

Ilaria Colazzo

ilaria.colazzo@unisalento.it

Università del Salento

Lecce, September 5th, 2017

Set-theoretical solutions of the Yang-Baxter equation (1)

In 2017, Guarnieri and Vendramin introduced skew brace in order to find set-theoretical solution of the Yang-Baxter equation.

If X is a set, a (set-theoretical) solution of the Yang-Baxter equation $r: X \times X \to X \times X$ is a map such that the well-known braid equation

 $r_1r_2r_1 = r_2r_1r_2$

is satisfied, where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

Problem

Set-theoretical solutions of the Yang-Baxter equation (1)

In 2017, Guarnieri and Vendramin introduced skew brace in order to find set-theoretical solution of the Yang-Baxter equation.

If X is a set, a (set-theoretical) solution of the Yang-Baxter equation $r: X \times X \to X \times X$ is a map such that the well-known braid equation

 $r_1r_2r_1 = r_2r_1r_2$

is satisfied, where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

Problem

Set-theoretical solutions of the Yang-Baxter equation (1)

In 2017, Guarnieri and Vendramin introduced skew brace in order to find set-theoretical solution of the Yang-Baxter equation.

If X is a set, a (set-theoretical) solution of the Yang-Baxter equation $r: X \times X \to X \times X$ is a map such that the well-known braid equation

 $r_1r_2r_1 = r_2r_1r_2$

is satisfied, where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

Problem

Set-theoretical solutions of the Yang-Baxter equation (1)

In 2017, Guarnieri and Vendramin introduced skew brace in order to find set-theoretical solution of the Yang-Baxter equation.

If X is a set, a (set-theoretical) solution of the Yang-Baxter equation $r: X \times X \to X \times X$ is a map such that the well-known braid equation

 $r_1r_2r_1 = r_2r_1r_2$

is satisfied, where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

Problem

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$
- ▶ right non-degenerate if ρ_b is bijective, for every b ∈ >
- non-degenerate if it is both left and right non-degenerate.

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, r:X imes X o X imes X is a solution and $a,b\in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$
- ▶ right non-degenerate if ρ_b is bijective, for every b ∈ >
- non-degenerate if it is both left and right non-degenerate.

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, r:X imes X o X imes X is a solution and $a,b\in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$
- ▶ right non-degenerate if ρ_b is bijective, for every b ∈ >
- non-degenerate if it is both left and right non-degenerate.

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, r:X imes X o X imes X is a solution and $a,b\in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$
- ▶ right non-degenerate if ρ_b is bijective, for every b ∈ >
- non-degenerate if it is both left and right non-degenerate.

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, r:X imes X o X imes X is a solution and $a,b\in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$;
- right non-degenerate if ρ_b is bijective, for every b ∈
- non-degenerate if it is both left and right non-degenerate.

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, r:X imes X o X imes X is a solution and $a,b\in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$;
- ▶ right non-degenerate if ρ_b is bijective, for every $b \in X$;
- non-degenerate if it is both left and right non-degenerate.

Set-theoretical solutions of the Yang-Baxter equation (II)

In particular, if X is a set, r:X imes X o X imes X is a solution and $a,b\in X$, then we denote

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

where λ_a, ρ_b are maps from X into itself.

- involutive if $r^2 = id_{X \times X}$;
- ▶ left non-degenerate if λ_a is bijective, for every $a \in X$;
- ▶ right non-degenerate if ρ_b is bijective, for every $b \in X$;
- **non-degenerate** if it is both left and right non-degenerate.

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- In 2007, Rump introduced a generalization of the notion of radical rings named brace.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let *B* be a set with two operations + and \circ such that (B, +) is an abelian group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

 $a \circ (b+c) + a = a \circ b + a \circ c,$

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- ► In 2007, Rump introduced a generalization of the notion of radical rings named **brace**.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let *B* be a set with two operations + and \circ such that (B, +) is an abeliar group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

 $a \circ (b+c) + a = a \circ b + a \circ c,$

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- In 2007, Rump introduced a generalization of the notion of radical rings named brace.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let *B* be a set with two operations + and \circ such that (B, +) is an abeli group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

```
a \circ (b+c) + a = a \circ b + a \circ c,
```

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- In 2007, Rump introduced a generalization of the notion of radical rings named brace.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let B be a set with two operations + and \circ such that (B, +) is an abelian group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

 $a \circ (b+c) + a = a \circ b + a \circ c,$

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- In 2007, Rump introduced a generalization of the notion of radical rings named brace.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let B be a set with two operations + and \circ such that (B, +) is an abelian group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

 $a \circ (b+c) + a = a \circ b + a \circ c,$

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- In 2007, Rump introduced a generalization of the notion of radical rings named brace.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let B be a set with two operations + and \circ such that (B, +) is an abelian group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

$$a \circ (b+c) + a = a \circ b + a \circ c$$
,

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- ► In 1999, Etingof, Schedler, and Soloviev, and independently Gateva-Ivanova and Van den Bergh initially studied non-degenerate involutive solutions in terms of group theory.
- In 2007, Rump introduced a generalization of the notion of radical rings named brace.
- In 2014, Cedó, Jespers and Okniński provided an equivalent definition of braces in terms of groups.

Definition

Let B be a set with two operations + and \circ such that (B, +) is an abelian group and (B, \circ) is a group. We say that $(B, +, \circ)$ is a (left) brace if

$$a \circ (b+c) + a = a \circ b + a \circ c$$
,

holds for all $a, b, c \in B$.

For instance, if $(R, +, \cdot)$ is a radical ring and if we consider the adjoint operation defined by $a \circ b := a \cdot b + a + b$, for all $a, b \in R$, then $(R, +, \circ)$ is a brace.

I. Colazzo (UniSalento)

- In 2000, Lu, Yan and Zhu and independently Soloviev initially studied non-degenerate bijective solutions not necessarily involutive.
- In 2017, Guarnieri and Vendramin introduced a generalization of the notion of braces named skew brace.

Definition

Let *B* be a set with two operations + and \circ such that (B, +) and (B, \circ) groups. We say that $(B, +, \circ)$ is a skew (left) brace if

$$a \circ (b+c) = a \circ b - a + a \circ c,$$

- In 2000, Lu, Yan and Zhu and independently Soloviev initially studied non-degenerate bijective solutions not necessarily involutive.
- In 2017, Guarnieri and Vendramin introduced a generalization of the notion of braces named skew brace.

- In 2000, Lu, Yan and Zhu and independently Soloviev initially studied non-degenerate bijective solutions not necessarily involutive.
- In 2017, Guarnieri and Vendramin introduced a generalization of the notion of braces named skew brace.

Definition

Let *B* be a set with two operations + and \circ such that (B, +) and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

 $a \circ (b+c) = a \circ b - a + a \circ c,$

- In 2000, Lu, Yan and Zhu and independently Soloviev initially studied non-degenerate bijective solutions not necessarily involutive.
- In 2017, Guarnieri and Vendramin introduced a generalization of the notion of braces named skew brace.

Definition

Let B be a set with two operations + and \circ such that (B, +) and (B, \circ) are groups. We say that $(B, +, \circ)$ is a skew (left) brace if

 $a \circ (b+c) = a \circ b - a + a \circ c,$

- In 2000, Lu, Yan and Zhu and independently Soloviev initially studied non-degenerate bijective solutions not necessarily involutive.
- In 2017, Guarnieri and Vendramin introduced a generalization of the notion of braces named skew brace.

Definition

Let B be a set with two operations + and \circ such that (B, +) and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b+c) = a \circ b - a + a \circ c$$
,

- In 2000, Lu, Yan and Zhu and independently Soloviev initially studied non-degenerate bijective solutions not necessarily involutive.
- In 2017, Guarnieri and Vendramin introduced a generalization of the notion of braces named skew brace.

Definition

Let B be a set with two operations + and \circ such that (B, +) and (B, \circ) are groups. We say that $(B, +, \circ)$ is a **skew (left) brace** if

$$a \circ (b+c) = a \circ b - a + a \circ c,$$

If $(B,+,\circ)$ is a skew brace, then the map r:B imes B o B imes B defined by

$$r(a,b) := \left(a \circ \left(a^{-} + b\right), \left(a^{-} + b\right)^{-} \circ b\right)$$

is a solution, called solution associated to the skew brace B.

It is possible to prove that if B is a skew brace and $r: B \times B \rightarrow B \times B$ is the solution associated to B, then r is bijective and both left and right non-degenerate.

If $(B,+,\circ)$ is a skew brace, then the map r:B imes B o B imes B defined by

$$r(a,b) := \left(a \circ \left(a^{-} + b\right), \left(a^{-} + b\right)^{-} \circ b\right)$$

is a solution, called solution associated to the skew brace B.

It is possible to prove that if B is a skew brace and $r: B \times B \rightarrow B \times B$ is the solution associated to B, then r is bijective and both left and right non-degenerate.

If $(B,+,\circ)$ is a skew brace, then the map r:B imes B o B imes B defined by

$$r(a,b) := \left(a \circ \left(a^{-} + b
ight), \ \left(a^{-} + b
ight)^{-} \circ b
ight)$$

is a solution, called solution associated to the skew brace B.

It is possible to prove that if B is a skew brace and $r: B \times B \rightarrow B \times B$ is the solution associated to B, then r is bijective and both left and right non-degenerate.

- Clearly, if $(B, +, \circ)$ is a brace than it is also a skew brace.
- ▶ If (B, \circ) is a group and we define $a + b := a \circ b$, we have that $(B, +, \circ)$ is a skew brace that we call **zero skew brace**. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$r(a, b) = (a \circ a^{-} \circ b, b^{-} \circ a \circ b) = (b, b^{-} \circ a \circ b)$$

▶ If (B, \circ) is a group and we define $a + b := b \circ a$, we have that $(B, +, \circ)$ is a skew brace. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$r(a,b) = (a \circ b \circ a^{-}, a)$$

- Clearly, if $(B, +, \circ)$ is a brace than it is also a skew brace.
- If (B, ◦) is a group and we define a + b := a b, we have that (B, +, ◦) is a skew brace that we call zero skew brace. The solution associated to this skew brace is the map r : B × B → B × B defined by

$$r(a, b) = (a \circ a^{-} \circ b, b^{-} \circ a \circ b) = (b, b^{-} \circ a \circ b)$$

▶ If (B, \circ) is a group and we define $a + b := b \circ a$, we have that $(B, +, \circ)$ is a skew brace. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$r(a,b) = (a \circ b \circ a^{-}, a)$$

- Clearly, if $(B, +, \circ)$ is a brace than it is also a skew brace.
- If (B, ◦) is a group and we define a + b := a b, we have that (B, +, ◦) is a skew brace that we call zero skew brace. The solution associated to this skew brace is the map r : B × B → B × B defined by

$$r(a, b) = (a \circ a^{-} \circ b, b^{-} \circ a \circ b) = (b, b^{-} \circ a \circ b).$$

▶ If (B, \circ) is a group and we define $a + b := b \circ a$, we have that $(B, +, \circ)$ is a skew brace. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$r(a,b) = (a \circ b \circ a^-, a)$$

- Clearly, if $(B, +, \circ)$ is a brace than it is also a skew brace.
- If (B, \circ) is a group and we define $a + b := a \circ b$, we have that $(B, +, \circ)$ is a skew brace that we call **zero skew brace**. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$r(a, b) = (a \circ a^{-} \circ b, b^{-} \circ a \circ b) = (b, b^{-} \circ a \circ b).$$

▶ If (B, \circ) is a group and we define $a + b := b \circ a$, we have that $(B, +, \circ)$ is a skew brace. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$r(a,b) = (a \circ b \circ a^{-}, a)$$

- Clearly, if $(B, +, \circ)$ is a brace than it is also a skew brace.
- If (B, ◦) is a group and we define a + b := a b, we have that (B, +, ◦) is a skew brace that we call zero skew brace. The solution associated to this skew brace is the map r : B × B → B × B defined by

$$r(a, b) = (a \circ a^{-} \circ b, b^{-} \circ a \circ b) = (b, b^{-} \circ a \circ b).$$

▶ If (B, \circ) is a group and we define $a + b := b \circ a$, we have that $(B, +, \circ)$ is a skew brace. The solution associated to this skew brace is the map $r : B \times B \to B \times B$ defined by

$$\mathsf{r}\left(\mathsf{a},\mathsf{b}
ight)=\left(\mathsf{a}\circ\mathsf{b}\circ\mathsf{a}^{-},\ \mathsf{a}
ight).$$

- Clearly, if $(B, +, \circ)$ is a brace than it is also a skew brace.
- If (B, ◦) is a group and we define a + b := a b, we have that (B, +, ◦) is a skew brace that we call zero skew brace. The solution associated to this skew brace is the map r : B × B → B × B defined by

$$r(a, b) = (a \circ a^{-} \circ b, b^{-} \circ a \circ b) = (b, b^{-} \circ a \circ b).$$

If (B, ◦) is a group and we define a + b := b ◦ a, we have that (B, +, ◦) is a skew brace. The solution associated to this skew brace is the map r : B × B → B × B defined by

$$r\left(a,b
ight) =\left(a\circ b\circ a^{-},\;a
ight) .$$

If B is a skew brace, then we define the map $\lambda_a:B o B$ by

 $\lambda_{a}(b) = a \circ \left(a^{-} + b\right),$

for every $a \in B$. A normal subgroup of (B, \circ) is said to be an ideal of B if I + a = a + I and $\lambda_a(I) \subseteq I$, for every $a \in B$.

An important example of ideal is the socle defined by

 $Soc(B) := \{ a \mid a \in B, \forall b \in B \mid a+b = a \circ b, a+b = b+a \}.$

If B is a skew brace, then we define the map $\lambda_{a}:B
ightarrow B$ by

 $\lambda_{a}(b) = a \circ \left(a^{-} + b\right),$

for every $a \in B$. A normal subgroup of (B, \circ) is said to be an **ideal** of B if I + a = a + I and $\lambda_a(I) \subseteq I$, for every $a \in B$.

An important example of ideal is the socle defined by

 $Soc(B) := \{ a \mid a \in B, \forall b \in B \mid a+b = a \circ b, a+b = b+a \}$

If B is a skew brace, then we define the map $\lambda_{a}:B
ightarrow B$ by

 $\lambda_{a}(b) = a \circ \left(a^{-} + b\right),$

for every $a \in B$. A normal subgroup of (B, \circ) is said to be an **ideal** of B if I + a = a + I and $\lambda_a(I) \subseteq I$, for every $a \in B$.

An important example of ideal is the socle defined by

 $Soc(B) := \{ a \mid a \in B, \forall b \in B \mid a+b = a \circ b, a+b = b+a \}$

If B is a skew brace, then we define the map $\lambda_a:B o B$ by

$$\lambda_{a}(b)=a\circ\left(a^{-}+b\right),$$

for every $a \in B$. A normal subgroup of (B, \circ) is said to be an **ideal** of B if I + a = a + I and $\lambda_a(I) \subseteq I$, for every $a \in B$.

An important example of ideal is the socle defined by

 $\operatorname{Soc}(B) := \{ a \mid a \in B, \forall b \in B \mid a+b = a \circ b, a+b = b+a \}.$

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

If *B* is a skew brace then the **annihilator** is the set given by

Ann $(B) = \{a \mid a \in B \quad \forall b \in B \quad a \circ b = a + b = b + a = b \circ a\}.$

Note that

$$\operatorname{Ann}(B) = \operatorname{Soc}(B) \cap \operatorname{Z}(B)$$

where Z(B) is the centre of (B, \circ) , and that if $a \in Soc(B)$, then $a^- = -a$. Hence, it is easy to prove that Ann (B) is normal subgroup of both (B, \circ) and (B, +). Moreover, if $a \in Ann(B)$ and $b \in B$, then

$$\lambda_b(a) = -b + b \circ a = -b + b + a = a \in Ann(B)$$

Therefore, Ann (B) is an ideal of B.

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

If *B* is a skew brace then the **annihilator** is the set given by

Ann $(B) = \{a \mid a \in B \quad \forall b \in B \quad a \circ b = a + b = b + a = b \circ a\}.$

Note that

$$\operatorname{Ann}(B) = \operatorname{Soc}(B) \cap \operatorname{Z}(B),$$

where Z(B) is the centre of (B, \circ) , and that if $a \in Soc(B)$, then $a^- = -a$. Hence, it is easy to prove that Ann(B) is normal subgroup of both (B, \circ) and (B, +). Moreover, if $a \in Ann(B)$ and $b \in B$, then

$$\lambda_b(a) = -b + b \circ a = -b + b + a = a \in \operatorname{Ann}(B)$$

Therefore, Ann(B) is an ideal of B.

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

If *B* is a skew brace then the **annihilator** is the set given by

Ann $(B) = \{a \mid a \in B \quad \forall b \in B \quad a \circ b = a + b = b + a = b \circ a\}.$

Note that

$$\operatorname{Ann}(B) = \operatorname{Soc}(B) \cap \operatorname{Z}(B),$$

where Z(B) is the centre of (B, \circ) , and that if $a \in Soc(B)$, then $a^- = -a$. Hence, it is easy to prove that Ann (B) is normal subgroup of both (B, \circ) and (B, +). Moreover, if $a \in Ann(B)$ and $b \in B$, then

$$\lambda_b(a) = -b + b \circ a = -b + b + a = a \in Ann(B)$$

Therefore, Ann(B) is an ideal of B.

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

If *B* is a skew brace then the **annihilator** is the set given by

Ann $(B) = \{a \mid a \in B \quad \forall b \in B \quad a \circ b = a + b = b + a = b \circ a\}.$

Note that

$$\operatorname{Ann}(B) = \operatorname{Soc}(B) \cap \operatorname{Z}(B),$$

where Z(B) is the centre of (B, \circ) , and that if $a \in Soc(B)$, then $a^- = -a$. Hence, it is easy to prove that Ann(B) is normal subgroup of both (B, \circ) and (B, +). Moreover, if $a \in Ann(B)$ and $b \in B$, then

$$\lambda_b(a) = -b + b \circ a = -b + b + a = a \in Ann(B).$$

Therefore, Ann(B) is an ideal of B.

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

If *B* is a skew brace then the **annihilator** is the set given by

Ann $(B) = \{a \mid a \in B \quad \forall b \in B \quad a \circ b = a + b = b + a = b \circ a\}.$

Note that

$$\operatorname{Ann}(B) = \operatorname{Soc}(B) \cap \operatorname{Z}(B),$$

where Z(B) is the centre of (B, \circ) , and that if $a \in Soc(B)$, then $a^- = -a$. Hence, it is easy to prove that Ann(B) is normal subgroup of both (B, \circ) and (B, +). Moreover, if $a \in Ann(B)$ and $b \in B$, then

$$\lambda_b(a) = -b + b \circ a = -b + b + a = a \in Ann(B).$$

Therefore, Ann (B) is an ideal of B.

The aim

Describe all skew braces with non-trivial annihilator

Problem

How to describe all skew braces with non-trivial annihilator?

For this purpose, we recall some classical cohomological definition for groups that we use in the main theorem, that allow us to describe all skew braces with non-trivial annihilator.

The aim

Describe all skew braces with non-trivial annihilator

Problem

How to describe all skew braces with non-trivial annihilator?

For this purpose, we recall some classical cohomological definition for groups that we use in the main theorem, that allow us to describe all skew braces with non-trivial annihilator.

Tools 2-cocycles

If (B, +) is a group and (I, +) is an abelian group, then a map $\tau : B \times B \to I$ is a 2-cocycle from (B, +) with values in (I, +) if the following conditions hold:

- 1. $\tau(b_1 + b_2, b_3) + \tau(b_1, b_2) = \tau(b_1, b_2 + b_3) + \tau(b_2, b_3)$, for all $b_1, b_2, b_3 \in B$;
- 2. $au\left(b,0
 ight)= au\left(0,b
 ight)=0$, for every $b\in B$.

Tools 2-cocycles

> If (B, +) is a group and (I, +) is an abelian group, then a map $\tau : B \times B \to I$ is a 2-**cocycle from** (B, +) with values in (I, +) if the following conditions hold:

1. $\tau (b_1 + b_2, b_3) + \tau (b_1, b_2) = \tau (b_1, b_2 + b_3) + \tau (b_2, b_3)$, for all $b_1, b_2, b_3 \in B$;

2. $au\left(b,0
ight)= au\left(0,b
ight)=0$, for every $b\in B$.

Tools 2-cocycles

If (B, +) is a group and (I, +) is an abelian group, then a map $\tau : B \times B \to I$ is a 2-cocycle from (B, +) with values in (I, +) if the following conditions hold:

1. $\tau(b_1 + b_2, b_3) + \tau(b_1, b_2) = \tau(b_1, b_2 + b_3) + \tau(b_2, b_3)$, for all $b_1, b_2, b_3 \in B$;

2.
$$\tau(b,0) = \tau(0,b) = 0$$
, for every $b \in B$.

Skew brace Hochschild pair

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group. A pair (τ, θ) such that $\tau : B \times B \to I$ is a 2-cocycle from (B, +) with values in $I, \theta : B \times B \to A$ is a 2-cocycle of (B, \circ) with values in I and they satisfy

$$egin{aligned} & heta\,(b_1,\,b_2+b_3)+ au\,(b_2,\,b_3)=& heta\,(b_1,\,b_2)+ heta\,(b_1,\,b_3)\ &- au\,(b_1,\,-b_1+b_1\circ\,b_3)\ &+ au\,(b_1\circ\,b_2,\,-b_1+b_1\circ\,b_3) \end{aligned}$$

for all $b_1, b_2, b_3 \in B$, is said to be a Hochschild pair of the skew brace B with values in I.

Skew brace Hochschild pair

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group. A pair (τ, θ) such that $\tau : B \times B \to I$ is a 2-cocycle from (B, +) with values in $I, \theta : B \times B \to A$ is a 2-cocycle of (B, \circ) with values in I and they satisfy

$$egin{aligned} & heta\,(b_1,\,b_2+b_3)+ au\,(b_2,\,b_3) = & heta\,(b_1,\,b_2)+ heta\,(b_1,\,b_3) \ & - au\,(b_1,-b_1+b_1\circ b_3) \ & + au\,(b_1\circ b_2,-b_1+b_1\circ b_3) \end{aligned}$$

for all $b_1, b_2, b_3 \in B$, is said to be a Hochschild pair of the skew brace B with values in *I*.

Skew brace Hochschild pair

Definition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group. A pair (τ, θ) such that $\tau : B \times B \to I$ is a 2-cocycle from (B, +) with values in $I, \theta : B \times B \to A$ is a 2-cocycle of (B, \circ) with values in I and they satisfy

$$egin{aligned} & heta\,(b_1,\,b_2+b_3)+ au\,(b_2,\,b_3) = & heta\,(b_1,\,b_2)+ heta\,(b_1,\,b_3) \ &- au\,(b_1,-b_1+b_1\circ b_3) \ &+ au\,(b_1\circ b_2,-b_1+b_1\circ b_3) \end{aligned}$$

for all $b_1, b_2, b_3 \in B$, is said to be a Hochschild pair of the skew brace B with values in I.

Proposition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group and (τ, θ) a Hochschild pair of B with values in I. If we define on the cartesian product $B \times I$

> $(b_1, i_1) + (b_2, i_2) := (b_1 + b_2, i_1 + i_2 + \tau (b_1, b_2)),$ $(b_1, i_1) \circ (b_2, i_2) := (b_1 \circ b_2, i_1 + i_2 + \theta (b_1, b_2)),$

Proposition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group and (τ, θ) a Hochschild pair of B with values in I. If we define on the cartesian product $B \times I$

 $(b_1, i_1) + (b_2, i_2) := (b_1 + b_2, i_1 + i_2 + \tau (b_1, b_2)),$

 $(b_1, i_1) \circ (b_2, i_2) := (b_1 \circ b_2, \ i_1 + i_2 + \theta (b_1, b_2)),$

Proposition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group and (τ, θ) a Hochschild pair of B with values in I. If we define on the cartesian product $B \times I$

$$(b_1, i_1) + (b_2, i_2) := (b_1 + b_2, i_1 + i_2 + \tau (b_1, b_2)), (b_1, i_1) \circ (b_2, i_2) := (b_1 \circ b_2, i_1 + i_2 + \theta (b_1, b_2)),$$

Proposition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group and (τ, θ) a Hochschild pair of B with values in I. If we define on the cartesian product $B \times I$

$$(b_1, i_1) + (b_2, i_2) := (b_1 + b_2, i_1 + i_2 + \tau (b_1, b_2)), (b_1, i_1) \circ (b_2, i_2) := (b_1 \circ b_2, i_1 + i_2 + \theta (b_1, b_2)),$$

Proposition (F. Catino, I.C., P. Stefanelli, in preparation)

Let $(B, +, \circ)$ be a skew brace, (I, +) an abelian group and (τ, θ) a Hochschild pair of B with values in I. If we define on the cartesian product $B \times I$

$$(b_1, i_1) + (b_2, i_2) := (b_1 + b_2, i_1 + i_2 + \tau (b_1, b_2)), (b_1, i_1) \circ (b_2, i_2) := (b_1 \circ b_2, i_1 + i_2 + \theta (b_1, b_2)),$$

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

- Consider $\pi : B \to \overline{B}$ the projection map and $s : \overline{B} \to B$ a map such that $s(\overline{0}) = 0$ and $\pi(s(\overline{b})) = \overline{b}$, for every $\overline{b} \in \overline{B}$.
- Prove that $au: \overline{B} imes \overline{B} o I$ defined by

 $au\left(ar{b}_{1},ar{b}_{2}
ight)=s\left(ar{b}_{1}
ight)+s\left(ar{b}_{2}
ight)-s\left(ar{b}_{1}+ar{b}_{2}
ight)$

for all $ar{b}_1, ar{b}_2 \in ar{B}$, is a 2-cocycle from $(ar{B}, +)$ with values in (l, +)

• Prove that $\theta: \overline{B} \times \overline{B} \to A$, defined by

$$heta\left(ar{b}_{1},ar{b}_{2}
ight)=\left(s\left(ar{b}_{1}\circar{b}_{2}
ight)
ight)^{-}\circ s\left(ar{b}_{1}
ight)\circ s\left(ar{b}_{2}
ight).$$

for all $\overline{b}_1, \overline{b}_2 \in \overline{B}$, is a 2-cocycle from (\overline{B}, \circ) with values in (I, +).

Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by I (via τ and θ) is isomorphic to B.

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

- Consider $\pi : B \to \overline{B}$ the projection map and $s : \overline{B} \to B$ a map such that $s(\overline{0}) = 0$ and $\pi(s(\overline{b})) = \overline{b}$, for every $\overline{b} \in \overline{B}$.
- Prove that $au: \overline{B} \times \overline{B} \to I$ defined by

$$au\left(ar{b}_{1},ar{b}_{2}
ight)=s\left(ar{b}_{1}
ight)+s\left(ar{b}_{2}
ight)-s\left(ar{b}_{1}+ar{b}_{2}
ight)$$

for all $ar{b}_1, ar{b}_2 \in ar{B}$, is a 2-cocycle from $(ar{B}, +)$ with values in (l, +)

• Prove that $\theta: \overline{B} \times \overline{B} \to A$, defined by

$$heta\left(ar{b}_{1},ar{b}_{2}
ight)=\left(s\left(ar{b}_{1}\circar{b}_{2}
ight)
ight)^{-}\circ s\left(ar{b}_{1}
ight)\circ s\left(ar{b}_{2}
ight)$$

for all $ar{b}_1, ar{b}_2 \in ar{B}$, is a 2-cocycle from $(ar{B}, \circ)$ with values in (I, +).

Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by (via τ and θ) is isomorphic to B.

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

• Consider $\pi: B \to \overline{B}$ the projection map and $s: \overline{B} \to B$ a map such that $s(\overline{0}) = 0$ and $\pi(s(\overline{b})) = \overline{b}$, for every $\overline{b} \in \overline{B}$.

• Prove that $au: \bar{B} imes \bar{B} o I$ defined by

 $au\left(ar{b}_{1},ar{b}_{2}
ight)=s\left(ar{b}_{1}
ight)+s\left(ar{b}_{2}
ight)-s\left(ar{b}_{1}+ar{b}_{2}
ight)$

for all $ar{b}_1, ar{b}_2 \in ar{B}$, is a 2-cocycle from $(ar{B}, +)$ with values in (I, +)

• Prove that $heta: ar{B} imes ar{B} o A$, defined by

 $heta\left(ar{b}_{1},ar{b}_{2}
ight)=\left(s\left(ar{b}_{1}\circar{b}_{2}
ight)
ight)^{-}\circ s\left(ar{b}_{1}
ight)\circ s\left(ar{b}_{2}
ight)$

for all $ar{b}_1, ar{b}_2 \in ar{B}$, is a 2-cocycle from $(ar{B}, \circ)$ with values in (I, +).

Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by I (via τ and θ) is isomorphic to B.

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

- Consider $\pi : B \to \overline{B}$ the projection map and $s : \overline{B} \to B$ a map such that $s(\overline{0}) = 0$ and $\pi(s(\overline{b})) = \overline{b}$, for every $\overline{b} \in \overline{B}$.
- Prove that $au: \bar{B} \times \bar{B} \to I$ defined by

$$au\left(ar{b}_{1},ar{b}_{2}
ight)=s\left(ar{b}_{1}
ight)+s\left(ar{b}_{2}
ight)-s\left(ar{b}_{1}+ar{b}_{2}
ight),$$

for all $\overline{b}_1, \overline{b}_2 \in \overline{B}$, is a 2-cocycle from $(\overline{B}, +)$ with values in (I, +). \triangleright Prove that $\theta : \overline{B} \times \overline{B} \to A$, defined by

 $heta\left(ar{b}_{1},ar{b}_{2}
ight)=\left(s\left(ar{b}_{1}\circar{b}_{2}
ight)
ight)^{-}\circ s\left(ar{b}_{1}
ight)\circ s\left(ar{b}_{2}
ight).$

for all $\overline{b}_1, \overline{b}_2 \in \overline{B}$, is a 2-cocycle from (\overline{B}, \circ) with values in (I, +).

Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by (via τ and θ) is isomorphic to B.

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

Consider π : B → B the projection map and s : B → B a map such that s (0) = 0 and π (s (b)) = b, for every b ∈ B.
Prove that τ : B × B → I defined by
τ (b₁, b₂) = s (b₁) + s (b₂) - s (b₁ + b₂),
for all b₁, b₂ ∈ B, is a 2-cocycle from (B, +) with values in (I, +).
Prove that θ : B × B → A, defined by
θ (b₁, b₂) = (s (b₁ ∘ b₂))⁻ ∘ s (b₁) ∘ s (b₂),
for all b₁, b₂ ∈ B, is a 2-cocycle from (B, ∘) with values in (I, +).
Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by I

via au and heta) is isomorphic to B

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

Consider π : B → B the projection map and s : B → B a map such that s (0) = 0 and π (s (b)) = b, for every b ∈ B.
Prove that τ : B × B → I defined by
τ (b1, b2) = s (b1) + s (b2) - s (b1 + b2),
for all b1, b2 ∈ B, is a 2-cocycle from (B, +) with values in (I, +).
Prove that θ : B × B → A, defined by
θ (b1, b2) = (s (b1 ∘ b2))⁻ ∘ s (b1) ∘ s (b2),
for all b1, b2 ∈ B, is a 2-cocycle from (B, ∘) with values in (I, +).
Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by J

via au and heta) is isomorphic to B

Theorem (F. Catino, I.C., P. Stefanelli, in preparation)

Let B be a skew brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the skew brace $\overline{B} := B/I$ with values in I such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

Sketch of the proof.

Consider π : B → B the projection map and s : B → B a map such that s (0) = 0 and π (s (b)) = b, for every b ∈ B.
Prove that τ : B × B → I defined by
τ (b1, b2) = s (b1) + s (b2) - s (b1 + b2),
for all b1, b2 ∈ B, is a 2-cocycle from (B, +) with values in (I, +).
Prove that θ : B × B → A, defined by
θ (b1, b2) = (s (b1 ∘ b2))⁻ ∘ s (b1) ∘ s (b2),
for all b1, b2 ∈ B, is a 2-cocycle from (B, ∘) with values in (I, +).
Finally, (τ, θ) is a Hochschild pair and the Hochschild product of B by I

(via τ and θ) is isomorphic to B.

I. Colazzo (UniSalento)

We can specialize this result to braces, i.e., skew braces with the additive structure an abelian group.

Recall that if (B, +), (I, +) are abelian groups, then a map $\tau : B \times B \to I$ is a symmetric 2-cocycle from (B, +) with values in (I, +) if τ is a 2-cocycle and moreover the following condition holds:

3. $\tau(b_1, b_2) = \tau(b_2, b_1)$, for all $b_1, b_2 \in B$.

Corollary

Let $(B, +, \circ)$ be a brace, (I, +) an abelian group, (τ, θ) a Hochschild pair of the brace *B* with values in *I*, with τ symmetric. Then the Hochschild product of *B* by *I* (via τ and θ) is a brace.

Corollary

Let *B* be a brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the brace $\overline{B} := B/I$ with values in *I*, with τ **symmetric**, such that *B* is isomorphic to the Hochschild product of \overline{B} by *I* (via τ and θ).

We can specialize this result to braces, i.e., skew braces with the additive structure an abelian group.

Recall that if (B, +), (I, +) are abelian groups, then a map $\tau : B \times B \to I$ is a symmetric 2-cocycle from (B, +) with values in (I, +) if τ is a 2-cocycle and moreover the following condition holds:

3. $\tau(b_1, b_2) = \tau(b_2, b_1)$, for all $b_1, b_2 \in B$.

Corollary

Let $(B, +, \circ)$ be a brace, (I, +) an abelian group, (τ, θ) a Hochschild pair of the brace *B* with values in *I*, with τ symmetric. Then the Hochschild product of *B* by *I* (via τ and θ) is a brace.

Corollary

Let *B* be a brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the brace $\overline{B} := B/I$ with values in *I*, with τ **symmetric**, such that *B* is isomorphic to the Hochschild product of \overline{B} by *I* (via τ and θ).

We can specialize this result to braces, i.e., skew braces with the additive structure an abelian group.

Recall that if (B, +), (I, +) are abelian groups, then a map $\tau : B \times B \to I$ is a symmetric 2-cocycle from (B, +) with values in (I, +) if τ is a 2-cocycle and moreover the following condition holds:

3. $\tau(b_1, b_2) = \tau(b_2, b_1)$, for all $b_1, b_2 \in B$.

Corollary

Let $(B, +, \circ)$ be a brace, (I, +) an abelian group, (τ, θ) a Hochschild pair of the brace *B* with values in *I*, with τ symmetric. Then the Hochschild product of *B* by *I* (via τ and θ) is a brace.

Corollary

Let B be a brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the brace $\overline{B} := B/I$ with values in I, with τ symmetric, such that B is isomorphic to the Hochschild product of \overline{B} by I (via τ and θ).

We can specialize this result to braces, i.e., skew braces with the additive structure an abelian group.

Recall that if (B, +), (I, +) are abelian groups, then a map $\tau : B \times B \to I$ is a symmetric 2-cocycle from (B, +) with values in (I, +) if τ is a 2-cocycle and moreover the following condition holds:

3. $\tau(b_1, b_2) = \tau(b_2, b_1)$, for all $b_1, b_2 \in B$.

Corollary

Let $(B, +, \circ)$ be a brace, (I, +) an abelian group, (τ, θ) a Hochschild pair of the brace *B* with values in *I*, with τ symmetric. Then the Hochschild product of *B* by *I* (via τ and θ) is a brace.

Corollary

Let *B* be a brace such that Ann $(B) \neq 0$ and I := Ann (B). Then there exists a Hochschild pair (τ, θ) of the brace $\overline{B} := B/I$ with values in *I*, with τ symmetric, such that *B* is isomorphic to the Hochschild product of \overline{B} by *I* (via τ and θ).

Thanks for your attention!

