Character Degrees, Class Sizes and Graphs

Silvio Dolfi

Dipartimento di Matematica e Informatica Università di Firenze

AGTA, Lecce, 8 September 2017

Given a finite group G, we denote by Irr(G) the set of *irreducible* complex characters of G, and by

$\operatorname{cd}(G) = \{\chi(1) : \chi \in \operatorname{Irr}(G)\}$

the *set* of their degrees.

Questions

(a) What information is encoded in cd(G)?

(b) What are the possible sets cd(G) ?

Given a finite group G, we denote by Irr(G) the set of *irreducible* complex characters of G, and by

$$\operatorname{cd}(G) = \{\chi(1) : \chi \in \operatorname{Irr}(G)\}$$

the *set* of their degrees.

(a) What information is encoded in cd(G)

(b) What are the possible sets cd(G) ?

Given a finite group G, we denote by Irr(G) the set of *irreducible* complex characters of G, and by

$$\operatorname{cd}(G) = \{\chi(1) : \chi \in \operatorname{Irr}(G)\}$$

the *set* of their degrees.

Questions

(a) What information is encoded in cd(G) ?
(b) What are the possible sets cd(G) ?

Given a finite group G, we denote by Irr(G) the set of *irreducible* complex characters of G, and by

$$\operatorname{cd}(G) = \{\chi(1) : \chi \in \operatorname{Irr}(G)\}$$

the *set* of their degrees.

Questions

(a) What information is encoded in cd(G) ?
(b) What are the possible sets cd(G) ?

Prime divisors of character degrees

There are connections between the 'arithmetical structure' of cd(G)and the group structure of G. Two important instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number. p does not divide $\chi(1)$ for all $\chi \in Irr(G) \Leftrightarrow if G$ has a normal abelian Sylow p-subgroup.

Theorem (Thompson; 1970)

Let G be a group and p a prime. If every element in $cd(G) \setminus \{1\}$ is divisible by p, then G has a normal p-complement.

There are connections between the 'arithmetical structure' of cd(G)and the group structure of G. Two important instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number. p does not divide $\chi(1)$ for all $\chi \in Irr(G) \Leftrightarrow if G$ has a normal abelian Sylow p-subgroup.

Theorem (Thompson; 1970)

Let G be a group and p a prime. If every element in $cd(G) \setminus \{1\}$ is divisible by p, then G has a normal p-complement.

There are connections between the 'arithmetical structure' of cd(G)and the group structure of G. Two important instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number. p does not divide $\chi(1)$ for all $\chi \in Irr(G) \Leftrightarrow if G$ has a normal abelian Sylow p-subgroup.

Theorem (Thompson; 1970)

Let G be a group and p a prime. If every element in $cd(G) \setminus \{1\}$ is divisible by p, then G has a normal p-complement.

Theorem (Isaacs, Passman; 1968)

cd(G) = {1, p}, p prime, if and only if
(a) ∃A ⊲ G, A abelian, [G : A] = p; or
(b) [G : Z(G)] = p³

Theorem (Isaacs, Passman; 1968) If $cd(G) = \{1, p_1, p_2, \dots, p_n\}, p_i \text{ primes, then } n \leq 2 \text{ and } G''' = 1.$

Theorem (Isaacs, Passman; 1968)

cd(G) = {1, p}, p prime, if and only if
(a) ∃A ⊲ G, A abelian, [G : A] = p; or
(b) [G : Z(G)] = p³

Theorem (Isaacs, Passman; 1968)

If $cd(G) = \{1, p_1, p_2, ..., p_n\}, p_i \text{ primes, then } n \le 2 \text{ and } G''' = 1.$

Theorem (Isaacs, Passman; 1968)

 $cd(G) = \{1, p, q\}, p, q$ distinct primes, if and only if either

Theorem (Isaacs, Passman; 1968)

Theorem (Isaacs, Passman; 1968)

Prime power degrees

Theorem (Manz; 1985)

Assume $cd(G) = \{1, p_1^{a_1}, p_2^{a_2}, \dots, p_t^{a_t}\}, p_i \text{ primes, } a_i > 0.$ Let $k = |\{p_i | 1 \le i \le t\}|$ (the number of distinct primes).

(1) G is solvable if and only if $k \le 2$ (in this case: $2 \le dl(G) \le 5$);

(2) G non-solvable if and only if $G \cong S \times A$ with $S \cong PSL(2,4)$ or PSL(2,8) and A is abelian.

$$cd(3^{2}: GL(2,3)) = \{1, 2, 3, 4, 8, 16\}$$
$$cd(PSL(2,4)) = \{1, 2^{2}, 3, 5\}$$
$$cd(PSL(2,8)) = \{1, 2^{3}, 3^{2}, 7\}$$

Prime power degrees

Theorem (Manz; 1985)

Assume $cd(G) = \{1, p_1^{a_1}, p_2^{a_2}, \dots, p_t^{a_t}\}, p_i \text{ primes, } a_i > 0.$ Let $k = |\{p_i | 1 \le i \le t\}|$ (the number of distinct primes).

- (1) G is solvable if and only if $k \le 2$ (in this case: $2 \le dl(G) \le 5$);
- (2) G non-solvable if and only if $G \cong S \times A$ with $S \cong PSL(2,4)$ or PSL(2,8) and A is abelian.

$$cd(3^{2}: GL(2,3)) = \{1, 2, 3, 4, 8, 16\}$$
$$cd(PSL(2,4)) = \{1, 2^{2}, 3, 5\}$$
$$cd(PSL(2,8)) = \{1, 2^{3}, 3^{2}, 7\}$$

Prime power degrees

Theorem (Manz; 1985)

Assume $cd(G) = \{1, p_1^{a_1}, p_2^{a_2}, \dots, p_t^{a_t}\}, p_i \text{ primes, } a_i > 0.$ Let $k = |\{p_i | 1 \le i \le t\}|$ (the number of distinct primes).

- (1) G is solvable if and only if $k \le 2$ (in this case: $2 \le dl(G) \le 5$);
- (2) G non-solvable if and only if $G \cong S \times A$ with $S \cong PSL(2,4)$ or PSL(2,8) and A is abelian.

$$\begin{aligned} \mathrm{cd}(3^2:\mathrm{GL}(2,3)) &= \{1,2,3,4,8,16\} \\ \mathrm{cd}(\mathrm{PSL}(2,4)) &= \{1,2^2,3,5\} \\ \mathrm{cd}(\mathrm{PSL}(2,8)) &= \{1,2^3,3^2,7\} \end{aligned}$$

The prime graph

Let X be a non-empty set, $X \subseteq \mathbb{N}$. For $n \in X$, let $\pi(n)$ be the set of primes dividing n.

 $\Delta(X)$ prime graph

• vertex set: $V(\Delta(X)) = \bigcup_{n \in X} \pi(n)$ • edge set $E(\Delta(X)) = \{\{p,q\} : pq \text{ divides some } n \in X\}$

So, the prime $\Delta(X)$ graph on X is the simple undirected graph whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $pq \mid x$.

The prime graph

Let X be a non-empty set, $X \subseteq \mathbb{N}$. For $n \in X$, let $\pi(n)$ be the set of primes dividing n.

 $\Delta(X)$ prime graph

• vertex set:
$$V(\Delta(X)) = \bigcup_{n \in X} \pi(n)$$

• edge set $E(\Delta(X)) = \{\{p, q\} : pq \text{ divides some } n \in X\}$

So, the prime $\Delta(X)$ graph on X is the simple undirected graph whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $pq \mid x$.

The prime graph

Let X be a non-empty set, $X \subseteq \mathbb{N}$. For $n \in X$, let $\pi(n)$ be the set of primes dividing n.

 $\Delta(X)$ prime graph

• vertex set:
$$V(\Delta(X)) = \bigcup_{n \in X} \pi(n)$$

• edge set $E(\Delta(X)) = \{\{p, q\} : pq \text{ divides some } n \in X\}$

So, the prime $\Delta(X)$ graph on X is the simple undirected graph whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $pq \mid x$.

Prime graphs have been considered for the following sets X(G) of invariants:

- $o(G) = \{ o(g) : g \in G \}.$
- $cd(G) = \{\chi(1) : \chi \in Irr(()G)\}.$
- $cs(G) = \{ |g^G| : g \in G \}.$

Questions

- (1) Properties of the graphs $\Delta(X(G))$.
- (11) To what extent the group structure of G is reflected on and influenced by the structure of the graph $\Delta(X(G))$?
- (III) What graphs can occur as $\Delta(X(G))$? What graphs can be induced subgraphs of $\Delta(X(G))$?

Prime graphs have been considered for the following sets X(G) of invariants:

•
$$o(G) = \{o(g) : g \in G\}.$$

• $cd(G) = \{\chi(1) : \chi \in Irr(()G)\}.$
• $cs(G) = \{|g^G| : g \in G\}.$

Questions

- (1) Properties of the graphs $\Delta(X(G))$.
- (11) To what extent the group structure of G is reflected on and influenced by the structure of the graph $\Delta(X(G))$?
- (III) What graphs can occur as $\Delta(X(G))$? What graphs can be induced subgraphs of $\Delta(X(G))$?

Prime graphs have been considered for the following sets X(G) of invariants:

•
$$o(G) = \{o(g) : g \in G\}.$$

• $cd(G) = \{\chi(1) : \chi \in Irr(()G)\}.$
• $cs(G) = \{|g^G| : g \in G\}.$

Questions

(1) Properties of the graphs $\Delta(X(G))$.

- (II) To what extent the group structure of G is reflected on and influenced by the structure of the graph $\Delta(X(G))$?
- (III) What graphs can occur as $\Delta(X(G))$? What graphs can be induced subgraphs of $\Delta(X(G))$?

Prime graphs have been considered for the following sets X(G) of invariants:

•
$$o(G) = \{o(g) : g \in G\}.$$

• $cd(G) = \{\chi(1) : \chi \in Irr(()G)\}.$
• $cs(G) = \{|g^G| : g \in G\}.$

Questions

- (1) Properties of the graphs $\Delta(X(G))$.
- (II) To what extent the group structure of G is reflected on and influenced by the structure of the graph $\Delta(X(G))$?
- (III) What graphs can occur as $\Delta(X(G))$? What graphs can be induced subgraphs of $\Delta(X(G))$?

Degree graph and Class graph

Notation:

Character graph $\Delta(G) := \Delta(cd(G))$ Class graph $\Delta^*(G) := \Delta(cs(G))$.

Degree graph and Class graph

Notation:

Character graph
$$\Delta(G) := \Delta(cd(G))$$

Class graph $\Delta^*(G) := \Delta(cs(G))$.

Example

 $cd(M_{11}) = \{1, 10, 11, 16, 44, 45, 55\}$

Degree graph and Class graph

Notation:

Character graph
$$\Delta(G) := \Delta(cd(G))$$

Class graph $\Delta^*(G) := \Delta(cs(G))$.

Example

 $cs(M_{11}) = \{1, 165, 440, 720, 990, 1320, 1584\}$

$\Delta(A_5)$

Example 2 • $\Delta(A_5)$ • • 3 5 $cd(A_5) = \{1, 3, 4, 5\}$

$\Delta^*(A_5)$

Example

Example: $G = PSL_2(19^4)$

Basic properties

If N ⊲ G, then both Δ(N) and Δ(G/N) are subgraphs of Δ(G).
Δ(G × H) is the *join* Δ(G) * Δ(H).

Vertex set of the character graph $\Delta(G)$:

Theorem (Ito-Michler)

 $p \text{ prime, } P \in \operatorname{Syl}_p(G):$ $p \notin \operatorname{V}(\Delta(G)) \Leftrightarrow P \text{ abelian and } P \triangleleft G$

So

Remark

 $V(\Delta(G)) = [G : \mathbf{Z}(\mathbf{F}(G))]$

Basic properties

If N ⊲ G, then both Δ(N) and Δ(G/N) are subgraphs of Δ(G).
Δ(G × H) is the *join* Δ(G) * Δ(H).

Vertex set of the character graph $\Delta(G)$:

Theorem (Ito-Michler)

 $\begin{array}{l} p \ prime, \ P \in {\rm Syl}_p(G): \\ p \notin {\rm V}(\Delta(G)) \Leftrightarrow P \ abelian \ and \ P \triangleleft G \end{array}$

 \mathbf{So}

Remark

```
V(\Delta(G)) = [G : \mathbf{Z}(\mathbf{F}(G))]
```

Basic properties

If N ⊲ G, then both Δ(N) and Δ(G/N) are subgraphs of Δ(G).
Δ(G × H) is the *join* Δ(G) * Δ(H).

Vertex set of the character graph $\Delta(G)$:

Theorem (Ito-Michler)

 $\begin{array}{l} p \ prime, \ P \in {\rm Syl}_p(G) \colon \\ p \not\in {\rm V}(\Delta(G)) \Leftrightarrow P \ abelian \ and \ P \triangleleft G \end{array}$

 So

Remark

 $\mathcal{V}(\Delta(G)) = [G : \mathbf{Z}(\mathbf{F}(G))]$

What graph can occur as $\Delta(G)$?

Question

Can this graph be a character graph $\Delta(G)$ for some G?

$\Delta(G) \cong C_4$

Theorem (Lewis, Meng; 2012/Lewis, White; 2013)

If $\Delta(G) \cong C_4$, then $G = A \times B$ with $\Delta(A) \cong \Delta(B) \cong \overline{K_2}$ (in particular, G is solvable).

Note: the square C_4 is isomorphic to the complete bipartite graph $K_{2,2}$

Tong-Viet (2013) has classified the groups G such that $\Delta(G)$ contains no subgraph K_3 (no "triangles"). As a consequence:

Theorem (Tong-Viet; 2013)

If $K_{n,m} \cong \Delta(G)$ for some group G, then $n + m \leq 5$. Precisely, the only instance are: $K_{1,1}$; $K_{1,2}$; $K_{1,3}$ $K_{2,2}$ $K_{2,3}$

$\Delta(G) \cong C_4$

Theorem (Lewis, Meng; 2012/Lewis, White; 2013)

If $\Delta(G) \cong C_4$, then $G = A \times B$ with $\Delta(A) \cong \Delta(B) \cong \overline{K_2}$ (in particular, G is solvable).

Note: the square C_4 is isomorphic to the complete bipartite graph $K_{2,2}$

Tong-Viet (2013) has classified the groups G such that $\Delta(G)$ contains no subgraph K_3 (no "triangles"). As a consequence:

Theorem (Tong-Viet; 2013)

If $K_{n,m} \cong \Delta(G)$ for some group G, then $n + m \leq 5$. Precisely, the only instance are: $K_{1,1}$; $K_{1,2}$; $K_{1,3}$ $K_{2,2}$ $K_{2,3}$

Four vertices, G non-solvable

The possible graphs $\Delta(G)$ on four vertices, for G nonsolvable, are: (Lewis, White; 2013)

An unknown graph

It is still open, for the following graph $K_5 - e$, the question whether it is the character degree graph of any group:

Problem

Does there exist G such that $\Delta(G)$ is the following:

$\Delta(G)$: G solvable; non-adjacent vertics

Theorem (J. Zhang; 1996)

Assume G solvable. If $p, q \in V(\Delta(G))$ are not adjacent in $\Delta(G)$ then $l_p(G) \leq 2$ and $l_q(G) \leq 2$. If $l_p(G) + l_q(G) = 4$, then G has a normal section isomorphic to $(C_3 \times C_3) \rtimes GL(2,3)$.

Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

 $\ \, \mathbf{n}(\Delta(G))\leq 3 \\ \ \, \mathbf{n}(\Delta(G))\leq 2 \ \, \textit{if G is solvable}$

The groups G with disconnected graph $\Delta(G)$ have been classified G solvable: (Zhang; 2000/Palfy; 2001/Lewis; 2001).

any G: (Lewis, White; 2003).

Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

 $n(\Delta(G)) \le 3$ $n(\Delta(G)) \le 2 \text{ if } G \text{ is solvable}$

The groups G with disconnected graph Δ(G) have been classified
G solvable: (Zhang; 2000/Palfy; 2001/Lewis; 2001).
any G: (Lewis, White; 2003).

Diameter of $\Delta(G)$

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)

For any G, diam $(\Delta(G)) \leq 3$.

Diameter of $\Delta(G)$

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)

For any G, diam $(\Delta(G)) \leq 3$.

Example

A non-solvable example: J_1

We denote by V(G) the vertex set of $\Delta(G)$.

Theorem (Palfy; 1998)

Let G be a solvable group and $\pi \subseteq V(G)$. If $|\pi| \ge 3$, then at least two vertices of π are adjacent in $\Delta(G)$.

We denote by V(G) the vertex set of $\Delta(G)$.

Theorem (Palfy; 1998)

Let G be a solvable group and $\pi \subseteq V(G)$. If $|\pi| \ge 3$, then at least two vertices of π are adjacent in $\Delta(G)$.

In other words:

If G is solvable then $\overline{K_3}$ is not an induced subgraph of $\Delta(G)$.

We denote by V(G) the vertex set of $\Delta(G)$.

Theorem (Palfy; 1998)

Let G be a solvable group and $\pi \subseteq V(G)$. If $|\pi| \ge 3$, then at least two vertices of π are adjacent in $\Delta(G)$.

In other words:

If G is solvable then $\overline{K_3}$ is not an induced subgraph of $\Delta(G)$.

As a consequence, the following graph is not a $\Delta(G)$ for any solvable group G:

We denote by V(G) the vertex set of $\Delta(G)$.

Theorem (Palfy; 1998)

Let G be a solvable group and $\pi \subseteq V(G)$. If $|\pi| \ge 3$, then at least two vertices of π are adjacent in $\Delta(G)$.

In other words:

If G is solvable then $\overline{K_3}$ is not an induced subgraph of $\Delta(G)$.

As a consequence, the following graph is not a $\Delta(G)$ for any solvable group G:

But the above graph, $K_{1,3}$ is the character graph of $A_5 \times 7^{1+2}$, for instance.

22 / 60

The independence number $\alpha(\Delta)$ of a graph Δ is the largest cardinality of an set of pairwise non-adjacent vertices (independent set).

[heorem]

• (Palfy; 1998) For G solvable, $\alpha(\Delta(G)) \leq 2$.

• (Moreto, Tiep; 2008) For any G, $\alpha(\Delta(G)) \leq 3$.

Note: $\alpha(\Delta(A_5)) = 3.$

The independence number $\alpha(\Delta)$ of a graph Δ is the largest cardinality of an set of pairwise non-adjacent vertices (independent set).

Theorem

• (Palfy; 1998) For G solvable, $\alpha(\Delta(G)) \leq 2$.

• (Moreto, Tiep; 2008) For any G, $\alpha(\Delta(G)) \leq 3$.

Note: $\alpha(\Delta(A_5)) = 3$.

The independence number $\alpha(\Delta)$ of a graph Δ is the largest cardinality of an set of pairwise non-adjacent vertices (independent set).

Theorem

- (Palfy; 1998) For G solvable, $\alpha(\Delta(G)) \leq 2$.
- (Moreto, Tiep; 2008) For any G, $\alpha(\Delta(G)) \leq 3$.

Note: $\alpha(\Delta(A_5)) = 3.$

Applications: connected components and diameter

Corollary

• If G is solvable, then $\Delta(G)$ has at most two connected components.

If G is solvable and $\Delta(G)$ is disconnected, then the two connected components are complete graphs.

Corollary

If G is solvable, then $\operatorname{diam}(\Delta(G)) \leq 3$.

Applications: connected components and diameter

Corollary

If G is solvable, then Δ(G) has at most two connected components.
If G is solvable and Δ(G) is disconnected, then the two connected components are complete graphs.

Corollary

If G is solvable, then $\operatorname{diam}(\Delta(G)) \leq 3$.

Corollary

- If G is solvable, then $\Delta(G)$ has at most two connected components.
- If G is solvable and $\Delta(G)$ is disconnected, then the two connected components are complete graphs.

Corollary

If G is solvable, then $\operatorname{diam}(\Delta(G)) \leq 3$.

Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph $\Delta(G)$; let n and m, $m \ge n$, be the sizes of the connected components. Then

$$m \ge 2^n - 1.$$

Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph $\Delta(G)$; let n and m, $m \geq n$, be the sizes of the connected components. Then

 $m \ge 2^n - 1.$

As a consequence, the following graph $P_2 + P_2$ is not a $\Delta(G)$ for any solvable group G:

Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph $\Delta(G)$; let n and m, $m \ge n$, be the sizes of the connected components. Then

 $m \ge 2^n - 1.$

As a consequence, the following graph $P_2 + P_2$ is not a $\Delta(G)$ for any solvable group G:

By Lewis-White(2013), hence $\Delta(G) \cong P_2 + P_2$ for every finte group G.

$\operatorname{diam}(\Delta(G))$, G solvable

For G solvable, it was conjectured that $\operatorname{diam}(\Delta(G)) \leq 2$.

$\operatorname{diam}(\Delta(G))$, G solvable

For G solvable, it was conjectured that $\operatorname{diam}(\Delta(G)) \leq 2$. Positive results:

Theorem (Zhang; 1998)

The graph P_3 is not $\Delta(G)$ for any solvable group G:

• • • •

$\operatorname{diam}(\Delta(G))$, G solvable

For G solvable, it was conjectured that $\operatorname{diam}(\Delta(G)) \leq 2$. Positive results:

Theorem (Lewis; 2002)

If G is solvable and $|V(G)| \leq 5$, then diam $(\Delta)(G) \leq 2$.

$$|G| = 2^{45} \cdot (2^{15} - 1) \cdot 15$$

$$|G| = 2^{45} \cdot (2^{15} - 1) \cdot 15$$

5

$$|G| = 2^{45} \cdot (2^{15} - 1) \cdot 15$$

 $|G| = 2^{45} \cdot (2^{15} - 1) \cdot 15$

$$cd(G) = \{1, 3, 5, 3 \cdot 5, 7 \cdot 31 \cdot 151, 2^{12} \cdot 31 \cdot 151, 2^{a} \cdot 7 \cdot 31 \cdot 151, (a \in 7, 12, 13), 2^{b} \cdot 3 \cdot 31 \cdot 151 \ (b \in 12, 15)\}$$

Some questions

(a) Is this example "minimal"?

 $|G| = 2^{45} \cdot (2^{15} - 1) \cdot 15$

Some questions

$$|G| = 2^{45} \cdot (2^{15} - 1) \cdot 15$$

- (a) Is this example "minimal"?
- (b) Let G be a solvable group such that Δ(G) is connected with diameter three. What can we say about the structure of G? For instance, what about h(G)?

(c) For G as above, is it true that there exists a normal subgroup N of G with

 $\operatorname{Vert}(\Delta(G/N)) = \operatorname{Vert}(\Delta(G))$

and with $\Delta(G/N)$ disconnected?

 $\Delta(G)$

(c) For G as above, is it true that there exists a normal subgroup N of G with

(In Lewis' example:)

$$\operatorname{Vert}(\Delta(G/N)) = \operatorname{Vert}(\Delta(G))$$

and with $\Delta(G/N)$ disconnected?

(c) For G as above, is it true that there exists a normal subgroup N of G with

$$\operatorname{Vert}(\Delta(G/N)) = \operatorname{Vert}(\Delta(G))$$

and with $\Delta(G/N)$ disconnected?

(In Lewis' example:)

(c) For G as above, is it true that there exists a normal subgroup N of G with

 $\operatorname{Vert}(\Delta(G/N)) = \operatorname{Vert}(\Delta(G))$

and with $\Delta(G/N)$ disconnected? Can Vert $(\Delta(G))$ be partitioned into two subsets π_1 and π_2 , both inducing complete subgraphs of $\Delta(G)$, such that $|\pi_1| \ge 2^{|\pi_2|}$? (In Lewis' example:)

If $\Delta(G)$ is connected with diameter three then... [Casolo, D., Pacifici, Sanus (2016); Sass (2016)]

(a) There exists a prime p such that G = PH, with P a normal nonabelian Sylow p-subgroup of G and H a p-complement.

If $\Delta(G)$ is connected with diameter three then... [Casolo, D., Pacifici, Sanus (2016); Sass (2016)]

- (a) There exists a prime p such that G = PH, with P a normal nonabelian Sylow p-subgroup of G and H a p-complement.
- (b) F(G) = P × A, where A = C_H(P) ≤ Z(G), H/A is not nilpotent and has cyclic Sylow subgroups.
If $\Delta(G)$ is connected with diameter three then... [Casolo, D., Pacifici, Sanus (2016); Sass (2016)]

- (a) There exists a prime p such that G = PH, with P a normal nonabelian Sylow p-subgroup of G and H a p-complement.
- (b) F(G) = P × A, where A = C_H(P) ≤ Z(G), H/A is not nilpotent and has cyclic Sylow subgroups.

h(G) = 3

(c) $M_1 = [P, G]/P'$ and $M_i = \gamma_i(P)/\gamma_{i+1}(P)$, for $2 \le i \le c$ (where c is the nilpotency class of P) are chief factors of G of the same order p^n , with n divisible by at least two odd primes. $G/\mathbf{C}_G(M_j)$ embeds in $\Gamma(p^n)$ as an irreducible subgroup.

(c) $M_1 = [P, G]/P'$ and $M_i = \gamma_i(P)/\gamma_{i+1}(P)$, for $2 \le i \le c$ (where c is the nilpotency class of P) are chief factors of G of the same order p^n , with n divisible by at least two odd primes. $G/\mathbf{C}_G(M_j)$ embeds in $\Gamma(p^n)$ as an irreducible subgroup.

$$\Gamma(p^n) = \{ x \mapsto ax^{\sigma} \mid a, x \in \mathbb{K}, a \neq 0, \sigma \in \operatorname{Gal}(\mathbb{K}) \} \text{ with } \mathbb{K} = \operatorname{GF}(p^n)$$

 $|\pi_1| \ge 2^{|\pi_2|} - 1$

 $\Rightarrow |\pi_1 \cup \{p\}| \ge 2^{|\pi_2|}$

 $|\pi_1| \ge 2^{|\pi_2|} - 1$

 $\Rightarrow |\pi_1 \cup \{p\}| \ge 2^{|\pi_2|}$

Finally, setting d = |H/X|, we have that |X/A| is divisible by $(p^n - 1)/(p^{n/d} - 1)$. Since cmust be at least 3, we get $|G| \ge p^{3n} \cdot \frac{p^n - 1}{p^{n/d} - 1} \cdot d \ge$ $\ge 2^{45} \cdot (2^{15} - 1) \cdot 15.$

If $|\pi| \geq 3$, then by Palfy's "Three Vertex Theorem" the subgraph $\Delta(G)[\pi]$ induced by π in $\Delta(G)$ contains at least one edge. Also, if $|\pi| \geq 6$, by elementary Ramsey Theory $\Delta(G)[\pi]$ contains at least a K_3 .

Question

Does $|\pi| = 5$ imply $K_3 \leq \Delta(G)$?

If $|\pi| \geq 3$, then by Palfy's "Three Vertex Theorem" the subgraph $\Delta(G)[\pi]$ induced by π in $\Delta(G)$ contains at least one edge.

Also, if $|\pi| \ge 6$, by elementary Ramsey Theory $\Delta(G)[\pi]$ contains at least a K_3 .

Question

Does $|\pi| = 5$ imply $K_3 \leq \Delta(G)$?

If $|\pi| \geq 3$, then by Palfy's "Three Vertex Theorem" the subgraph $\Delta(G)[\pi]$ induced by π in $\Delta(G)$ contains at least one edge.

Also, if $|\pi| \ge 6$, by elementary Ramsey Theory $\Delta(G)[\pi]$ contains at least a K_3 .

Question

```
Does |\pi| = 5 imply K_3 \leq \Delta(G) ?
```

If $|\pi| \geq 3$, then by Palfy's "Three Vertex Theorem" the subgraph $\Delta(G)[\pi]$ induced by π in $\Delta(G)$ contains at least one edge.

Also, if $|\pi| \ge 6$, by elementary Ramsey Theory $\Delta(G)[\pi]$ contains at least a K_3 .

Question

Does $|\pi| = 5$ imply $K_3 \leq \Delta(G)$?

The complement graph

Let Δ be a graph. The *complement* of Δ is the graph $\overline{\Delta}$ whose vertices are those of Δ , and two vertices are adjacent in $\overline{\Delta}$ if and only if they are non-adjacent in Δ .

The complement graph

Let Δ be a graph. The *complement* of Δ is the graph $\overline{\Delta}$ whose vertices are those of Δ , and two vertices are adjacent in $\overline{\Delta}$ if and only if they are non-adjacent in Δ .

The question on the previous slide is equivalent to the following:

Question

Can C_5 be a subgraph of $\overline{\Delta(G)}$, for G solvable ?

Pálfy's "Three Vertex Theorem" can be rephrased as follows:

Theorem (Pálfy; 1998)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 2018?)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of odd length.

Note: as disconnected graphs with components of size > 1 show, $\overline{\Delta(G)}$ can have cycles of length 4.

Pálfy's "Three Vertex Theorem" can be rephrased as follows:

Theorem (Pálfy; 1998)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 2018?)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of odd length.

Note: as disconnected graphs with components of size > 1 show, $\overline{\Delta(G)}$ can have cycles of length 4.

Pálfy's "Three Vertex Theorem" can be rephrased as follows:

Theorem (Pálfy; 1998)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 2018?)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of odd length.

Note: as disconnected graphs with components of size > 1 show, $\Delta(G)$ can have cycles of length 4.

Pálfy's "Three Vertex Theorem" can be rephrased as follows:

Theorem (Pálfy; 1998)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 2018?)

Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of odd length.

Note: as disconnected graphs with components of size > 1 show, $\overline{\Delta(G)}$ can have cycles of length 4.

Corollary

Let G be a solvable group. Then the set V(G) of the vertices of $\Delta(G)$ is covered by two subsets, each inducing a complete subgraph in $\Delta(G)$. In particular, for every subset S of V(G), at least half the vertices in S are pairwise adjacent in $\Delta(G)$.

- $|\pi| \geq 7$ implies $K_4 \leq \Delta(G)[\pi];$
- $|\pi| \ge 9$ implies $K_5 \le \Delta(G)[\pi];...$

Corollary

Let G be a solvable group. Then the set V(G) of the vertices of $\Delta(G)$ is covered by two subsets, each inducing a complete subgraph in $\Delta(G)$. In particular, for every subset S of V(G), at least half the vertices in S are pairwise adjacent in $\Delta(G)$.

- $|\pi| \ge 7$ implies $K_4 \le \Delta(G)[\pi];$
- $|\pi| \ge 9$ implies $K_5 \le \Delta(G)[\pi];...$

Corollary

Let G be a solvable group. Then the set V(G) of the vertices of $\Delta(G)$ is covered by two subsets, each inducing a complete subgraph in $\Delta(G)$. In particular, for every subset S of V(G), at least half the vertices in S are pairwise adjacent in $\Delta(G)$.

- $|\pi| \ge 7$ implies $K_4 \le \Delta(G)[\pi];$
- $|\pi| \ge 9$ implies $K_5 \le \Delta(G)[\pi];...$

Corollary

Let G be a solvable group. Then the set V(G) of the vertices of $\Delta(G)$ is covered by two subsets, each inducing a complete subgraph in $\Delta(G)$. In particular, for every subset S of V(G), at least half the vertices in S are pairwise adjacent in $\Delta(G)$.

- $|\pi| \ge 7$ implies $K_4 \le \Delta(G)[\pi];$
- $|\pi| \ge 9$ implies $K_5 \le \Delta(G)[\pi];...$

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete subgraph of $\Delta(G)$, then $\Delta(G)$ has at most 2n vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose degree is divisible by at least half the primes in V(G).

The corollary above provides some (weak) evidence for this conjecture.

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete subgraph of $\Delta(G)$, then $\Delta(G)$ has at most 2n vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose degree is divisible by at least half the primes in V(G).

The corollary above provides some (weak) evidence for this conjecture.

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete subgraph of $\Delta(G)$, then $\Delta(G)$ has at most 2n vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose degree is divisible by at least half the primes in V(G).

The corollary above provides some (weak) evidence for this conjecture.

Let

$$\rho(G) = \bigcup_{n \in \mathrm{cd}(G)} \pi(n)$$

and

$$\sigma(G) = \max\{|\pi(n)| : n \in \operatorname{cd}(G)\}$$

Conjecture ($ho-\sigma$ conjecture)

If G is solvable, then
$$|\rho(G)| \leq 2\sigma(G)$$

In general, $|\rho(G)| \leq 3\sigma(G)$

The conjecture has been verified for simple groups (Alvis-Barry; 1991), groups G with $\sigma(G) = 1$ (Manz; 1985), $\sigma(G) = 2$ (Gluck; 1991) and with square-free character degrees (Gluck; 1991).

Let

$$\rho(G) = \bigcup_{n \in \mathrm{cd}(G)} \pi(n)$$

and

$$\sigma(G) = \max\{|\pi(n)| : n \in \operatorname{cd}(G)\}$$

Conjecture ($\rho - \sigma$ conjecture)

If G is solvable, then
$$|\rho(G)| \leq 2\sigma(G)$$

• In general, $|\rho(G)| \leq 3\sigma(G)$

The conjecture has been verified for simple groups (Alvis-Barry; 1991), groups G with $\sigma(G) = 1$ (Manz; 1985), $\sigma(G) = 2$ (Gluck; 1991) and with square-free character degrees (Gluck; 1991).

Let

$$\rho(G) = \bigcup_{n \in \mathrm{cd}(G)} \pi(n)$$

and

$$\sigma(G) = \max\{|\pi(n)| : n \in \operatorname{cd}(G)\}$$

Conjecture ($\rho - \sigma$ conjecture)

If G is solvable, then
$$|\rho(G)| \leq 2\sigma(G)$$

• In general, $|\rho(G)| \leq 3\sigma(G)$

Remark

SL(2,3) and A_5 show that these bounds would be best-possible

The conjecture has been verified for simple groups (Alvis-Barry; 1991), groups G with $\sigma(G) = 1$ (Manz; 1985), $\sigma(G) = 2$ (Gluck; 1991) and with square-free character degrees (Gluck; 1991). 39/60

Let

$$\rho(G) = \bigcup_{n \in \mathrm{cd}(G)} \pi(n)$$

and

$$\sigma(G) = \max\{|\pi(n)| : n \in \operatorname{cd}(G)\}$$

Conjecture ($\rho - \sigma$ conjecture)

If G is solvable, then
$$|\rho(G)| \leq 2\sigma(G)$$

• In general, $|\rho(G)| \leq 3\sigma(G)$

The conjecture has been verified for simple groups (Alvis-Barry; 1991), groups G with $\sigma(G) = 1$ (Manz; 1985), $\sigma(G) = 2$ (Gluck; 1991) and with square-free character degrees (Gluck; 1991).

Known bounds

Theorem (Manz, Wolf; 1993)

For G solvable, $|\rho(G)| \leq 3\sigma(G) + 2$

Theorem (Casolo, D.; 2009)

For any G, $|\rho(G)| \leq 7\sigma(G)$

Known bounds

Theorem (Manz, Wolf; 1993)

For G solvable, $|\rho(G)| \leq 3\sigma(G) + 2$

Theorem (Casolo, D.; 2009)

For any G, $|\rho(G)| \leq 7\sigma(G)$

Non-solvable groups

Theorem (Moreto, Tiep; 2008)

Let G be a group and $\pi \subseteq V(\Delta(G))$. If $|\pi| \ge 4$, then at least two vertices of π are adjacent in $\Delta(G)$ (i.e. $\alpha(\Delta(G)) \le 3$).

Problem

Classify the groups G with $\alpha(\Delta(G)) = 3$.

Non-solvable groups

Theorem (Moreto, Tiep; 2008)

Let G be a group and $\pi \subseteq V(\Delta(G))$. If $|\pi| \ge 4$, then at least two vertices of π are adjacent in $\Delta(G)$ (i.e. $\alpha(\Delta(G)) \le 3$).

Problem

Classify the groups G with $\alpha(\Delta(G)) = 3$.

Theorem (Khedri, D, Pacifici)

Let $\pi \subseteq V(G)$ with $|\pi| = 3$. The subgraph of $\Delta(G)$ induced by π is empty if and only if $\mathbf{O}^{\pi'}(G) = S \times A$, where A is abelian and $S \cong SL(p^a)$ or $S \cong PSL(p^a)$, p is a prime, a is a positive integer, and $\pi = \{p, q, r\}, q, r \neq 2, q$ divides $p^a + 1$ and r divides $p^a - 1$.

Observe that:

- The π -parts of the character degrees of G and $S \triangleleft G$ are the same
- p^a is neither 4 nor a Mersenne nor a Fermat prime.

Theorem (Khedri, D, Pacifici)

Let $\pi \subseteq V(G)$ with $|\pi| = 3$. The subgraph of $\Delta(G)$ induced by π is empty if and only if $\mathbf{O}^{\pi'}(G) = S \times A$, where A is abelian and $S \cong SL(p^a)$ or $S \cong PSL(p^a)$, p is a prime, a is a positive integer, and $\pi = \{p, q, r\}, q, r \neq 2, q$ divides $p^a + 1$ and r divides $p^a - 1$.

Observe that:

- The π -parts of the character degrees of G and $S \triangleleft G$ are the same
- p^a is neither 4 nor a Mersenne nor a Fermat prime.

Equivalently:

Theorem (Khedri, D, Pacifici)

Let $\pi \subseteq V(G)$ with $|\pi| = 3$. The subgraph of $\Delta(G)$ induced by π is empty if and only if there is a normal subgroup S of G with $S \cong SL(p^a)$ or $S \cong PSL(p^a)$, such that $C_G(S)$ has a normal abelian Hall π -subgroup and $G/SC_G(S)$ is a π' -group (and $\pi = \{p, q, r\}, q, r \neq 2, q$ divides $p^a + 1$ and r divides $p^a - 1$).

Equivalently:

Theorem (Khedri, D, Pacifici)

Let $\pi \subseteq V(G)$ with $|\pi| = 3$. The subgraph of $\Delta(G)$ induced by π is empty if and only if there is a normal subgroup S of G with $S \cong SL(p^a)$ or $S \cong PSL(p^a)$, such that $C_G(S)$ has a normal abelian Hall π -subgroup and $G/SC_G(S)$ is a π' -group (and $\pi = \{p, q, r\}, q, r \neq 2, q$ divides $p^a + 1$ and r divides $p^a - 1$).

Applications

$$\begin{split} \text{Recall that, for } S &\cong \mathrm{SL}(p^a) \text{ or } S \cong \mathrm{PSL}(p^a), \\ p &= 2 \text{: } \operatorname{cd}(S) = \{1, 2^a - 1, 2^a, 2^a + 1\} \\ p &\neq 2 \text{: } \operatorname{cd}(S) = \{1, p^a - 1, p^a, p^a + 1, \frac{1}{2}(p^a + (-1)^{\frac{p^a - 1}{2}})\}, \, (p^a > 5). \end{split}$$

Corollary

For every G, $\alpha(\Delta(G)) \leq 3$.

Corollary

G non-solvable; G has only prime power degrees if and only if $G \cong S \times A$ with $S \cong PSL(2, 4)$ or PSL(2, 8) and A is abelian.

Corollary

 $\Delta(G)$ has three connected components if and only if $G \cong S \times A$ with $S \cong PSL(2, 2^{a})$ and A is abelian.

Applications

Recall that, for $S \cong SL(p^a)$ or $S \cong PSL(p^a)$, p = 2: $cd(S) = \{1, 2^a - 1, 2^a, 2^a + 1\}$ $p \neq 2$: $cd(S) = \{1, p^a - 1, p^a, p^a + 1, \frac{1}{2}(p^a + (-1)^{\frac{p^a - 1}{2}})\}, (p^a > 5).$

Corollary

For every G, $\alpha(\Delta(G)) \leq 3$.

Corollary

G non-solvable; G has only prime power degrees if and only if $G \cong S \times A$ with $S \cong PSL(2,4)$ or PSL(2,8) and A is abelian.

Corollary

 $\Delta(G)$ has three connected components if and only if $G \cong S \times A$ with $S \cong PSL(2, 2^a)$ and A is abelian.

Tools: orbit results

Let V be a faithful G-module and let q be a prime divisor of |G|. We say that:

- (G, V) satisfies \mathcal{N}_q if for every non-trivial $v \in V$ there exists a $Q \in \operatorname{Syl}_q(G)$ such that $Q \triangleleft \mathbf{C}_G(v)$.
- (G, V) satisfies \mathcal{C}_q if and for every non-trivial $v \in V$ there exists a $Q \in \operatorname{Syl}_q(G)$ such that $Q \leq \mathbf{Z}(\mathbf{C}_G(v))$.

Examples:

- (a) Let V = V(2,3); then $(SL_2(3), V)$ satisfies C_q and $(GL_2(3), V)$ satisfies \mathcal{N}_q .
- (b) Let $|V| = r^n$, r prime, $q \mid n$ and $q \nmid r^n 1$. Let $\Gamma(V)$ be the semilinear group on V, i.e.

 $\Gamma(V) = \Gamma(r^n) = \{ x \mapsto ax^{\sigma} \mid a, x \in \mathbb{K}, a \neq 0, \sigma \in \operatorname{Gal}(\mathbb{K}) \}$

with $\mathbb{K} = \operatorname{GF}(r^n)$. Then $(\Gamma(V), V)$ satisfies \mathcal{C}_q

Tools: orbit results

Let V be a faithful G-module and let q be a prime divisor of |G|. We say that:

- (G, V) satisfies \mathcal{N}_q if for every non-trivial $v \in V$ there exists a $Q \in \operatorname{Syl}_q(G)$ such that $Q \triangleleft \mathbf{C}_G(v)$.
- (G, V) satisfies C_q if and for every non-trivial $v \in V$ there exists a $Q \in \text{Syl}_q(G)$ such that $Q \leq \mathbf{Z}(\mathbf{C}_G(v))$.

Examples:

- (a) Let V = V(2,3); then $(SL_2(3), V)$ satisfies C_q and $(GL_2(3), V)$ satisfies \mathcal{N}_q .
- (b) Let |V| = rⁿ, r prime, q | n and q ∤ rⁿ − 1. Let Γ(V) be the semilinear group on V, i.e.

$$\Gamma(V) = \Gamma(r^n) = \{ x \mapsto ax^{\sigma} \mid a, x \in \mathbb{K}, a \neq 0, \sigma \in \operatorname{Gal}(\mathbb{K}) \}$$

with $\mathbb{K} = \operatorname{GF}(r^n)$. Then $(\Gamma(V), V)$ satisfies \mathcal{C}_q .

The condition \mathcal{N}_q arises naturally. Consider the following situation: (*): $G = V \rtimes H$, p, q non-adjacent vertices of $\Delta(G)$, V minimal normal in G, $\mathbf{C}_H(V) = 1$, and $P \in \operatorname{Syl}_p(H)$, $P \triangleleft H$.

So, for every $1 \neq \lambda \in Irr(V)$, p divides $[G : \mathbf{C}_G(\lambda)]$. Since λ extends to $\mathbf{C}_G(\lambda)$, by Gallagher's theorem we have

 $\{\chi(1): \chi \in \operatorname{Irr}(G|\lambda)\} = \{\beta(1)[G: \mathbf{C}_G(\lambda)]: \beta \in \operatorname{Irr}(\mathbf{C}_G(\lambda)/V)\}.$

Since p and q are non-adjacent in $\Delta(G)$, it follows that $\mathbf{C}_H(\lambda) = \mathbf{C}_G(\lambda)/V$ contains a Sylow q-subgroup Q of H and that Q is abelian and normal in $\mathbf{C}_H(\lambda)$. Hence, (H, V) satisfies \mathcal{N}_q .

The condition \mathcal{N}_q arises naturally. Consider the following situation: (*): $G = V \rtimes H$, p, q non-adjacent vertices of $\Delta(G)$, V minimal normal in G, $\mathbf{C}_H(V) = 1$, and $P \in \operatorname{Syl}_p(H)$, $P \triangleleft H$. So, for every $1 \neq \lambda \in \operatorname{Irr}(V)$, p divides $[G : \mathbf{C}_G(\lambda)]$. Since λ extends to $\mathbf{C}_G(\lambda)$, by Gallagher's theorem we have

 $\{\chi(1): \chi \in \operatorname{Irr}(G|\lambda)\} = \{\beta(1)[G: \mathbf{C}_G(\lambda)]: \beta \in \operatorname{Irr}(\mathbf{C}_G(\lambda)/V)\}.$

Since p and q are non-adjacent in $\Delta(G)$, it follows that $\mathbf{C}_H(\lambda) = \mathbf{C}_G(\lambda)/V$ contains a Sylow q-subgroup Q of H and that Q is abelian and normal in $\mathbf{C}_H(\lambda)$. Hence, (H, V) satisfies \mathcal{N}_q .

The condition \mathcal{N}_q arises naturally. Consider the following situation: (*): $G = V \rtimes H$, p, q non-adjacent vertices of $\Delta(G)$, V minimal normal in G, $\mathbf{C}_H(V) = 1$, and $P \in \operatorname{Syl}_p(H)$, $P \triangleleft H$. So, for every $1 \neq \lambda \in \operatorname{Irr}(V)$, p divides $[G : \mathbf{C}_G(\lambda)]$. Since λ extends to $\mathbf{C}_G(\lambda)$, by Gallagher's theorem we have

$$\{\chi(1): \chi \in \operatorname{Irr}(G|\lambda)\} = \{\beta(1)[G: \mathbf{C}_G(\lambda)]: \beta \in \operatorname{Irr}(\mathbf{C}_G(\lambda)/V)\}.$$

Since p and q are non-adjacent in $\Delta(G)$, it follows that $\mathbf{C}_H(\lambda) = \mathbf{C}_G(\lambda)/V$ contains a Sylow q-subgroup Q of H and that Q is abelian and normal in $\mathbf{C}_H(\lambda)$.

Hence, (H, V) satisfies \mathcal{N}_q .

The condition \mathcal{N}_q arises naturally. Consider the following situation: (*): $G = V \rtimes H$, p, q non-adjacent vertices of $\Delta(G)$, V minimal normal in G, $\mathbf{C}_H(V) = 1$, and $P \in \operatorname{Syl}_p(H)$, $P \triangleleft H$. So, for every $1 \neq \lambda \in \operatorname{Irr}(V)$, p divides $[G : \mathbf{C}_G(\lambda)]$. Since λ extends to $\mathbf{C}_G(\lambda)$, by Gallagher's theorem we have

$$\{\chi(1): \chi \in \operatorname{Irr}(G|\lambda)\} = \{\beta(1)[G: \mathbf{C}_G(\lambda)]: \beta \in \operatorname{Irr}(\mathbf{C}_G(\lambda)/V)\}.$$

Since p and q are non-adjacent in $\Delta(G)$, it follows that $\mathbf{C}_H(\lambda) = \mathbf{C}_G(\lambda)/V$ contains a Sylow q-subgroup Q of H and that Q is abelian and normal in $\mathbf{C}_H(\lambda)$. Hence, (H, V) satisfies \mathcal{N}_q .

Solvable groups

Theorem (Zhang; Wolf;1998)

If H is solvable and (H, V) satisfies \mathcal{N}_q , then either

For non-solvable groups we have this beautiful result (btw: its proof doesn't use the classification!).

Theorem (Casolo; 2010)

If (H, V) satisfies C_q and $q \neq char(V)$, then $H \leq \Gamma(V)$.

In order to use it in all reduction cases, we had to extend it slightly:

Proposition (Khedri, D, Pacifici)

If (H, V) satisfies \mathcal{N}_q and (|H|, |V|) = 1, then $H \leq \Gamma(V)$.

For non-solvable groups we have this beautiful result (btw: its proof doesn't use the classification!).

Theorem (Casolo; 2010)

If (H, V) satisfies C_q and $q \neq char(V)$, then $H \leq \Gamma(V)$.

In order to use it in all reduction cases, we had to extend it slightly:

Proposition (Khedri, D, Pacifici)

If (H, V) satisfies \mathcal{N}_q and (|H|, |V|) = 1, then $H \leq \Gamma(V)$.

Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)

 $\operatorname{n}(\Delta^*(G)) \leq 2$

Theorem (Kazarin; 1981/ Bertram-Herzog-Mann; 1991)

If $\Delta^*(G)$ is not connected, then $\overline{G} = G/\mathbb{Z}(G) = \overline{K}\overline{H}$ is a Frobenius group and both K and H are abelian.

Remark

 $cs(G) = \{1, |\bar{K}|, |\bar{H}|\}$

Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)

 $\mathbf{n}(\Delta^*(G)) \leq 2$

Theorem (Kazarin; 1981/ Bertram-Herzog-Mann; 1991)

If $\Delta^*(G)$ is not connected, then $\overline{G} = G/\mathbb{Z}(G) = \overline{K}\overline{H}$ is a Frobenius group and both K and H are abelian.

Remark

 $cs(G) = \{1, |\bar{K}|, |\bar{H}|\}$

Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)

 $\mathbf{n}(\Delta^*(G)) \leq 2$

Theorem (Kazarin; 1981/ Bertram-Herzog-Mann; 1991)

If $\Delta^*(G)$ is not connected, then $\overline{G} = G/\mathbb{Z}(G) = \overline{K}\overline{H}$ is a Frobenius group and both K and H are abelian.

Remark

 $\operatorname{cs}(G) = \{1, |\bar{K}|, |\bar{H}|\}$

Non-adjacent vertices in $\Delta^*(G)$

Theorem (Ito; 1956/ D.; 1998/ Casolo, D.; 2009)

If p, q are non-adjacent vertices of $\Delta^*(G)$, then G is $\{p, q\}$ -solvable $l_{\{p,q\}}(G) = 1$ and G has abelian Sylow p-subgroups and q-subgroups.

Non-adjacent vertices in $\Delta^*(G)$

Theorem (Ito; 1956/ D.; 1998/ Casolo, D.; 2009)

If p, q are non-adjacent vertices of $\Delta^*(G)$, then G is $\{p,q\}$ -solvable $l_{\{p,q\}}(G) = 1$ and G has abelian Sylow p-subgroups and q-subgroups.

Theorem (Casolo, D.; 1996)

diam $(\Delta^*(G)) \leq 3$; the groups G with diam $(\Delta^*(G)) = 3$ are meta-abelian (and classified)

Theorem (Casolo, D.; 1996)

diam $(\Delta^*(G)) \leq 3$; the groups G with diam $(\Delta^*(G)) = 3$ are meta-abelian (and classified)

Independence number for $\Delta^*(G)$

Independence number α = largest size of a set of mutually non-adjacent vertices.

Also: $\alpha(\Delta) \leq 2$ implies diam $(\Delta) \leq 3$, $n(\Delta) \leq 2$ and that disconnected graphs have complete components.

Theorem (D.; 2007)

For any G, $\alpha(\Delta^*(G)) \leq 2$

Independence number α = largest size of a set of mutually non-adjacent vertices.

Also: $\alpha(\Delta) \leq 2$ implies diam $(\Delta) \leq 3$, $n(\Delta) \leq 2$ and that disconnected graphs have complete components.

Theorem (D.; 2007) For any G, $\alpha(\Delta^*(G)) \leq 2$ Independence number α = largest size of a set of mutually non-adjacent vertices.

Also: $\alpha(\Delta) \leq 2$ implies diam $(\Delta) \leq 3$, $n(\Delta) \leq 2$ and that disconnected graphs have complete components.

Theorem (D.; 2007)

For any G, $\alpha(\Delta^*(G)) \leq 2$

Complete graphs

Theorem (Casolo, D.; 2009)

If $\mathbf{F}(G) = 1$, then $\Delta^*(G)$ is complete.

A direct connection ?

$$E \text{ extraspecial, } |E| = p^{2n+1}.$$

$$cd(E) = \{1, p^n\}$$
 $cs(E) = \{1, p\}$

Example

$$cd(C_{p^n} \wr C_p) = \{1, p\}$$
 $cs(C_{p^n} \wr C_p) = \{1, p, p^{n(p-1)}\}$

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and $\chi \in Irr(G)$. If χ is primitive, then there exists a $x \in G$ such that $\chi(1)_p$ divides $(|x^G|_p)^3$.

Problem

E extraspecial,
$$|E| = p^{2n+1}$$
.

$$cd(E) = \{1, p^n\}$$
 $cs(E) = \{1, p\}$

Example

C

$$d(C_{p^n} \wr C_p) = \{1, p\} \qquad cs(C_{p^n} \wr C_p) = \{1, p, p^{n(p-1)}\}\$$

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and $\chi \in \operatorname{Irr}(G)$. If χ is primitive, then there exists a $x \in G$ such that $\chi(1)_p$ divides $(|x^G|_p)^3$.

Problem

E extraspecial,
$$|E| = p^{2n+1}$$
.

$$cd(E) = \{1, p^n\}$$
 $cs(E) = \{1, p\}$

Example

$$cd(C_{p^n} \wr C_p) = \{1, p\}$$
 $cs(C_{p^n} \wr C_p) = \{1, p, p^{n(p-1)}\}$

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and $\chi \in Irr(G)$. If χ is primitive, then there exists a $x \in G$ such that $\chi(1)_p$ divides $(|x^G|_p)^3$.

Problem

$$E \text{ extraspecial, } |E| = p^{2n+1}.$$

$$cd(E) = \{1, p^n\}$$
 $cs(E) = \{1, p\}$

Example

$$cd(C_{p^n} \wr C_p) = \{1, p\}$$
 $cs(C_{p^n} \wr C_p) = \{1, p, p^{n(p-1)}\}$

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and $\chi \in Irr(G)$. If χ is primitive, then there exists a $x \in G$ such that $\chi(1)_p$ divides $(|x^G|_p)^3$.

Problem

$\Delta(G)$ and $\Delta^*(G)$

Theorem (Casolo, D.; 2009)

If p and q are distinct primes such that pq divides some $n \in cd(G)$, then there exists some $m \in cs(G)$ such that pq divides m. Equivalently: $\Delta(G)$ is a subgraph of $\Delta^*(G)$.

Problem

Let p_1, p_2, \ldots, p_n be distinct primes such that $p_1 \cdot p_2 \cdots p_n$ divides some $n \in cd(G)$. Does there always exist some $m \in cs(G)$ such that $p_1 \cdot p_2 \cdots p_n$ divides m?

$\Delta(G)$ and $\Delta^*(G)$

Theorem (Casolo, D.; 2009)

If p and q are distinct primes such that pq divides some $n \in cd(G)$, then there exists some $m \in cs(G)$ such that pq divides m. Equivalently: $\Delta(G)$ is a subgraph of $\Delta^*(G)$.

Problem

Let p_1, p_2, \ldots, p_n be distinct primes such that $p_1 \cdot p_2 \cdots p_n$ divides some $n \in cd(G)$. Does there always exist some $m \in cs(G)$ such that $p_1 \cdot p_2 \cdots p_n$ divides m?