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Theorem (Marciniak and Sehgal)

Let G be a finite group and u a non-trivial bicyclic unit of ZG.
Then (u,u*) is a free group.
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Theorem (Marciniak and Sehgal)

Let G be a finite group and u a non-trivial bicyclic unit of ZG.
Then (u,u*) is a free group.
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Theorem (Gongalves - Passman)

For a finite group G, the unit group U(ZG) contains a subgroup
isomorphic to C, x Co, for some prime p if and only if G contains
a non-central element of order p.
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Free product of cyclic groups

IN MATRICES

Theorem

Let n,m € Ny and denote ¢, (resp. ¢(m) to be a complex, primitive
n-th (m-th) root of unity. Let z; and z, be complex numbers, with
|z1z,| sufficiently large in comparison to ¢, and (. Then

1 7 1 0
[0 (n] and [22 Cm}

generate a free product of cyclic groups.
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IN MATRICES

Theorem

Let n,m € Ny and denote ¢, (resp. ¢(m) to be a complex, primitive
n-th (m-th) root of unity. Let z; and z, be complex numbers, with
|z1z,| sufficiently large in comparison to ¢, and (. Then

1 7 1 0
[0 (n] and [22 Cm}

generate a free product of cyclic groups.

This implies Sanov’s theorem.



Free product of cyclic groups

IN INTEGRAL GROUP RINGS

G afinite group, g, h € G. The elements

b,:=1+(1—hgh and by :=1+hg(1-h),

are called bicyclic units of ZG.
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are called Bovdi units of ZG.

b,i(h) =b zh and by (h)=hb;



Free product of cyclic groups

IN INTEGRAL GROUP RINGS

G afinite group, g, h € G. The elements
b i) =h+(1- h)gh and by () =h+ hg(1— h),
are called Bovdi units of ZG.

b,i(h) =b zh and by (h)=hb;

For intuition, think of these as

1 z
0 Gomy |-



Free product of cyclic groups

IN INTEGRAL GROUP RINGS

Let G be a finite, nilpotent group of class 2 and let g, h € G.
Assume o(h) = n > 2. Write K = C, = (h) n (h)9. Then

(b, 7(1).b ()"} = Co x Cn.
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IN INTEGRAL GROUP RINGS

Let G be a finite, nilpotent group and let g,h € G. Assume
o(h) = n > 2 is square-free. Write K = Cx = (h) N (h)9. Then

(b, 7(1).b ()"} = Co # Cn.
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IN INTEGRAL GROUP RINGS

Let G be a finite, nilpotent group and let g,h € G. Assume
o(h) = n > 2 is square-free. Write K = Cy = (h) N (h)9. Then

(by;(h),b,5(h)") = Cn xk Ci.

Theorem (Marciniak and Sehgal)

Let G be a finite group and u a non-trivial bicyclic unit of ZG.
Then (u,u*) is a free group.




Free product of cyclic groups

IN INTEGRAL GROUP RINGS

Let G be a finite, nilpotent group and let g,h € G. Assume
o(h) = n > 2 is square-free. Write K = Cy = (h) N (h)9. Then

(b, (1), b, +(h)) ¥ Co 5 Co.

This is a constructive proof of the result of Gongalves and
Passman in the nilpotent case where the prime p is odd.



BOVDI UNITS AS MORPHISMS

LetH < G, a € ZG.

b :H—=UZG):h h+(1—h)aH,

and B
by tH—U(ZG) :h— h+Ha(l - h),

are group monomorphisms.



BOVDI UNITS AS MORPHISMS

LetH < G, a € ZG.

b :H—=UZG):h h+(1—h)aH,
and B

by tH—U(ZG) :h— h+Ha(l - h),

are group monomorphisms.

Does H x H (or Hx C,) exist in U(ZG) and can we construct it
explicitly?



BOVDI UNITS BASED ON NON-TRIVIAL UNITS

Let 3= (1+h+... +hkT)ym 4 1=kT (k;nh € 7G be a Bass unit based
onheH<G, «acZG.

B+ (1— h)aH is again a unit of ZG.



BOVDI UNITS BASED ON NON-TRIVIAL UNITS

Let3=(1+h+.. . +h)m+ 10‘(’,53"5 € 7.G be a Bass unit based
onheH<G, «acZG.

B+ (1— h)aH is again a unit of ZG.

Theorem

Leth € H <G, a € ZG and f4, 5, both Bass units based on h. If
(1—h)aH # 0 and 3, and 3, are "sufficiently different”, then the
set

{51+ = h)aH, B + (1 — h)aH}

generates a free monoid, which is contained in a solvable group.
v
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your attention!



	Motivation
	Free product of cyclic groups
	In matrices
	In integral group rings

	Generalizations

