mathfrak{X} -group iff all of its maximal subgroups are \mathfrak{X} -groups.

Proposition

Let G be a finite non-abelian simple group; then G is a \mathfrak{X} -group iff $G \simeq PSL_2(2^n)$, where 2^n-1 is a prime.

Perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

If G is a perfect \mathfrak{X} -group and F := F(G) is its Fitting subgroup, then G/F is a non-abelian simple group.

Lemma

Let G be a finite simple group. Then G is a \mathfrak{X} -group iff all of its maximal subgroups are \mathfrak{X} -groups.

Proposition

Let G be a finite non-abelian simple group; then G is a \mathfrak{X} -group iff $G \simeq PSL_2(2^n)$, where 2^n-1 is a prime.

Perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

If G is a perfect \mathfrak{X} -group and F := F(G) is its Fitting subgroup, then G/F is a non-abelian simple group.

Lemma

Let G be a finite simple group. Then G is a \mathfrak{X} -group iff all of its maximal subgroups are \mathfrak{X} -groups.

Proposition

Let G be a finite non-abelian simple group; then G is a \mathfrak{X} -group iff $G \simeq PSL_2(2^n)$, where $2^n - 1$ is a prime.

Perfect groups in which every non-nilpotent subgroup is self-normalizing

Theorem

Let G be a finite perfect group; then G is a \mathfrak{X} -group iff

- either $G \simeq PSL_2(2^n)$, where $2^n 1$ is a prime
- or $G \simeq SL_2(5)$

Infinite perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a perfect \mathfrak{X} -group; then G is simple iff its Fitting subgroup $F = \{1\}$.

Lemma

Let G be an infinite perfect $\mathfrak X$ -group; then G eq F .

Infinite perfect \mathfrak{X} -groups are either simple or non-simple and non-Fitting.

Open question

There exist infinite perfect \mathfrak{X} -groups which are not simple?

If such a group G exists and it is locally graded and finitely generated, then G/F is still locally graded and hence has to be finite. Therefore $G/F \simeq PSL_2(2^n)$, where $2^n - 1$ is a prime.

Infinite perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a perfect \mathfrak{X} -group; then G is simple iff its Fitting subgroup $F = \{1\}$.

Lemma

Let G be an infinite perfect \mathfrak{X} -group; then $G \neq F$.

Infinite perfect \mathfrak{X} -groups are either simple or non-simple and non-Fitting.

Open question

There exist infinite perfect \mathfrak{X} -groups which are not simple?

If such a group G exists and it is locally graded and finitely generated, then G/F is still locally graded and hence has to be finite. Therefore $G/F \simeq PSL_2(2^n)$, where $2^n - 1$ is a prime.

Infinite perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a perfect \mathfrak{X} -group; then G is simple iff its Fitting subgroup $F = \{1\}$.

Lemma

Let G be an infinite perfect \mathfrak{X} -group; then $G \neq F$.

Infinite perfect \mathfrak{X} -groups are either simple or non-simple and non-Fitting.

Open question

There exist infinite perfect \mathfrak{X} -groups which are not simple?

If such a group G exists and it is locally graded and finitely generated, then G/F is still locally graded and hence has to be finite. Therefore $G/F \simeq PSL_2(2^n)$, where $2^n - 1$ is a prime.

Infinite perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a perfect \mathfrak{X} -group; then G is simple iff its Fitting subgroup $F = \{1\}$.

Lemma

Let G be an infinite perfect \mathfrak{X} -group; then $G \neq F$.

Infinite perfect \mathfrak{X} -groups are either simple or non-simple and non-Fitting.

Open question

There exist infinite perfect \mathfrak{X} -groups which are not simple?

If such a group G exists and it is locally graded and finitely generated, then G/F is still locally graded and hence has to be finite. Therefore $G/F \simeq PSL_2(2^n)$, where 2^n-1 is a prime.

Infinite perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a perfect \mathfrak{X} -group; then G is simple iff its Fitting subgroup $F = \{1\}$.

Lemma

Let G be an infinite perfect \mathfrak{X} -group; then $G \neq F$.

Infinite perfect \mathfrak{X} -groups are either simple or non-simple and non-Fitting.

Open question

There exist infinite perfect \mathfrak{X} -groups which are not simple?

If such a group G exists and it is locally graded and finitely generated, then G/F is still locally graded and hence has to be finite. Therefore $G/F \simeq PSL_2(2^n)$, where 2^n-1 is a prime.

Infinite perfect groups in which every non-nilpotent subgroup is self-normalizing

Lemma

Let G be a perfect \mathfrak{X} -group; then G is simple iff its Fitting subgroup $F = \{1\}$.

Lemma

Let G be an infinite perfect \mathfrak{X} -group; then $G \neq F$.

Infinite perfect \mathfrak{X} -groups are either simple or non-simple and non-Fitting.

Open question

There exist infinite perfect \mathfrak{X} -groups which are not simple?

If such a group G exists and it is locally graded and finitely generated, then G/F is still locally graded and hence has to be finite. Therefore $G/F \simeq PSL_2(2^n)$, where 2^n-1 is a prime.