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Solutions of the YBE

Definition

Let X be a non-empty set. A set-theoretic solution of the

Yang-Baxter equation on X is a bijective map r : X × X → X × X

such that

r1r2r1 = r2r1r2,

where r1 = r × idX and r2 = idX × r are maps from X × X × X to

itself.

We write r(x , y) = (σx(y), γy (x)), for all x , y ∈ X .
The map r is involutive if r2 = idX 2 .
We say that r is non-degenerate if the maps σx , γx : X → X are
bijective, for all x ∈ X .
Convention. By a solution of the YBE we mean an involutive
non-degenerate set-theoretic solution of the Yang-Baxter equation.
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Solutions of the YBE

Let (X , r) be a solution of the YBE. Etingof, Schedler and Soloviev
introduced two groups associated to (X , r), its structure group

G (X , r) = 〈X | xy = σx(y)γy (x), ∀x , y ∈ X 〉,

where r(x , y) = (σx(y), γy (x)), and its permutation group

G(X , r) = 〈σx | x ∈ X 〉 ≤ SymX .

Furthermore, the map x 7→ σx (x ∈ X ) extends to a morphism of
groups ρ : G (X , r) → G(X , r).
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Braces and the Yang-Baxter equation

In 2007 Rump introduced braces as a generalization of radical rings
to study solutions of the YBE. The following definition is
equivalent to the original definition of Rump.

Definition

A left brace is a set B with two binary operations, + and ·, such
that (B ,+) is an abelian group, (B , ·) is a group, and for every

a, b, c ∈ B,

a · (b + c) + a = a · b + a · c .

Note that in a left brace B , 1 = 0 (taking a = 1 and b = c = 0 in
the above formula).
In any left brace B there is an action λ : (B , ·) → Aut(B ,+)
defined by λ(a) = λa and λa(b) = ab − a, for a, b ∈ B .
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Braces and the Yang-Baxter equation

Rump proved that each left brace B produces a solution of the
YBE: rB : B × B → B × B , rB(a, b) = (λa(b), λ

−1
λa(b)

(a)).

Definition

An ideal I of a left brace B is a normal subgroup I of the

multiplicative group of B such that λa(y) ∈ I for all a ∈ B and

y ∈ I .

It is easy to check that every ideal I of a left brace B also is a
subgroup of the additive group of B . Note that

a − b = bb−1a − b = λb(b
−1a),

thus a − b ∈ I if and only if b−1a ∈ I . Therefore the natural sum
and multiplication on B/I define a natural structure of left brace,
the quotient left brace of B modulo I .
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Braces and the Yang-Baxter equation

The socle of a left brace B is defined as the set

Soc(B) = {a ∈ B : λa = id} = {a ∈ B : a + b = ab for all b ∈ B}.

The socle of B is an ideal of B .
Let (X , r) be a solution of the YBE.
It is known that there exists a unique left brace structure over the
structure group G (X , r) such that the additive group of G (X , r) is
isomorphic to Z

(X ), and λx(y) = σx(y), for all x , y ∈ X . Then the
kernel of the map ρ : G (X , r) → G(X , r) is

Ker(ρ) = Soc(G (X , r)).

Therefore G(X , r) inherits a structure of left brace, such that ρ is a
homomorphism of left braces.
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Retraction

Let (X , r) be a solution of the YBE. Consider the equivalence
relation on X given by x ∼ y if and only if σx = σy . The retraction

of (X , r) is defined as the solution Ret(X , r) = (X/ ∼, r), where

r([x ], [y ]) = ([σx(y)], [γy (x)]),

for all x , y ∈ X . One defines recursively
Retm+1(X , r) = Ret(Retm(X , r)) for all m.

Definition

A solution (X , r) of the YBE is said to be a multipermutation

solution of level m if m is the minimal positive integer such that

Retm(X , r) has only one element. In this case, we write

mpl(X , r) = m. A solution (X , r) of the YBE is said to be

irretractable if Ret(X , r) = (X , r).
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Braces

Remark

Let B be a left brace. Using the operation

a ∗ b = ab − a − b = (λa − id)(b), a, b ∈ B ,

Rump introduced the series

B = B (1) ⊇ B (2) ⊇ B (3) ⊇ · · · ,

where B (m+1) = B (m) ∗ B is the additive group generated by

{(λa − id)(b) : a ∈ B (m), b ∈ B}

for all m ≥ 1. Rump proved that each B (m) is an ideal of B .
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Braces and multipermutation solutions

Theorem (Gateva-Ivanova)

Let (X , r) be a solution of the YBE. Let G = G (X , r). Then
(G , rG ) is a multipermutation solution if and only if (X , r) is a
multipermutation solution.

Theorem (C., Gateva-Ivanova, Smoktunowicz)

Let B be a nonzero left brace and let (B , r) be its associated

solution of the YBE. Then mpl(B , r) = m < ∞ if and only if

B (m+1) = 0 and B (m) 6= 0.
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Bieberbach groups

Definition

A Bieberbach group is a finitely generated torsion-free

abelian-by-finite group.

Theorem (Gateva-Ivanova, Van den Bergh)

Let (X , r) be a finite solution of the YBE. Then the structure

group G (X , r) is a Bieberbach group.
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Poly-Z groups

Recall that a group G is said to be poly-Z if it has a subnormal
series

{1} = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G

such that each quotient Gi/Gi−1 is isomorphic to Z.

Theorem (Jespers, Okniński)

Let (X , r) be a finite multipermutation solution of the YBE. Then

the structure group G (X , r) is poly-Z
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Left orderable groups

A group G is said to be left orderable if there is a total order < on
G such that for any x , y , z ∈ G , x < y implies zx < zy .

Theorem (Farkas)

Let G be a Bieberbach group. Then the following statements are

equivalent.

1 Every nontrivial subgroup of G has a nontrivial center.

2 G is a poly-Z group.

3 G is left orderable.

Corollary

Let (X , r) be a finite solution of the YBE. Then G (X , r) is poly-Z
if and only if it is left orderable.
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Main result

Theorem (Bachiller, C., Vendramin)

Let (X , r) be a finite non-degenerate involutive set-theoretic

solution of the Yang–Baxter equation. Then the following

statements are equivalent:

1 (X , r) is a multipermutation solution.

2 G (X , r) is left orderable.

3 G (X , r) is poly-Z.
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Proof

Proof. Let G = G (X , r) and G = G(X , r). By the above Corollary,
we have the equivalence between (2) and (3). The Theorem of
Jespers and Okniński is the implication (1) =⇒ (3).

Let us prove (2) =⇒ (1).

For that purpose let us assume that (X , r) is not a
multipermutation solution. By the Theorem of Gateva-Ivanova,
the solution (G , rG ) is not a multipermutation solution. This
implies that the solution (G, rG) is not a multipermutation solution.
By the Theorem of C., Gateva-Ivanova and Smoktunowicz, one
obtains that G (m) 6= {0} and G(m) 6= {0} for all m. Since G is
finite, there exists m such that G(m+1) = G(m) 6= 0.
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Proof

By the Theorem of Farkas, to prove that G is not left orderable it
suffices to prove that the non-trivial subgroup H = G (m+1) of
(G , ·) has trivial center.
Let z ∈ Z (H). Recall that

G/Soc(G ) ∼= G ≤ SymX .

Since Soc(G ) has finite index in G and G is torsion free, without
loss of generality we may assume that z ∈ Soc(G ). Notice that if
h ∈ H, then

λh(z) = hz − h = zh− h = z + h − h = z . (1)
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Proof

Let X1, . . . ,Xs be the orbits of X under the action of G(m). These
orbits are the orbits of X under the action of G (m) through the
map λ. Note that

H = G (m+1) = 〈(λa − id)(b) : a ∈ G (m), b ∈ G 〉+

= 〈(λa − id)(x) : a ∈ G (m), x ∈ X 〉+

= 〈y − x : x , y ∈ Xi , 1 ≤ i ≤ s〉+. (2)

The second equality follows from the fact that (G ,+) is generated
by X and λa is an automorphism of (G ,+). The third equality is
obtained using that λa(x) ∈ X for all x ∈ X and all a ∈ G .
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Proof

Since (G ,+) is the free abelian group with basis X , the element z
can be uniquely written as

z = z1 + · · ·+ zs ,

where each zi ∈ 〈Xi 〉+. From the uniqueness of the decomposition
of z and (1) one obtains that λh(zi ) = zi for all i ∈ {1, . . . , s} and
h ∈ H. Now write each zi as

zi =
∑

t∈Xi

ntt,

where each nx ∈ Z. By (2), we have that
∑

t∈Xi
nt = 0. This

decomposition is unique since (G ,+) is the free abelian group with
basis X . Let x , y ∈ Xi be such that x 6= y . Then there exists
g ∈ G (m) such that λg (x) = y .
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Proof

From G(m+1) = G(m) it follows

G (m) = G (m+1) + (Soc(G ) ∩ G (m)) = H + (Soc(G ) ∩ G (m)).

Thus g = g1 + g2, where g1 ∈ H and g2 ∈ Soc(G ) ∩ G (m). Since
g2 ∈ Soc(G ), g = g2g1. Therefore

y = λg (x) = λg2g1(x) = λg2λg1(x) = λg1(x).

Since zi = λg1(zi) =
∑

t∈Xi
ntλg1(t), we conclude that nx = ny .

Since
∑

t∈Xi
nt = 0, it follows that nt = 0 for all t ∈ Xi and all

i ∈ {1, . . . , s}. Therefore z = 0 = 1 and the result follows.
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Thank you for your attention!
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