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General notation

Given a finite group G, we denote by Irr(G) the set of irreducible
complex characters of G, and by

cd(G) = {χ(1) : χ ∈ Irr(G)}

the set of their degrees.

Questions

(a) What information is encoded in cd(G) ?

(b) What are the possible sets cd(G) ?
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Prime divisors of character degrees

There are connections between the ’arithmetical structure’ of cd(G)
and the group structure of G. Two important instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number.
p does not divide χ(1) for all χ ∈ Irr(G) ⇔ if G has a normal abelian
Sylow p-subgroup.

Theorem (Thompson; 1970)

Let G be a group and p a prime. If every element in cd(G) \ {1} is
divisible by p, then G has a normal p-complement.
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Prime degrees

Theorem (Isaacs, Passman; 1968)

cd(G) = {1, p}, p prime, if and only if

(a) ∃A / G, A abelian, [G : A] = p; or

(b) [G : Z(G)] = p3

Theorem (Isaacs, Passman; 1968)

If cd(G) = {1, p1, p2, . . . , pn}, pi primes, then n ≤ 2 and G′′′ = 1.
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Prime degrees

Theorem (Isaacs, Passman; 1968)

cd(G) = {1, p, q}, p, q
distinct primes, if and
only if either

or
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Prime power degrees

Theorem (Manz; 1985)

Assume cd(G) = {1, pa11 , p
a2
2 , . . . , p

at
t }, pi primes, ai > 0. Let

k = |{pi|1 ≤ i ≤ t}| (the number of distinct primes).

(1) G is solvable if and only if k ≤ 2 (in this case:
2 ≤ dl(G) ≤ 5);

(2) G non-solvable if and only if G ∼= S ×A with
S ∼= PSL(2, 4) or PSL(2, 8) and A is abelian.

cd(32 : GL(2, 3)) = {1, 2, 3, 4, 8, 16}

cd(PSL(2, 4)) = {1, 22, 3, 5}

cd(PSL(2, 8)) = {1, 23, 32, 7}
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The prime graph

Let X be a non-empty set, X ⊆ N.
For n ∈ X, let π(n) be the set of primes dividing n.

∆(X) prime graph

vertex set: V(∆(X)) =
⋃
n∈X π(n)

edge set E(∆(X)) = {{p, q} : pq divides some n ∈ X}

So, the prime ∆(X) graph on X is the simple undirected graph whose
vertices are the primes that divide some number in X, and two
(distinct) vertices p, q are adjacent if and only if there exists x ∈ X
such that pq | x.
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Prime graphs

Prime graphs have been considered for the following sets X(G) of
invariants:

o(G) = {o(g) : g ∈ G}.
cd(G) = {χ(1) : χ ∈ Irr(()G)}.
cs(G) = {|gG| : g ∈ G}.

Questions

(I) Properties of the graphs ∆(X(G)).

(II) To what extent the group structure of G is reflected on
and influenced by the structure of the graph ∆(X(G)) ?

(III) What graphs can occur as ∆(X(G)) ?
What graphs can be induced subgraphs of ∆(X(G)) ?
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Degree graph and Class graph

Notation:

Character graph ∆(G) := ∆(cd(G))

Class graph ∆∗(G) := ∆(cs(G)).

Example

cd(M11) = {1, 10, 11, 16, 44, 45, 55}
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Degree graph and Class graph

Notation:

Character graph ∆(G) := ∆(cd(G))

Class graph ∆∗(G) := ∆(cs(G)).

Example

cs(M11) = {1, 165, 440, 720, 990, 1320, 1584}
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∆(A5)

Example
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∆∗(A5)

Example
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Example: G = PSL2(194)

Example
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Basic properties

If N / G, then both ∆(N) and ∆(G/N) are subgraphs of ∆(G).

∆(G×H) is the join ∆(G) ∗∆(H).

Vertex set of the character graph ∆(G):

Theorem (Ito-Michler)

p prime, P ∈ Sylp(G):
p 6∈ V(∆(G)) ⇔ P abelian and P / G

So

Remark

V(∆(G)) = [G : Z(F(G))]

14 / 60



Basic properties

If N / G, then both ∆(N) and ∆(G/N) are subgraphs of ∆(G).

∆(G×H) is the join ∆(G) ∗∆(H).

Vertex set of the character graph ∆(G):

Theorem (Ito-Michler)

p prime, P ∈ Sylp(G):
p 6∈ V(∆(G)) ⇔ P abelian and P / G

So

Remark

V(∆(G)) = [G : Z(F(G))]

14 / 60



Basic properties

If N / G, then both ∆(N) and ∆(G/N) are subgraphs of ∆(G).

∆(G×H) is the join ∆(G) ∗∆(H).

Vertex set of the character graph ∆(G):

Theorem (Ito-Michler)

p prime, P ∈ Sylp(G):
p 6∈ V(∆(G)) ⇔ P abelian and P / G

So

Remark

V(∆(G)) = [G : Z(F(G))]

14 / 60



What graph can occur as ∆(G)?

Question

Can this graph be a character graph ∆(G) for some G?
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∆(G) ∼= C4

Theorem (Lewis, Meng; 2012/Lewis, White; 2013)

If ∆(G) ∼= C4, then G = A×B with ∆(A) ∼= ∆(B) ∼= K2 (in
particular, G is solvable).

Note: the square C4 is isomorphic to the complete bipartite graph K2,2

Tong-Viet (2013) has classified the groups G such that ∆(G) contains
no subgraph K3 (no “triangles”). As a consequence:

Theorem (Tong-Viet; 2013)

If Kn,m
∼= ∆(G) for some group G, then n+m ≤ 5.

Precisely, the only instance are: K1,1; K1,2; K1,3 K2,2 K2,3
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Four vertices, G non-solvable

The possible graphs ∆(G) on four vertices, for G nonsolvable, are:
(Lewis, White; 2013)
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An unknown graph

It is still open, for the following graph K5 − e, the question whether it
is the character degree graph of any group:

Problem

Does there exist G such that ∆(G) is the following:
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∆(G): G solvable; non-adjacent vertics

Theorem (J. Zhang; 1996)

Assume G solvable. If p, q ∈ V(∆(G)) are not adjacent in ∆(G) then
lp(G) ≤ 2 and lq(G) ≤ 2.
If lp(G) + lq(G) = 4, then G has a normal section isomorphic to
(C3 × C3) o GL(2, 3).
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Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

n(∆(G)) ≤ 3

n(∆(G)) ≤ 2 if G is solvable

The groups G with disconnected graph ∆(G) have been classified

G solvable: (Zhang; 2000/Palfy; 2001/Lewis; 2001).

any G: (Lewis, White; 2003).
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Diameter of ∆(G)

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)

For any G, diam(∆(G)) ≤ 3.

Example

A non-solvable example: J1
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Palfy’s Three Vertex Theorem

We denote by V(G) the vertex set of ∆(G).

Theorem (Palfy; 1998)

Let G be a solvable group and π ⊆ V(G). If |π| ≥ 3, then at least two
vertices of π are adjacent in ∆(G).

In other words:
If G is solvable then K3 is not an induced subgraph of ∆(G).
As a consequence, the following graph is not a ∆(G) for any solvable
group G:

But the above graph, K1,3 is the character graph of A5 × 71+2, for
instance.
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Independence number

The independence number α(∆) of a graph ∆ is the largest cardinality
of an set of pairwise non-adjacent vertices (independent set).

Theorem

(Palfy; 1998) For G solvable, α(∆(G)) ≤ 2.

(Moreto, Tiep; 2008) For any G, α(∆(G)) ≤ 3.

Note: α(∆(A5)) = 3.
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Applications: connected components and diameter

Corollary

If G is solvable, then ∆(G) has at most two connected components.

If G is solvable and ∆(G) is disconnected, then the two connected
components are complete graphs.

Corollary

If G is solvable, then diam(∆(G)) ≤ 3.
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Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph ∆(G); let n and m,
m ≥ n, be the sizes of the connected components. Then

m ≥ 2n − 1.

As a consequence, the following graph P2 + P2 is not a ∆(G) for any
solvable group G:

By Lewis-White(2013), hence ∆(G) 6∼= P2 + P2 for every finte group G.
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diam(∆(G)), G solvable

For G solvable, it was conjectured that diam(∆(G)) ≤ 2.

Positive results:

Theorem (Zhang; 1998)

The graph P3 is not ∆(G) for any solvable group G:

Theorem (Lewis; 2002)

If G is solvable and |V(G)| ≤ 5, then diam(∆)(G) ≤ 2.
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The first example of a solvable group G such that diam(∆(G)) = 3 has
been found by Lewis in 2002.

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}

27 / 60



The first example of a solvable group G such that diam(∆(G)) = 3 has
been found by Lewis in 2002.

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}

27 / 60



The first example of a solvable group G such that diam(∆(G)) = 3 has
been found by Lewis in 2002.

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}

27 / 60



The first example of a solvable group G such that diam(∆(G)) = 3 has
been found by Lewis in 2002.

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}

27 / 60



The first example of a solvable group G such that diam(∆(G)) = 3 has
been found by Lewis in 2002.

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}

27 / 60



The first example of a solvable group G such that diam(∆(G)) = 3 has
been found by Lewis in 2002.

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}

27 / 60



Some questions

|G| = 245 · (215 − 1) · 15

(a) Is this example
“minimal”?

(b) Let G be a solvable
group such that ∆(G) is
connected with diameter
three. What can we say
about the structure of G?
For instance, what about
h(G)?
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Some questions by Lewis

(c) For G as above, is it true
that there exists a
normal subgroup N of G
with

Vert(∆(G/N)) = Vert(∆(G))

and with ∆(G/N)
disconnected?

Can Vert(∆(G)) be
partitioned into two
subsets π1 and π2, both
inducing complete
subgraphs of ∆(G), such
that |π1| ≥ 2|π2| ?

(In Lewis’ example:)
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If ∆(G) is connected with diameter three then...
[Casolo, D., Pacifici, Sanus (2016) ; Sass (2016)]

(a) There exists a prime p
such that G = PH, with
P a normal nonabelian
Sylow p-subgroup of G
and H a p-complement.

(b) F(G) = P ×A, where
A = CH(P ) ≤ Z(G),
H/A is not nilpotent and
has cyclic Sylow
subgroups.

(c)
h(G) = 3
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If ∆(G) is connected with diameter three then...

(c) M1 = [P,G]/P ′ and
Mi = γi(P )/γi+1(P ), for
2 ≤ i ≤ c (where c is the
nilpotency class of P ) are
chief factors of G of the
same order pn, with n
divisible by at least two
odd primes. G/CG(Mj)
embeds in Γ(pn) as an
irreducible subgroup.

Γ(pn) = {x 7→ axσ | a, x ∈ K, a 6= 0, σ ∈ Gal(K)} with K = GF(pn)
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If ∆(G) is connected with diameter three then...

|π1| ≥ 2|π2| − 1

⇒ |π1 ∪ {p}| ≥ 2|π2|
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If ∆(G) is connected with diameter three then...

Finally, setting d = |H/X|,
we have that |X/A| is
divisible by
(pn − 1)/(pn/d − 1). Since c
must be at least 3, we get

|G| ≥ p3n · p
n − 1

pn/d − 1
· d ≥

≥ 245 · (215 − 1) · 15.
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An extension of Pálfy’s Theorem

Let G be a solvable group and π ⊆ V(∆(G)).

If |π| ≥ 3, then by Palfy’s “Three Vertex Theorem” the subgraph
∆(G)[π] induced by π in ∆(G) contains at least one edge.

Also, if |π| ≥ 6, by elementary Ramsey Theory ∆(G)[π] contains at
least a K3.

Question

Does |π| = 5 imply K3 ≤ ∆(G) ?
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The complement graph

Let ∆ be a graph. The complement of ∆ is the graph ∆ whose vertices
are those of ∆, and two vertices are adjacent in ∆ if and only if they
are non-adjacent in ∆.

The question on the previous slide is equivalent to the following:

Question

Can C5 be a subgraph of ∆(G), for G solvable ?
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For G solvable, ∆(G) is bipartite!

Pálfy’s “Three Vertex Theorem” can be rephrased as follows:

Theorem (Pálfy; 1998)

Let G be a solvable group. Then the graph ∆(G) does not contain any
cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 2018?)

Let G be a solvable group. Then the graph ∆(G) does not contain any
cycle of odd length.

Note: as disconnected graphs with components of size > 1 show, ∆(G)
can have cycles of length 4.
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Some consequences

But the graphs containing no cycles of odd length are precisely the
bipartite graphs. Therefore the previous theorem asserts that, for any
solvable group G, the graph ∆(G) is bipartite. As an immediate
consequence:

Corollary

Let G be a solvable group. Then the set V(G) of the vertices of ∆(G) is
covered by two subsets, each inducing a complete subgraph in ∆(G).
In particular, for every subset S of V(G), at least half the vertices in S
are pairwise adjacent in ∆(G).

Hence: for G solvable, π ⊆ V(∆(G));

|π| ≥ 7 implies K4 ≤ ∆(G)[π];

|π| ≥ 9 implies K5 ≤ ∆(G)[π];...
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Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete
subgraph of ∆(G), then ∆(G) has at most 2n vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose
degree is divisible by at least half the primes in V(G).

The corollary above provides some (weak) evidence for this conjecture.
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Huppert’s ρ− σ conjecture

Let
ρ(G) =

⋃
n∈cd(G)

π(n)

and
σ(G) = max{|π(n)| : n ∈ cd(G)}

Conjecture (ρ− σ conjecture)

If G is solvable, then |ρ(G)| ≤ 2σ(G)

In general, |ρ(G)| ≤ 3σ(G)

The conjecture has been verified for simple groups (Alvis-Barry; 1991),
groups G with σ(G) = 1 (Manz; 1985), σ(G) = 2 (Gluck; 1991) and
with square-free character degrees (Gluck; 1991).
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Known bounds

Theorem (Manz, Wolf; 1993)

For G solvable, |ρ(G)| ≤ 3σ(G) + 2

Theorem (Casolo, D.; 2009)

For any G, |ρ(G)| ≤ 7σ(G)
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Non-solvable groups

Theorem (Moreto, Tiep; 2008)

Let G be a group and π ⊆ V(∆(G)). If |π| ≥ 4, then at least two
vertices of π are adjacent in ∆(G) (i.e. α(∆(G)) ≤ 3).

Problem

Classify the groups G with α(∆(G)) = 3.
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Theorem (Khedri, D, Pacifici)

Let π ⊆ V(G) with |π| = 3. The subgraph of ∆(G) induced by π is
empty if and only if Oπ′(G) = S ×A, where A is abelian and
S ∼= SL(pa) or S ∼= PSL(pa), p is a prime, a is a positive integer, and
π = {p, q, r}, q, r 6= 2, q divides pa + 1 and r divides pa − 1.

Observe that:

The π-parts of the character degrees of G and S / G are the same

pa is neither 4 nor a Mersenne nor a Fermat prime.
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Equivalently:

Theorem (Khedri, D, Pacifici)

Let π ⊆ V(G) with |π| = 3. The subgraph of ∆(G) induced by π is
empty if and only if there is a normal subgroup S of G with S ∼= SL(pa)
or S ∼= PSL(pa), such that CG(S) has a normal abelian Hall
π-subgroup and G/SCG(S) is a π′-group (and π = {p, q, r}, q, r 6= 2, q
divides pa + 1 and r divides pa − 1).
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Applications

Recall that, for S ∼= SL(pa) or S ∼= PSL(pa),

p = 2: cd(S) = {1, 2a − 1, 2a, 2a + 1}

p 6= 2: cd(S) = {1, pa − 1, pa, pa + 1, 1
2(pa + (−1)

pa−1
2 )}, (pa > 5).

Corollary

For every G, α(∆(G)) ≤ 3.

Corollary

G non-solvable; G has only prime power degrees if and only if
G ∼= S ×A with S ∼= PSL(2, 4) or PSL(2, 8) and A is abelian.

Corollary

∆(G) has three connected components if and only if G ∼= S ×A with
S ∼= PSL(2, 2a) and A is abelian.
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Tools: orbit results

Let V be a faithful G-module and let q be a prime divisor of |G|.
We say that:

(G,V ) satisfies Nq if for every non-trivial v ∈ V there exists a
Q ∈ Sylq(G) such that Q / CG(v).

(G,V ) satisfies Cq if and for every non-trivial v ∈ V there exists a
Q ∈ Sylq(G) such that Q ≤ Z(CG(v)).

Examples:

(a) Let V = V (2, 3); then (SL2(3), V ) satisfies Cq and
(GL2(3), V ) satisfies Nq.

(b) Let |V | = rn, r prime, q | n and q - rn − 1. Let Γ(V ) be
the semilinear group on V , i.e.

Γ(V ) = Γ(rn) = {x 7→ axσ | a, x ∈ K, a 6= 0, σ ∈ Gal(K)}

with K = GF(rn).
Then (Γ(V ), V ) satisfies Cq.
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Why

The condition Nq arises naturally. Consider the following situation:
(∗): G = V oH, p, q non-adjacent vertices of ∆(G), V minimal normal
in G, CH(V ) = 1, and P ∈ Sylp(H), P / H.
So, for every 1 6= λ ∈ Irr(V ), p divides [G : CG(λ)]. Since λ extends to
CG(λ), by Gallagher’s theorem we have

{χ(1) : χ ∈ Irr(G|λ)} = {β(1)[G : CG(λ)] : β ∈ Irr(CG(λ)/V )}.

Since p and q are non-adjacent in ∆(G), it follows that
CH(λ) = CG(λ)/V contains a Sylow q-subgroup Q of H and that Q is
abelian and normal in CH(λ).
Hence, (H,V ) satisfies Nq.
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Solvable groups

Theorem (Zhang; Wolf;1998)

If H is solvable and (H,V ) satisfies Nq, then either

(a) H ≤ Γ(V ); or

(b) q = 3, |V | = 32 and H ∼= SL2(3) or GL2(3).
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Non-solvable groups: Casolo’s Theorem

For non-solvable groups we have this beautiful result (btw: its proof
doesn’t use the classification!).

Theorem (Casolo; 2010)

If (H,V ) satisfies Cq and q 6= char(V ), then H ≤ Γ(V ).

In order to use it in all reduction cases, we had to extend it slightly:

Proposition (Khedri, D, Pacifici)

If (H,V ) satisfies Nq and (|H|, |V |) = 1, then H ≤ Γ(V ).
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Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)

n(∆∗(G)) ≤ 2

Theorem (Kazarin; 1981/ Bertram-Herzog-Mann; 1991)

If ∆∗(G) is not connected, then Ḡ = G/Z(G) = K̄H̄ is a Frobenius
group and both K and H are abelian.

Remark

cs(G) = {1, |K̄|, |H̄|}
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Non-adjacent vertices in ∆∗(G)

Theorem (Ito; 1956/ D.; 1998/ Casolo, D.; 2009)

If p, q are non-adjacent vertices of ∆∗(G), then G is {p, q}-solvable
l{p,q}(G) = 1 and G has abelian Sylow p-subgroups and q-subgroups.
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Diameter: ∆∗

Theorem (Casolo, D.; 1996)

diam(∆∗(G)) ≤ 3;
the groups G with diam(∆∗(G)) = 3 are meta-abelian (and classified)

Example

3 2 7
5

cs(C35 o C6) = {1, 2, 6, 7, 14, 35}
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Independence number for ∆∗(G)

Independence number α = largest size of a set of mutually
non-adjacent vertices.
Also: α(∆) ≤ 2 implies diam(∆) ≤ 3, n(∆) ≤ 2 and that disconnected
graphs have complete components.

Theorem (D.; 2007)

For any G, α(∆∗(G)) ≤ 2
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Complete graphs

Theorem (Casolo, D.; 2009)

If F(G) = 1, then ∆∗(G) is complete.
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A direct connection ?

cs(G)

G?

cd(G)
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Example

E extraspecial, |E| = p2n+1:

cd(E) = {1, pn} cs(E) = {1, p}

Example

cd(Cpn o Cp) = {1, p} cs(Cpn o Cp) = {1, p, pn(p−1)}

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and χ ∈ Irr(G). If χ is primitive, then there exists a
x ∈ G such that χ(1)p divides (|xG|p)3.

Problem

Does there exist, for every primitive χ ∈ Irr(G), an element x ∈ G such
that χ(1) divides |xG| ?
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∆(G) and ∆∗(G)

Theorem (Casolo, D.; 2009)

If p and q are distinct primes such that pq divides some n ∈ cd(G),
then there exists some m ∈ cs(G) such that pq divides m.
Equivalently: ∆(G) is a subgraph of ∆∗(G).

Problem

Let p1, p2, . . . , pn be distinct primes such that p1 · p2 · · · pn divides some
n ∈ cd(G). Does there always exist some m ∈ cs(G) such that
p1 · p2 · · · pn divides m ?
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