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1. Products of group varieties

Varieties and identities

Recall that a variety V of groups is the class of all groups satisfying a
given set of identities

{wi ≡ 1 | wi ∈ F∞, i ∈ I}.
For example, if we take a single identity [x, y] = x−1y−1xy ≡ 1, then we
clearly get the variety of abelian groups which usually is denoted by A.

The identity xn ≡ 1 defines the Burnside variety Bn of groups with
exponents dividing n. And combining both identities [x, y] ≡ 1 and
xn ≡ 1 we get the variety An = A ∩Bn of all abelian groups of
exponents dividing n.

By the identity [· · · [x1, x2] · · ·xc+1] ≡ 1 one may define the variety Nc of
all nilpotent groups of class at most c.

For an outline of the theory of varieties of groups we refer to the classic
monography of Hanna Neumann “Varieties of groups”, 1967.
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An important operation on varieties is their product: for the varieties U
and V their product UV is defined to be the variety consisting of all
extensions G of groups A from U by means of groups B from V.

This clearly means the variety of all groups G possessing a normal
subgroup A / G, A ∈ U such that the factor group G/A ∼= B is from
from V.

In particular, the product AA = A2 is noting but the variety of
metabelian groups, and the variety of soluble groups of length n is the
product A · · ·A = An of n copies of A.

This product operation has a key role in theory of varieties of groups, and
as it is remarked by A.L. Shmel’kin: “The most part of non-trivial results
of the general theory of varieties of groups concerns study of products of
varieties” (1965).
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A central tool to investigate product varieties is the wreath product
AWrB of groups A and B, where A generates U, and B generates V.

Our theorems true for Cartesian wreath products AWrB and for direct
wreath products AwrB. Thus, we use one notation AWrB only.

A group G generates a variety V, if V is the minimal variety contining
G. This by G. Birkhoff’s theorem means that any group of V can be
obtained from G using operations of taking Cartesian products, subgroups
and homomorphic images (1935). This fact is denoted by var (G) = V.

By the Kaloujnine-Krassner theorem (1951) any extension of A by B is
isomorphic to a subgroup of the Cartesian wreath product AWrB. So if
we are able to choose a group A generating U, a group B generating V,
such that the wreath product AWrB generates UV, then we have a
single group that generates the whole product variety UV, i.e., by
G. Birkhoff’s theorem UV just consits of homomorphic images of all
possible subgroups of Cartesian powers of AWrB.
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Let us write the situation we just mentioned as the equality:

var (AWrB) = var (A) var (B) . (∗)

This equality may not always hold. B.H. Neumann, H. Neumann,
P.M. Neumann asked in 1962: “If the groups A, B belong to the
varieties U, V, respectively, then AWrB belongs to the product variety
UV. If A generates U and B generates V, then one might hope that
AWrB generates UV; but this is in general not the case”. Then they
bring examples where (∗) does or does not hold for p-groups, free groups,
discriminating groups, infinite direct powers, etc.

Another early consideration of (∗) belong to G. Higman (1959) who
discussed when does (∗) hold for cyclic groups A = Cp (for prime
number p) and B = Cn.

C. Houghton covered the case of any finite cyclic groups: (∗) folds for
A = Cm and B = Cn if and only if the exponents m and n are coprime.
Moreover, for any finite abelian groups A and B of exponents respectively
m and n the equality (∗) holds if and only if m and n are coprime.
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The case of wreath products of finite groups
The case of wreath products of nilpotent A and abelian B

2. Three classification theorems

The listed results were our main motivation to start systematic
classification of as broad as possible cases when for the given groups A,
B the equality (∗) holds or fails. Our main results are published in:

[1] On varieties of groups generated by wreath products of abelian groups,
Abelian groups, rings and modules (Perth, Australia, 2000), Contemp.
Math., 273, Amer. Math. Soc., Providence, RI (2001), 223–238.

[2] On wreath products of finitely generated abelian groups, Advances in
Group Theory, Proc. Internat. Research Bimester dedicated to the
memory of Reinhold Baer, (Napoli, Italy, May-June, 2002), Aracne, Roma,
2003, 13–24.

[3] Metabelian varieties of groups and wreath products of abelian groups, J.
Algebra, 2007 (313), 2, 455–485.

[4] Varieties Generated by Wreath Products of Abelian and Nilpotent Groups,
Algebra and Logic, 54 (2015), 1, 70-73.
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[5] The criterion of Shmel’kin and varieties generated by wreath products of
finite groups, Algebra and Logic, 56, 2, (2017), 164–175.

[6] On Kp-series and varieties generated by wreath products of p-groups, Int.
J. Algebra Comput., accepted for publication, see ArXiv:1505.06293.

[7] A classification theorem for varieties generated by wreath products of
groups, submitted, see ArXiv:1607.02464.

I am pleased to mention that one of the early stages of that research
(article [2] above) was presented at the first Advances in Group Theory
and Applications Conference:

Research Bimester dedicated to the memory of Reinhold Baer in
Napoli, May-June, 2002.

Some photos from that conference can be found in AGTA site, in Group
Theory Archivum section and also in drive https://goo.gl/V2SRWB
that I mentioned.
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The case of wreath products of abelian groups

We will need the following notations to formulate the theorems.

Let C be the infinite cyclic group, and let Cn as above be the cyclic
group of order n.

For any finite number m (or cardinal number m) denote by Cm
n (or by

Cm
n ) the direct product of m (or m) copies of Cn.

And we will simply write C∞n to identify the direct product of infinitely
many copies of Cn when there is no need to mention which infinite
cardinal is assumed.

In articles [1,2,3] we classified all cases when equality (∗) holds for
arbitrary abelian groups A and B.
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The case of wreath products of abelian groups
The case of wreath products of finite groups
The case of wreath products of nilpotent A and abelian B

Theorem 1. For abelian non-trivial groups A and B the equality (∗)
holds if and only if:

a) either at least one of the groups A and B is not of finite exponent;

b) or if expA = m and expB = n are both finite, and B contains a
subgroup isomorphic to the infinite direct power C∞n/d, where d is the
largest divisor of n coprime with m.

The point (b) of this theorem can alternatively be explained in terms of
prime divisors of m and n.

Namely, since B is of finite exponent, by Prüfer’s theorem it is a direct
decomposition of its cyclic subgroups Cpu of prime-power exponent.

If pu is the highest degree of p dividing n, then the point (b) of
Theorem 1 requires that the above decomposition of B contains infinitely
many copies of the summand Cpu .
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Example 2. By point (a) of Theorem 1 the equality (∗) holds for any
abelian B, as soon as

A = C or, say, A = C2×C3×C4×· · ·

(A can be a direct product of any infinite set of cycles with no bond on
their orders).

But, if A = C2×C3, then (∗) holds the group, say,

B = Ck
2×Ct

3×Cl
5

if and only if k =∞, t =∞ and l is any non-negative integer.

So (∗) does not hold for B = C1000
2 ×C1000

3 ×C1000
5 because 1000 is not

“hight enough” power for C2 or for C3.
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The case of wreath products of finite groups

In [5] we gave a classification for all cases when (∗) holds for finite
groups A and B:

Theorem 3. For finite non-trivial groups A and B the equality (∗)
holds if and only if:
a) the exponents of group A and B are coprime;

b) A is a nilpotent group, B is an abelian group;

c) B contains a subgroup isomorphic to the direct power Cc
n, where c is

the nilpotency class of A and n is the exponent of B.

Example 4. Take A to be a finite nilpotent group of nilpotency class 2,
say, the dihedral group D4 of order 8, or the quaternions group Q8.

If B contains an element of 2’nd oder, i.e., if it contains the subgroup
C2, then (∗) does not hold.

Now, let us take B = Ct
3×Cl

5, and find those values t, l for which (∗)
holds. Since the class of A is 2, we must have t ≥ 2 and l ≥ 2.
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groups A and B:

Theorem 3. For finite non-trivial groups A and B the equality (∗)
holds if and only if:
a) the exponents of group A and B are coprime;

b) A is a nilpotent group, B is an abelian group;

c) B contains a subgroup isomorphic to the direct power Cc
n, where c is

the nilpotency class of A and n is the exponent of B.

Example 4. Take A to be a finite nilpotent group of nilpotency class 2,
say, the dihedral group D4 of order 8, or the quaternions group Q8.

If B contains an element of 2’nd oder, i.e., if it contains the subgroup
C2, then (∗) does not hold.

Now, let us take B = Ct
3×Cl

5, and find those values t, l for which (∗)
holds. Since the class of A is 2, we must have t ≥ 2 and l ≥ 2.
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The case of wreath products of nilpotent A and abelian B

In [7] we proved:

Theorem 5. For a non-trivial nilpotent group A of finite exponent m
and for a non-trivial abelian group B the equality (∗) holds if and only if:

a) either the group B is not of finite exponent;

b) or B is of some finite exponent n, and it contains a subgroup
isomorphic to the direct product Cc

d×C∞n/d, where c is the nilpotency
class of A, and d is the largest divisor of n coprime with m.

By point (b) the prime divisors p of m or n have “three roles”:

1. if p divides both m and n, the group B should contain the infinite
direct power C∞pu , where pu is the highest power of p dividing n;

2. if p divides n but not m, the group B should contain the direct
power Cc

pu , where c is the class of A, and pu is as above;

3. if p divides m but not n, then is has no impact on feasibility of (∗).
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Example 6. Let A be one of the groups D4 or Q8, and let

B = Ck
2×Ct

3×Cl
5.

Try to find the degrees k, t, l for which (∗) holds.

We have c = 2, the exponent of A is 4 = 22, the exponent
of B is n = 30 = 2 · 3 · 5, and d = 15 = 3 · 5 with

n/d = 30/15 = 2.

So (∗) would hold only if B contained the summand

C∞2 ×C2
3×C2

5 .

i.e., we have k =∞, t ≥ 2, l ≥ 2.
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3. Subvariety structures in certain group varieties

The motivation

In this part of the talk we will present newest results not yet incuded in
preprints, they will first be presented here at AGTA-17.

A variety W is called the subvariety of the variety V, if W ⊆ V. This,
clearly, means that if a group satisfies the identities of W, then it also
satisfies the identities of V, i.e., the identities of V are consequences of
identities of W.

The methods we developed to study the equality (∗) can further be
adapted to find subvarieties in some product varieties. Namely, if A ∈ U,
B ∈ V, then AWrB is in the product UV, and so var(AWrB) is a
subvariety in UV.

Thus, if we classify “a plenty” of pairs of such groups A,B for which we
get distincts subvarieties var(AWrB), we will have discovered “a plenty”
of subvarieties in UV.
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The motivation
Subvarieties generated by wreath products

One motivation for this approach is that the information on subvariety
structures of UV is incomplete even when U and V are such small
varieties as the abelian varieties Am and An respectively.

Let us outline some of the results in this direction:
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The motivation
Subvarieties generated by wreath products

In 1967 Hanna Neumann wrote that classification of subvarieties of
AmAn for arbitrary m and n is “seems within reach”.

And R.A. Bryce in 1970 mentioned that “classifying all metabelian
varieties is at present slight” (1970).

However some half a century later this task is not yet accomplished:
Yu.A. Bakhturin and A.Yu. Olshanskii remarked in an important survey
which appeared in 1988 and in 1991 that: “classification of all nilpotent
metabelian group varieties has not been completed yet”.

As this brief summary shows, one of the cases when the subvariety
structure of UV is less known is the case when U and V have non-coprime
exponents divisible by high powers pu of many prime numbers p.

Thus, it may be intersing to to classify the varieties generated by AWrB
for distinct pairs of groups A ∈ U, B ∈ V (especially in cases when
exponents of A and B have many common prime divisors).
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The motivation
Subvarieties generated by wreath products

More precisily, the question can be presented in two steps: let A be a
group, and let the groups B1 and B2 generate the same variety.

Whether or not the equality

var (AWrB1) = var (AWrB2) (∗∗)

holds for the given A,B1, B2?

And the symmetric question: let A1 and A2 be groups generating the
same variety, and let B be a group. Whether or not the equality

var (A1 WrB) = var (A2 WrB)

holds for the given A1, A2, B?

Interestingly, the second question has a positive answer for any
A1, A2, B, and we concentrate on the first question (∗∗) which allows us
to get infinitely many subvarieties by altering the group B.
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Subvarieties generated by wreath products

Theorem 9 below will answer the above question for any nilpotent variety
U, abelian variety V, both of finite exponent m and n respectively such
that any prime divisor of n also divides m.

To present the result we need some formal notations in order to record
abelian groups of finite period. By Prüper’s theorem any of such groups
B is a direct product of its finite cyclic subgroups.

Also, recall that for a prime number p the p-primary component B(p) of
B is the subgroup of all elements of B whose orders are powers of p.
Since B clearly is a direct product of its p-primary components B(p) for
all prime divisors p of its exponent, the orders of the mentioned cyclic
subgroups can be supposed to be powers of p.

If the cardinality of factors of order pu in this decomposion is mpu , we
write their direct product as C

mpu

pu .
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B is a direct product of its finite cyclic subgroups.

Also, recall that for a prime number p the p-primary component B(p) of
B is the subgroup of all elements of B whose orders are powers of p.
Since B clearly is a direct product of its p-primary components B(p) for
all prime divisors p of its exponent, the orders of the mentioned cyclic
subgroups can be supposed to be powers of p.

If the cardinality of factors of order pu in this decomposion is mpu , we
write their direct product as C

mpu

pu .

V.H. Mikaelian Product varieties of groups and varieties generated by wreath products



1. Products of group varieties
2. Three classification theorems

3. Subvariety structures in certain group varieties

The motivation
Subvarieties generated by wreath products

Then B(p) is a product of some summands of that type:

B(p) = C
mpu1

pu1 × · · · × C
mpur

pur (1)

where we may suppose u1 ≥ · · · ≥ ur.

The cardinal numbers mpu1 , . . . ,mpur are invariants of B(p) in the sense
that they characterize B(p) uniquely (see L. Fuchs’ textbook “Abelian
Groups” from where we adopted the symbol mpu and the above
notation).

If B(p) is finite, then all the cardinals mpu1 , . . . ,mpur will also be finite.

Otherwise at least one of them will be infinite, and we can choose the
first one of such infinite invariants mpui .
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Example 7. Consider the group:

B = C6
35 × Cℵ033 × C5

32 × Cℵ3 × C4
53 × C52 .

For the 3-component B(3) of B we have u1 = 5, m3u1 = 6; u2 = 3,
m3u2 = ℵ0; u3 = 2, m3u3 = 5; u4 = 1, m3u4 = ℵ.

The first infinite factor of B(3) is Cℵ033 although the factor Cℵ3 is of
higher cardinality.

For the 5-component B(5) we have u1 = 3, m5u1 = 4; u2 = 2,
m5u2 = 1. So B(5) has no infinite factor.

Now suppose two abelian p-groups B1, B2 of finite exponent are given,
and define a specific equivalence relation ≡ between B1 and B2 using
their decompositions.
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B1 = C
mpu1

pu1 × · · · × C
mpur

pur (2)

B2 = C
mpv1

pv1 × · · · × C
mpvs

pvs : (3)

i) if B1, B2 are finite, then B1 ≡ B2 iff B1 and B2 are isomorphic, i.e.,
r = s and ui = vi, mpui = mpvi for i = 1, . . . , r;

ii) if B1, B2 are infinite, then B1 ≡ B2 iff there is a k such that:

a) C
mpuk

puk is the first infinite factor in (2), C
mpvk

pvk is the first infinite
factor in (3), and uk = vk;
b) ui = vi, mpui = mpvi for each i = 1, . . . , k − 1 (i.e., the products
of factors proceeding the k’th factor in B1 and in B2 are
isomorphic);

iii) B1, B2 are not equivalent for all other cases.

Notice that in point (ii) above we do not require isomorphism of C
mpuk

puk

and C
mpvk

pvk . We just need them both to be direct products of infinitely
many copies of the same cycle Cpuk .

The factors coming after the k’th factor in (2) and (3) have no role for ≡.
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Example 8. We will get groups equivalent to the group

B = C6
35 × Cℵ033 × C5

32 × Cℵ3 × C4
53 × C52 .

of Example 7, if we in B replace the factors C5
32 and Cℵ3 by arbitrary

direct product of copies of the cycles C32 and C3 respectively.

Also, we can replace Cℵ033 by, say, Cℵ33 . However, we cannot alter any of
the remaining factors C6

35 , C4
53 , C52 .

In this terminology the main theorem of current section is:

Theorem 9. Let A be a non-trivial nilpotent group of exponent m, and
let B1, B2 be non-trivial abelian groups of exponent n such that any
prime divisor of n also divides m. Then equality (∗∗) holds for
A,B1, B2 if and only if B1(p) ≡ B2(p) for each prime divisor p of n.

Notice that the primes that divide m but not n have no impact on
equality (∗∗).
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The motivation
Subvarieties generated by wreath products

Two rather unexpected consequences of this theorem are:

Corollary 10. In the notations of Theorem 9:

a) equality (∗∗) holds for finite groups B1, B2 if and only if B1 and B2

are isomorphic;

b) equality (∗∗) never holds if one of the groups B1, B2 is finite, and
the other is infinite.

Turning to some simple examples notice that in the literature the
classification of subvarieties often uses the nilpotency class or the
exponent of varieties to distinguish the given subvarieties.

In particular, in classification of subvarieties of A2
p L.G. Kovács and

M.F. Newman use the fact that those subvarieties either differ in class or
in exponent mainly (1971).

So it would be interesting to get examples of var(AWrB1) and
var(AWrB2) which have the same class and exponent, but are distinct.
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M.F. Newman use the fact that those subvarieties either differ in class or
in exponent mainly (1971).

So it would be interesting to get examples of var(AWrB1) and
var(AWrB2) which have the same class and exponent, but are distinct.

V.H. Mikaelian Product varieties of groups and varieties generated by wreath products



1. Products of group varieties
2. Three classification theorems

3. Subvariety structures in certain group varieties

The motivation
Subvarieties generated by wreath products

Two rather unexpected consequences of this theorem are:

Corollary 10. In the notations of Theorem 9:

a) equality (∗∗) holds for finite groups B1, B2 if and only if B1 and B2

are isomorphic;

b) equality (∗∗) never holds if one of the groups B1, B2 is finite, and
the other is infinite.

Turning to some simple examples notice that in the literature the
classification of subvarieties often uses the nilpotency class or the
exponent of varieties to distinguish the given subvarieties.

In particular, in classification of subvarieties of A2
p L.G. Kovács and
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the other is infinite.

Turning to some simple examples notice that in the literature the
classification of subvarieties often uses the nilpotency class or the
exponent of varieties to distinguish the given subvarieties.

In particular, in classification of subvarieties of A2
p L.G. Kovács and

M.F. Newman use the fact that those subvarieties either differ in class or
in exponent mainly (1971).

So it would be interesting to get examples of var(AWrB1) and
var(AWrB2) which have the same class and exponent, but are distinct.
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Example 11. Take the groups A = C3, B1 = C2
32 , B2 = C32 × C4

3 .

Using H. Liebeck’s formula (1962) or D. Shield’s formula (1977) one may
compute that the nilpotency class of both wreath products AWrB1 and
AWrB2 is equal to 17. It also is clear that the exponents of both of
these wreath products is equal to 27.

However, var(AWrB1) and var(AWrB2) are distinct by Theorem 9,
since B1 6≡ B2. One can also show what AWrB2 belongs to the variety
N3B9 which does not contain the group AWrB1.

Example 12. Let A be the dihedral group D4, and let B1 = C3
22 × C2,

B2 = C22 × C7
2 . According to D. Shield’s formula (1977) the nilpotency

class of AWrB1 and of AWrB2 is 22. And the exponents of both of
these groups are equal to 16.

However, by Theorem 9 they generate distinct varieties of groups, since ,
as B1 6≡ B2. One can also show that AWrB2 does belong to the
variety N4B2 which does not contain the group AWrB1.
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1. Products of group varieties
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3. Subvariety structures in certain group varieties

The motivation
Subvarieties generated by wreath products

Example 13.Let A be the quaternions group Q8, and let

B1 = C2
25 × Cℵ024 × C2, B2 = C2

25 × Cℵ24 × Cℵ23 × Cℵ22 × Cℵ2 .

The second group seems to be much larger, at least, it has higher
cardinality.

Nevertheless, B1 ≡ B2 and by Theorem 9 AWrB1 and of AWrB2

generate the same variety. Notice that none of them is nilpotent.

If we replace A by the group, say, Q8 × C5, then equality (∗∗) will still
hold, since the new prime p = 5 has no impact on it (the exponents of
B1 and B2 are not divisible by 5).

Thank you!
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