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General notation

Given a finite group G, we denote by Irr(G) the set of irreducible
complex characters of G,

2/60



General notation

Given a finite group G, we denote by Irr(G) the set of irreducible
complex characters of G, and by

cd(G) ={x(1) : x € Irr(G)}

the set of their degrees.

2/60



General notation

Given a finite group G, we denote by Irr(G) the set of irreducible
complex characters of G, and by

cd(G) = {x(1) : x € Irr(G)}

the set of their degrees.

Questions
(a) What information is encoded in cd(G) ¢

2/60



General notation

Given a finite group G, we denote by Irr(G) the set of irreducible
complex characters of G, and by

cd(G) = {x(1) : x € Irr(G)}

the set of their degrees.

(a) What information is encoded in cd(G) ¢
(b) What are the possible sets cd(G) ?
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Prime divisors of character degrees

There are connections between the ’arithmetical structure’ of c¢d(G)
and the group structure of G.
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Prime divisors of character degrees

There are connections between the ’arithmetical structure’ of c¢d(G)
and the group structure of G. Two important instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number.

p does not divide x(1) for all x € Irr(G) < if G has a normal abelian
Sylow p-subgroup.
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Prime divisors of character degrees

There are connections between the ’arithmetical structure’ of c¢d(G)
and the group structure of G. Two important instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number.

p does not divide x(1) for all x € Irr(G) < if G has a normal abelian
Sylow p-subgroup.

Theorem (Thompson; 1970)

Let G be a group and p a prime. If every element in cd(G) \ {1} is
divisible by p, then G has a normal p-complement.
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Theorem (Isaacs, Passman; 1968)
cd(G) = {1,p}, p prime, if and only if

(a) 3A< G, A abelian, |G : A] = p; or
(b) [G: Z(G)] =p’
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Theorem (Isaacs, Passman; 1968)
cd(G) = {1,p}, p prime, if and only if

(a) 3A< G, A abelian, |G : A] = p; or
(b) [G: Z(G)] =p’

Theorem (Isaacs, Passman; 1968)

If cd(G) = {1,p1,p2, .- ,Pn}, Di primes, then n < 2 and G = 1.
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Prime degrees

Theorem (Isaacs, Passman; 1968)

cd(G) ={1,p,q}, p.q
distinct primes, if and
only if either
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Prime degrees

Theorem (Isaacs, Passman; 1968)

e
p
L F— FG)
cd(G) ={L,p, g}, p.q ¢
distinct primes, if and L 26 - 2P or
only if either
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Prime degrees

Theorem (Isaacs, Passman; 1968)

cd(G) ={1,p,q}, p.q ¢
distinct primes, if and
only if either

> G

» F=F(Q)

B irreducible F/A -module
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Prime power degrees

Theorem (Manz; 1985)
Assume cd(G) = {1,p{*, p52, ..., p;t}, pi primes, a; > 0. Let
k= |{pi|]l < i<t} (the number of distinct primes).

(1) G is solvable if and only if k < 2 (in this case:
2 <dl(G) <5);
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(2) G non-solvable if and only if G = S x A with
S = PSL(2,4) or PSL(2,8) and A is abelian.
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Prime power degrees

Theorem (Manz; 1985)
Assume cd(G) = {1,p{*, p52, ..., p;t}, pi primes, a; > 0. Let
k= |{pi|]l < i<t} (the number of distinct primes).
(1) G is solvable if and only if k < 2 (in this case:
2 <dl(G) <5);

(2) G non-solvable if and only if G = S x A with
S = PSL(2,4) or PSL(2,8) and A is abelian.

cd(3%: GL(2,3)) = {1,2,3,4,8,16}
cd(PSL(2,4)) = {1,22 3,5}
cd(PSL(2,8)) = {1,23,3%, 7}
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The prime graph

Let X be a non-empty set, X C N.
For n € X, let w(n) be the set of primes dividing n.

7 /60



The prime graph

Let X be a non-empty set, X C N.
For n € X, let m(n) be the set of primes dividing n.

A(X) prime graph

m vertex set: V(A(X)) = U,ex m(n)
m edge set E(A(X)) = {{p,q} : pq divides some n € X}
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The prime graph

Let X be a non-empty set, X C N.
For n € X, let m(n) be the set of primes dividing n.

A(X) prime graph

m vertex set: V(A(X)) = U,ex m(n)
m edge set E(A(X)) = {{p,q} : pq divides some n € X}

So, the prime A(X) graph on X is the simple undirected graph whose
vertices are the primes that divide some number in X, and two
(distinct) vertices p, ¢ are adjacent if and only if there exists x € X
such that pq | x.
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Prime graphs

Prime graphs have been considered for the following sets X (G) of
invariants:

= o(G) ={olg) : g€ G}
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Prime graphs

Prime graphs have been considered for the following sets X (G) of
invariants:

= o(G) ={olg) : g€ G}
= cd(G) = {x(1) : x € Ir(()&)}.
m s(G) = {|g%] : g€ G}

Questions

(I) Properties of the graphs A(X(Q)).
(I1) To what extent the group structure of G is reflected on
and influenced by the structure of the graph A(X(G)) ?

(1) What graphs can occur as A(X(G)) ¢
What graphs can be induced subgraphs of A(X(G)) ¢
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Degree graph and Class graph

Notation:
Character graph A(G) := A(cd(G))
Class graph A*(G) := A(cs(G)).
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Degree graph and Class graph

Notation:
Character graph A(G) := A(cd(G))
Class graph A*(G) := A(cs(G)).

Example

cd(Miy) = {1,10,11, 16,44, 45, 55}
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Degree graph and Class graph

Notation:
Character graph A(G) := A(cd(G))
Class graph A*(G) := A(cs(G)).

Example

A*(MH)

11

es(Myy) = {1,165, 440, 720,990, 1320, 1584}

v
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A(As)

cd(4s) — {1,3,4,5}
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A*(As)

2

A*(As)

cs(As) = {1,12,15,20}
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Example: G = PSLy(19%)

A(PSL(19%)) 17 181

3833 J

cd(PSLy(19%)) = {17 - 3833,2-17-3833,21. 3% . 5. 181}
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Basic properties

m If N < G, then both A(N) and A(G/N) are subgraphs of A(G).
m A(G x H) is the join A(G) « A(H).
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Basic properties

m If N < G, then both A(N) and A(G/N) are subgraphs of A(G).
m A(G x H) is the join A(G) « A(H).
Vertex set of the character graph A(G):

Theorem (lto-Michler)

p prime, P € Syl,(G):
p &€ V(A(G)) < P abelian and P< G
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Basic properties

m If N < G, then both A(N) and A(G/N) are subgraphs of A(G).
m A(G x H) is the join A(G) « A(H).
Vertex set of the character graph A(G):

Theorem (lto-Michler)

p prime, P € Syl,(G):
p &€ V(A(G)) < P abelian and P< G

So

V(A(G)) = [G : Z(F(G))]
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What graph can occur as A(G)?

Can this graph be a character graph A(G) for some G ¢
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Theorem (Lewis, Meng; 2012/Lewis, White; 2013)

If A(G) = Cy, then G = A x B with A(A) =2 A(B) 2 K (in
particular, G is solvable).

Note: the square Cjy is isomorphic to the complete bipartite graph K 2

X
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Theorem (Lewis, Meng; 2012/Lewis, White; 2013)

If A(G) = Cy, then G = A x B with A(A) =2 A(B) 2 K (in
particular, G is solvable).

Note: the square Cjy is isomorphic to the complete bipartite graph K 2

Tong-Viet (2013) has classified the groups G such that A(G) contains
no subgraph K3 (no “triangles”). As a consequence:

Theorem (Tong-Viet; 2013)

If Ky, = A(G) for some group G, then n+m < 5.
Precisely, the only instance are: K11; K12; K13 Koo K3
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Four vertices, GG non-solvable

The possible graphs A(G) on four vertices, for G nonsolvable, are:
(Lewis, White; 2013)

2 ML Lewis, D.L White  Journal of Alsebra 378 (2013) 1-11
Table1
Fourvertex graphs occurring as A(G) for nonsolvable G.
Graph A(G) Growp G d(G)
-——a
PSLy(16) 352417
. L]

PLes) 1.2 3,582

PSLa@31) 1.3-52.3531%)

o
.

: Ayt 11.3.22.5.p.3p. 2p.5p)
; .

M 125112428 11,3 5,5.11)
a 1,2.2.7,253.7.28 757,352 1.22.5.7)
4 1,2:3,2.52.7,3.53.7,5.7)

17 / 60



An unknown graph

It is still open, for the following graph K5 — e, the question whether it
is the character degree graph of any group:

Does there exist G such that A(G) is the following:
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A(G): G solvable; non-adjacent vertics

Theorem (J. Zhang; 1996)

Assume G solvable. If p,q € V(A(G)) are not adjacent in A(G) then
I,(G) <2 and 14(G) < 2.

If 1,(G) + 14(G) = 4, then G has a normal section isomorphic to

(03 X C3) X GL(2,3).
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Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

® n(A(G)) <3
m n(A(G)) <2 if G is solvable

20 /60



Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)
® n(A(G)) <3
m n(A(G)) <2 if G is solvable

The groups G with disconnected graph A(G) have been classified
m G solvable: (Zhang; 2000/Palfy; 2001/Lewis; 2001).
m any G: (Lewis, White; 2003).
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Diameter of A(G)

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)
For any G, diam(A(G)) < 3.
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Diameter of A(G)

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)
For any G, diam(A(G)) < 3.

Example

A non-solvable example: Jy
3 7
A(Jy)
5 11
5 e 19
¢d(Jy) = {1,56,76, 77,120,133, 209}

[
B
3



Palfy's Three Vertex Theorem

We denote by V(G) the vertex set of A(G).
Theorem (Palfy; 1998)

Let G be a solvable group and m C V(G). If |x| > 3, then at least two
vertices of w are adjacent in A(G).
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vertices of w are adjacent in A(G).

In other words:
If G is solvable then Kj is not an induced subgraph of A(G).
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In other words:

If G is solvable then Kj is not an induced subgraph of A(G).

As a consequence, the following graph is not a A(G) for any solvable
group G:
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Palfy's Three Vertex Theorem

We denote by V(G) the vertex set of A(G).
Theorem (Palfy; 1998)

Let G be a solvable group and m C V(G). If |x| > 3, then at least two
vertices of w are adjacent in A(G).

In other words:

If G is solvable then Kj is not an induced subgraph of A(G).

As a consequence, the following graph is not a A(G) for any solvable
group G:

But the above graph, K 3 is the character graph of A5 x 712, for
instance. 22 /60



Independence number

The independence number a(A) of a graph A is the largest cardinality
of an set of pairwise non-adjacent vertices (independent set).
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Independence number

The independence number a(A) of a graph A is the largest cardinality
of an set of pairwise non-adjacent vertices (independent set).

m (Palfy; 1998) For G solvable, a(A(G)) < 2.
)

m (Moreto, Tiep; 2008) For any G, a(A(G)) < 3.
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Independence number

The independence number a(A) of a graph A is the largest cardinality
of an set of pairwise non-adjacent vertices (independent set).

m (Palfy; 1998) For G solvable, a(A(G)) < 2.
)

m (Moreto, Tiep; 2008) For any G, a(A(G)) < 3.

Note: a(A(As)) = 3.
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Applications: connected components and diameter

Corollary

m [f G is solvable, then A(G) has at most two connected components.
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Applications: connected components and diameter

m [f G is solvable, then A(G) has at most two connected components.

m If G is solvable and A(G) is disconnected, then the two connected
components are complete graphs.
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Applications: connected components and diameter

m [f G is solvable, then A(G) has at most two connected components.

m If G is solvable and A(G) is disconnected, then the two connected
components are complete graphs.

If G is solvable, then diam(A(G)) < 3.
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Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph A(G); let n and m,
m > n, be the sizes of the connected components. Then

m > 2" — 1.
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Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph A(G); let n and m,
m > n, be the sizes of the connected components. Then

m > 2" — 1.

As a consequence, the following graph P» + P, is not a A(G) for any
solvable group G:
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Relative sizes

Theorem (Palfy; 2001)

Let G be a solvable group with disconnected graph A(G); let n and m,
m > n, be the sizes of the connected components. Then

m > 2" — 1.

As a consequence, the following graph P» + P, is not a A(G) for any
solvable group G:

By Lewis-White(2013), hence A(G) 2 P> + P; for every finte group G.
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diam(A(G)), G solvable

For G solvable, it was conjectured that diam(A(G)) < 2.
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diam(A(G)), G solvable

For G solvable, it was conjectured that diam(A(G)) < 2.
Positive results:

Theorem (Zhang; 1998)

The graph Ps is not A(G) for any solvable group G:
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diam(A(G)), G solvable

For G solvable, it was conjectured that diam(A(G)) < 2.
Positive results:

Theorem (Zhang; 1998)

The graph Ps is not A(G) for any solvable group G:

Theorem (Lewis; 2002)

If G is solvable and |V(G)| < 5, then diam(A)(G) < 2.
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The first example of a solvable group G such that diam(A(G)) = 3 has
been found by Lewis in 2002.



The first example of a solvable group G such that diam(A(G)) = 3 has
been found by Lewis in 2002.
G

2% —1=7.31-151

o
1

Gl =2%. (2% —1)-15
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The first example of a solvable group G such that diam(A(G)) = 3 has
been found by Lewis in 2002.
G

A(G/P) o o

2% —1=7.31-151
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The first example of a solvable group G such that diam(A(G)) = 3 has

been found by Lewis in 2002.
¢ A(G/P) — o

A(G/7(P) .v. s

2% —1=7.31-151

1

Gl =2%. (2% —1)-15
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The first example of a solvable group G such that diam(A(G)) = 3 has

been found by Lewis in 2002.
G

A(G/P)

A(G/%(P) .v.

151
2

A(G/s(P)) @

151

2% —1=7.31-151

Gl =2%. (2% —1)-15
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The first example of a solvable group G such that diam(A(G)) = 3 has
been found by Lewis in 2002.
G

A(G/P) o o

A(G/%(P) .v. i

151

2

A(G/3(P) @ s

A(G)

2% —1=7.31-151

Gl =2%. (2% —1)-15

cd(G) ={1, 3, 5, 3-5, 7-31-151, 212.31-151,
20.7.31-151 (a €7,12,13),
2°.3.31-151 (be 12,15)}

27 / 60



Some questions

(a) Is this example
“minimal”?

2% —1=17.31-151

Gl =2%. (2% —1)-15
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Some questions

(a) Is this example
“minimal”?

(b) Let G be a solvable
group such that A(G) is
connected with diameter
three. What can we say
about the structure of G?
For instance, what about

h(G)?

2% —1=17.31-151

Gl =2%. (2% —1)-15
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Some questions by Lewis

(c) For G as above, is it true
that there exists a
normal subgroup N of G
with

Vert(A(G/N)) = Vert(A(GQ))

and with A(G/N)
disconnected?

29 / 60



Some questions by Lewis

(c) For G as above, is it true
that there exists a

normal subgroup N of GG )
with (In Lewis’ example:)

2

Vert(A(G/N)) = Vert(A(G)) .
A(G) Z o3
and with A(G/N) 4')

disconnected?
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Some questions by Lewis

(c) For G as above, is it true
that there exists a
normal subgroup N of G

with (In Lewis’ example:)

Vert(A(G/N)) = Vert(A(G)) .
A(G) Z o3
and with A(G/N) 4')

disconnected? 1

2

AG /() @ -

151
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Some questions by Lewis

(c) For G as above, is it true
that there exists a
normal subgroup N of G

with (In Lewis” example:)
Vert(A(G/N)) = Vert(A(G))

A(G) z 3 3
and with A(G/N)
disconnected? ot
Can Vert(A(G)) be 3
partitioned into two AG/w(P) L g3 3
subsets m; and 72, both
inducing complete 151

subgraphs of A(G), such
that |my| > 2lml?
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If A(G) is connected with diameter three then...

[Casolo, D., Pacifici, Sanus (2016) ; Sass (2016)]

(a) There exists a prime p
such that G = PH, with
P a normal nonabelian
Sylow p-subgroup of G
and H a p-complement.
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If A(G) is connected with diameter three then...

[Casolo, D., Pacifici, Sanus (2016) ; Sass (2016)]

(a) There exists a prime p
such that G = PH, with
P a normal nonabelian
Sylow p-subgroup of G
and H a p-complement.
F(G) = P x A, where
A=Cu(P) < Z(G),
H/A is not nilpotent and
has cyclic Sylow
subgroups.
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If A(G) is connected with diameter three then...

[Casolo, D., Pacifici, Sanus (2016) ; Sass (2016)]

(a) There exists a prime p
such that G = PH, with
P a normal nonabelian
Sylow p-subgroup of G
and H a p-complement.
F(G) = P x A, where
A=Cu(P) < Z(G),
H/A is not nilpotent and
has cyclic Sylow
subgroups.

hG) =3
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If A(G) is connected with diameter three then...

(c) My =[P,G]/P" and
M; = 7i(P)/vi+1(P), for
2 < i < ¢ (where c is the
nilpotency class of P) are
chief factors of GG of the
same order p", with n
divisible by at least two
odd primes. G/Cg(M;)
embeds in I'(p™) as an
irreducible subgroup.
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If A(G) is connected with diameter three then...

(c) My =[P,G]/P" and
M; = 7i(P)/vi+1(P), for
2 < i < ¢ (where c is the
nilpotency class of P) are
chief factors of GG of the
same order p", with n
divisible by at least two
odd primes. G/Cg(M;)
embeds in I'(p™) as an
irreducible subgroup.

L") ={r—az? |a,x € K,a# 0,0 € Gal(K)} with K= GF(p")
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If A(G) is connected with diameter three then...
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If A(G) is connected with diameter three then...

|m| > 2lm2l —1
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If A(G) is connected with diameter three then...

¢ A(G/P) %
P, " m U {p} P’

FEI=E L A(G/s(P)

|m| > 2lm2l —1

= | U {p}| > 2™
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If A(G) is connected with diameter three then...

A(G/n(P) @ @
m U {p} T2
A(G/v3(P))
m U{p} T2
A(G)

|m| > 2lm2l —1

= | U {p}| > 2™
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If A(G) is connected with diameter three then...

Finally, setting d = |H/X|,
we have that |X/A| is
divisible by

(p" —1)/(™?® —1). Since ¢
must be at least 3, we get

'

3n P —1
|(;| > D i;;734:ji[‘ d >

> 2. (21 —1). 15,
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An extension of Palfy’'s Theorem

Let G be a solvable group and m C V(A(G)).
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A(G)[n] induced by 7 in A(G) contains at least one edge.
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least a K3.
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An extension of Palfy’'s Theorem

Let G be a solvable group and m C V(A(G)).

If |7| > 3, then by Palfy’s “Three Vertex Theorem” the subgraph
A(G)[n] induced by 7 in A(G) contains at least one edge.

Also, if |7| > 6, by elementary Ramsey Theory A(G)[n] contains at
least a K3.

Does |r| =5 imply K3 < A(G) ¢
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The complement graph

Let A be a graph. The complement of A is the graph A whose vertices
are those of A, and two vertices are adjacent in A if and only if they
are non-adjacent in A.

|
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The complement graph

Let A be a graph. The complement of A is the graph A whose vertices
are those of A, and two vertices are adjacent in A if and only if they
are non-adjacent in A.

|

The question on the previous slide is equivalent to the following:

Can Cs be a subgraph of A(G), for G solvable ?
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For G solvable, A(G) is bipartite!

Palfy’s “Three Vertex Theorem” can be rephrased as follows:
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For G solvable, A(G) is bipartite!

Palfy’s “Three Vertex Theorem” can be rephrased as follows:

Theorem (Palfy; 1998)

Let G be a solvable group. Then the graph A(G) does not contain any
cycle of length 3.
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For G solvable, A(G) is bipartite!

Palfy’s “Three Vertex Theorem” can be rephrased as follows:

Theorem (Palfy; 1998)

Let G be a solvable group. Then the graph A(G) does not contain any
cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 20187)

Let G be a solvable group. Then the graph A(G) does not contain any
cycle of odd length.
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For G solvable, A(G) is bipartite!

Palfy’s “Three Vertex Theorem” can be rephrased as follows:

Theorem (Palfy; 1998)

Let G be a solvable group. Then the graph A(G) does not contain any
cycle of length 3.

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici; 20187)

Let G be a solvable group. Then the graph A(G) does not contain any
cycle of odd length.

v

Note: as disconnected graphs with components of size > 1 show, A(G)
can have cycles of length 4.
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Some consequences

But the graphs containing no cycles of odd length are precisely the
bipartite graphs. Therefore the previous theorem asserts that, for any
solvable group G, the graph A(G) is bipartite.
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Some consequences

But the graphs containing no cycles of odd length are precisely the
bipartite graphs. Therefore the previous theorem asserts that, for any
solvable group G, the graph A(G) is bipartite. As an immediate
consequence:

Corollary

Let G be a solvable group. Then the set V(G) of the vertices of A(G) is
covered by two subsets, each inducing a complete subgraph in A(G).
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Let G be a solvable group. Then the set V(G) of the vertices of A(G) is
covered by two subsets, each inducing a complete subgraph in A(G).

In particular, for every subset S of V(G), at least half the vertices in S
are pairwise adjacent in A(G).
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Some consequences

But the graphs containing no cycles of odd length are precisely the
bipartite graphs. Therefore the previous theorem asserts that, for any
solvable group G, the graph A(G) is bipartite. As an immediate
consequence:

Let G be a solvable group. Then the set V(G) of the vertices of A(G) is
covered by two subsets, each inducing a complete subgraph in A(G).

In particular, for every subset S of V(G), at least half the vertices in S
are pairwise adjacent in A(G).

Hence: for G solvable, 7 C V(A(G));
m 7| > 7 implies Ky < A(
m 7| > 9 implies K5 < A(

[];
[7];...

Q)
G)
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Another remark:

Let G be a solvable group. If n is the maximum size of a complete
subgraph of A(G), then A(G) has at most 2n vertices.
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Another remark:

Let G be a solvable group. If n is the maximum size of a complete
subgraph of A(G), then A(G) has at most 2n vertices.

(B. Huppert) Any solvable group G has an irreducible character whose
degree is divisible by at least half the primes in V(G).
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Another remark:

Let G be a solvable group. If n is the maximum size of a complete
subgraph of A(G), then A(G) has at most 2n vertices.

(B. Huppert) Any solvable group G has an irreducible character whose
degree is divisible by at least half the primes in V(G).

The corollary above provides some (weak) evidence for this conjecture.
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Huppert's p — o conjecture

Let

necd(G)

and
o0(G) = max{|r(n)| : n € cd(G)}
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Huppert's p — o conjecture

Let

necd(G)

and
0(G) = max{|r(n)| : n € cd(G)}

Conjecture (p — o conjecture)
m [f G is solvable, then |p(G)| < 20(G)
m In general, |p(G)| < 30(G)

SL(2,3) and As show that these bounds would be best-possible
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Huppert's p — o conjecture

Let

necd(G)

and
o0(G) = max{|r(n)| : n € cd(G)}

Conjecture (p — o conjecture)

m [f G is solvable, then |p(G)| < 20(G)
m In general, |p(G)| < 30(Q)

The conjecture has been verified for simple groups (Alvis-Barry; 1991),
groups G with o(G) =1 (Manz; 1985), o0(G) = 2 (Gluck; 1991) and
with square-free character degrees (Gluck; 1991).
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Known bounds

Theorem (Manz, Wolf; 1993)
For G solvable, |p(G)| < 30(G) + 2
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Theorem (Manz, Wolf; 1993)

For G solvable, |p(G)| < 30(G) + 2

Theorem (Casolo, D.; 2009)
For any G, |p(G)| < To(G)
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Non-solvable groups

Theorem (Moreto, Tiep; 2008)

Let G be a group and m C V(A(G)). If |7| > 4, then at least two
vertices of m are adjacent in A(G) (i.e. a(A(G)) < 3).
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Non-solvable groups

Theorem (Moreto, Tiep; 2008)

Let G be a group and m C V(A(G)). If |7| > 4, then at least two
vertices of m are adjacent in A(G) (i.e. a(A(G)) < 3).

Problem
Classify the groups G with a(A(G)) = 3.
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Theorem (Khedri, D, Pacifici)

Let m C V(G) with |w| = 3. The subgraph of A(G) induced by 7 is
empty if and only if O”/(G) = S X A, where A is abelian and

S = SL(p*) or S = PSL(p*), p is a prime, a is a positive integer, and
m=A{p,q,r}, q,r # 2, q divides p* + 1 and r divides p® — 1.
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Theorem (Khedri, D, Pacifici)

Let m C V(G) with |w| = 3. The subgraph of A(G) induced by 7 is
empty if and only if O”/(G) = S X A, where A is abelian and

S = SL(p*) or S = PSL(p*), p is a prime, a is a positive integer, and
m=A{p,q,r}, q,r # 2, q divides p* + 1 and r divides p® — 1.

Observe that:
m The m-parts of the character degrees of G and S < G are the same

m p® is neither 4 nor a Mersenne nor a Fermat prime.
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Equivalently:

Theorem (Khedri, D, Pacifici)

Let m C V(G) with |7| = 3. The subgraph of A(G) induced by 7 is
empty if and only if there is a normal subgroup S of G with S = SL(p®)
or S = PSL(p®), such that Cg(S) has a normal abelian Hall
m-subgroup and G/SCg(S) is a ©’-group (and © = {p,q,r}, ¢,7 #2, q
divides p* + 1 and r divides p* — 1).
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Let m C V(G) with |7| = 3. The subgraph of A(G) induced by 7 is
empty if and only if there is a normal subgroup S of G with S = SL(p®)
or S = PSL(p®), such that Cg(S) has a normal abelian Hall
m-subgroup and G/SCg(S) is a ©’-group (and © = {p,q,r}, ¢,7 #2, q
divides p* + 1 and r divides p* — 1).
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Applications

Recall that, for S = SL(p®) or S = PSL(p%),
p=2 cd(S) = {1,290 —1,29,20 4 1}

p-—1
p# 2 cd(S) = {1,p" = 1,p% p" + 1, 5(p" + (=1) = )}, (1 > 5).

For every G, a(A(G)) < 3.
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Applications

Recall that, for S = SL(p®) or S = PSL(p%),
p=2 cd(S) = {1,290 —1,29,20 4 1}

p-—1
p# 2 cd(S) = {1,p" = 1,p% p" + 1, 5(p" + (=1) = )}, (1 > 5).

For every G, a(A(G)) < 3.

G non-solvable; G has only prime power degrees if and only if
G=Sx A with S= PSL(2,4) or PSL(2,8) and A is abelian.

A(G) has three connected components if and only if G = S x A with
S = PSL(2,2%) and A is abelian.
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Tools: orbit results

Let V be a faithful G-module and let ¢ be a prime divisor of |G].
We say that:

m (G,V) satisfies N if for every non-trivial v € V' there exists a
Q € Syl (G) such that Q< Cg(v).

m (G, V) satisfies C, if and for every non-trivial v € V there exists a
Q € Syl (G) such that Q < Z(Cg(v)).
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Tools: orbit results

Let V be a faithful G-module and let ¢ be a prime divisor of |G].
We say that:

m (G,V) satisfies N if for every non-trivial v € V' there exists a
Q € Syl,(G) such that Q < Cg(v).
m (G, V) satisfies C, if and for every non-trivial v € V there exists a
Q € Syl,(G) such that Q < Z(Cg(v)).
Examples:
(a) Let V =V(2,3); then (SL2(3), V) satisfies C; and
(GL2(3), V) satisfies Nj.
(b) Let |V| =", r prime, g | n and gt r™ — 1. Let T'(V) be
the semilinear group on V, i.e.

L(V)=I@")={x—az’ |a,xz € K,a # 0,0 € Gal(K)}

with K = GF(r").
Then (I'(V'), V) satisfies C,.
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Why

The condition N arises naturally. Consider the following situation:
(x): G =V x H, p, ¢ non-adjacent vertices of A(G), V minimal normal
in G, Cy(V)=1,and P € Syl,(H), P< H.
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So, for every 1 # X € Irr(V), p divides [G : Cg(A)]. Since A extends to
Cc (M), by Gallagher’s theorem we have
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Why

The condition N arises naturally. Consider the following situation:
(x): G =V x H, p, ¢ non-adjacent vertices of A(G), V minimal normal
in G, Cy(V)=1,and P € Syl,(H), P< H.

So, for every 1 # X € Irr(V), p divides [G : Cg(A)]. Since A extends to
Cc (M), by Gallagher’s theorem we have

{x(1) : x € Ir(GN)} = {B1)[G : Ca(N)] : B € Irr(Ca(A)/V)}-
Since p and ¢ are non-adjacent in A(G), it follows that

Cr(A) = Cg(A)/V contains a Sylow g-subgroup @ of H and that @ is
abelian and normal in Cg ().
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Why

The condition N arises naturally. Consider the following situation:
(x): G =V x H, p, ¢ non-adjacent vertices of A(G), V minimal normal
in G, Cy(V)=1,and P € Syl,(H), P< H.

So, for every 1 # X € Irr(V), p divides [G : Cg(A)]. Since A extends to
Cc (M), by Gallagher’s theorem we have

{x(1) : x € Ir(G[A)} = {BM)[G : Ca(N)] : B € Irr(Ca(A)/V)}

Since p and ¢ are non-adjacent in A(G), it follows that

Cr(A) = Cg(A)/V contains a Sylow g-subgroup @ of H and that @ is
abelian and normal in Cg ().

Hence, (H, V) satisfies Nj.
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Solvable groups

Theorem (Zhang; Wolf;1998)

If H is solvable and (H,V') satisfies Ny, then either
(a) H<T(V); or
(b) ¢ =3, |V| =32 and H = SLy(3) or GLa(3).
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Non-solvable groups: Casolo’s Theorem

For non-solvable groups we have this beautiful result (btw: its proof
doesn’t use the classification!).

Theorem (Casolo; 2010)
If (H,V) satisfies Cq and q # char(V'), then H < T'(V).
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Non-solvable groups: Casolo’s Theorem

For non-solvable groups we have this beautiful result (btw: its proof
doesn’t use the classification!).

Theorem (Casolo; 2010)
If (H,V) satisfies Cq and q # char(V'), then H < T'(V).

In order to use it in all reduction cases, we had to extend it slightly:

Proposition (Khedri, D, Pacifici)

If (H,V) satisfies Ny and (|H|,|V|) =1, then H <T(V).
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Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)

n(A*(G)) <2
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Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)

n(A*(G)) <2

Theorem (Kazarin; 1981/ Bertram-Herzog-Mann; 1991)

If A*(G) is not connected, then G = G/Z(G) = KH is a Frobenius
group and both K and H are abelian.
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Disconnected Conjugacy Class Graphs

Theorem (Kazarin; 1981/ Bertram, Herzog, Mann; 1991)
n(A*(G)) <2

Theorem (Kazarin; 1981/ Bertram-Herzog-Mann; 1991)

If A*(G) is not connected, then G = G/Z(G) = KH is a Frobenius
group and both K and H are abelian.

cs(G) = {1, |K], |H|}
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Non-adjacent vertices in A*(G)
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Non-adjacent vertices in A*(G)

Theorem (lto; 1956/ D.; 1998/ Casolo, D.; 2009)

If p, q are non-adjacent vertices of A*(G), then G is {p, q}-solvable
l{pﬂ}(G) =1 and G has abelian Sylow p-subgroups and q-subgroups.

50 / 60



Diameter: A*

Theorem (Casolo, D.; 1996)

diam(A*(G)) < 3;
the groups G with diam(A*(G)) = 3 are meta-abelian (and classified)
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Theorem (Casolo, D.; 1996)

diam(A*(G)) < 3;
the groups G with diam(A*(G)) = 3 are meta-abelian (and classified)

3 % 7

CS(035 A Cﬁ) = {1, 2, 6, 7, 14, 35}

A
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Independence number for A*(G)

Independence number a = largest size of a set of mutually
non-adjacent vertices.

52 /60



Independence number for A*(G)

Independence number a = largest size of a set of mutually
non-adjacent vertices.

Also: a(A) < 2 implies diam(A) < 3, n(A) < 2 and that disconnected
graphs have complete components.
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Independence number for A*(G)

Independence number a = largest size of a set of mutually
non-adjacent vertices.

Also: a(A) < 2 implies diam(A) < 3, n(A) < 2 and that disconnected
graphs have complete components.

Theorem (D.; 2007)
For any G, a(A*(G)) <2
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Complete graphs

Theorem (Casolo, D.; 2009)

If F(G) =1, then A*(G) is complete.
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A direct connection ?

cd(G)

A
7

!
cs(G)

\
—




2n+1 .

E extraspecial, |E| = p

cd(E) = {1,p"} cs(E) = {1,p}
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E extraspecial, |E| = p*"*1:

cd(E) = {1,p"} cs(E) = {1,p}

Cd(Cpn ZCp) = {1?p} CS(Cpn ZCp) = {17p’pn(p_1)}
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2n+1 .

E extraspecial, |E| = p

cd(E) = {1,p"} cs(E) = {1,p}

Cd(Cpn ! Cp) = {1?p} CS(Cpn ZCp) = {17p’pn(p_1)}

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and x € Irr(G). If x is primitive, then there exists a
x € G such that x(1), divides (|z%|,)3.
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2n+1 .

E extraspecial, |E| = p

cd(E) = {1,p"} cs(E) = {1,p}

cd(Cpr 1 Cp) = {1, p} cs(Cpn 1 Cp) = {17p’p71(p—1)}

Theorem (Isaacs, Keller, Meierfrankenfeld, Moreto; 2006)

Let p be a prime and x € Irr(G). If x is primitive, then there exists a
x € G such that x(1), divides (|z%|,)3.

| \

Problem

Does there exist, for every primitive x € Irt(G), an element © € G such

that x(1) divides |x&| ?

.




Theorem (Casolo, D.; 2009)

If p and q are distinct primes such that pq divides some n € cd(G),
then there exists some m € cs(G) such that pq divides m.
Equivalently: A(G) is a subgraph of A*(G).
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Theorem (Casolo, D.; 2009)

If p and q are distinct primes such that pq divides some n € cd(G),
then there exists some m € cs(G) such that pq divides m.
Equivalently: A(G) is a subgraph of A*(G).

Problem

Let p1,p2,...,pn be distinct primes such that p1 - ps - - - py, divides some
n € cd(G). Does there always exist some m € cs(G) such that
P1- P2 P divides m ¢
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