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Introduction

Solutions of the YBE

Definition

Let X be a non-empty set. A set-theoretic solution of the
Yang-Baxter equation on X is a bijective map r: X x X — X x X
such that

rirarn = rrr,

where 1 = r X idx and rn, = idx X r are maps from X x X x X to
itself.

>

We write r(x,y) = (ox(y), vy (x)), for all x,y € X.

The map r is involutive if r? = id .

We say that r is non-degenerate if the maps oy, 7x: X — X are
bijective, for all x € X.

Convention. By a solution of the YBE we mean an involutive
non-degenerate set-theoretic solution of the Yang-Baxter equation.
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Solutions of the YBE

Let (X, r) be a solution of the YBE. Etingof, Schedler and Soloviev
introduced two groups associated to (X, r), its structure group

G(X,r) = (X[ xy = ax(y)wy(x), ¥x,y € X),
where r(x,y) = (0x(y),vy(x)), and its permutation group
G(X,r) = (ox| x € X) < Symy.

Furthermore, the map x — o (x € X) extends to a morphism of
groups p: G(X,r) = G(X,r).



Introduction

Braces and the Yang-Baxter equation

In 2007 Rump introduced braces as a generalization of radical rings
to study solutions of the YBE. The following definition is
equivalent to the original definition of Rump.

Definition

A left brace is a set B with two binary operations, + and -, such
that (B,+) is an abelian group, (B,-) is a group, and for every
a,b,c € B,

a-(b+c)+a=a-b+a-c.

Note that in a left brace B, 1 =0 (takinga=1and b=c=0n
the above formula).

In any left brace B there is an action \: (B,:) — Aut(B,+)
defined by A\(a) = A\, and A;(b) = ab — a, for a, b € B.



Introduction

Braces and the Yang-Baxter equation

Rump proved that each left brace B produces a solution of the
YBE: rg: Bx B — Bx B, rg(a b) = (As(b), A} )(2)):

Definition

An ideal | of a left brace B is a normal subgroup | of the
multiplicative group of B such that \,(y) € | for all a € B and
y el

It is easy to check that every ideal | of a left brace B also is a
subgroup of the additive group of B. Note that

a—b=bbta—b=\(bla),

thus a — b € | if and only if b~'a € /. Therefore the natural sum
and multiplication on B// define a natural structure of left brace,
the quotient left brace of B modulo /.
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Braces and the Yang-Baxter equation

The socle of a left brace B is defined as the set
Soc(B)={aeB:\;=id} ={ae B:a+ b=abforall bc B}.

The socle of B is an ideal of B.

Let (X, r) be a solution of the YBE.

It is known that there exists a unique left brace structure over the
structure group G(X, r) such that the additive group of G(X,r) is
isomorphic to Z(X), and A\ (y) = ax(y), for all x,y € X. Then the
kernel of the map p: G(X,r) = G(X,r) is

Ker(p) = Soc(G(X, r)).

Therefore G(X, r) inherits a structure of left brace, such that p is a
homomorphism of left braces.



Multipermutation solutions

Retraction

Let (X, r) be a solution of the YBE. Consider the equivalence
relation on X given by x ~ y if and only if o, = 0,. The retraction
of (X, r) is defined as the solution Ret(X, r) = (X/ ~,F), where

7([x], Y1) = ([ox(¥)], [y (X))

for all x,y € X. One defines recursively
Ret™ (X, r) = Ret(Ret™(X, r)) for all m.

Definition

A solution (X, r) of the YBE is said to be a multipermutation
solution of level m if m is the minimal positive integer such that
Ret™ (X, r) has only one element. In this case, we write

mpl(X, r) = m. A solution (X, r) of the YBE is said to be
irretractable if Ret(X,r) = (X, r).



Multipermutation solutions

Braces

Let B be a left brace. Using the operation

axb=ab—a—b=(\,—id)(b), a,be€ B,
Rump introduced the series
B=8BW>p?>5BB) ...

)

where B(m1) — B(m) 4 B is the additive group generated by

{(\, —id)(b): a€ B™ be B}

for all m > 1. Rump proved that each B("™ is an ideal of B.

i



Multipermutation solutions

Braces and multipermutation solutions

Theorem (Gateva-lvanova)

Let (X, r) be a solution of the YBE. Let G = G(X,r). Then
(G, rg) is a multipermutation solution if and only if (X,r) is a
multipermutation solution.

A\

Theorem (C., Gateva-lvanova, Smoktunowicz)

Let B be a nonzero left brace and let (B, r) be its associated
solution of the YBE. Then mpl(B, r) = m < oo if and only if
B(m+1) = 0 and B(™ £ 0.

A\



Groups and solutions

Bieberbach groups

A Bieberbach group is a finitely generated torsion-free
abelian-by-finite group.

Theorem (Gateva-lvanova, Van den Bergh)

Let (X, r) be a finite solution of the YBE. Then the structure
group G(X,r) is a Bieberbach group.




Groups and solutions

Poly-Z groups

Recall that a group G is said to be poly-Z if it has a subnormal
series

{1} =Gy< G <---<a4G, =G

such that each quotient G;/Gj_1 is isomorphic to Z.

Theorem (Jespers, Okniriski)

Let (X, r) be a finite multipermutation solution of the YBE. Then
the structure group G(X,r) is poly-Z




Groups and solutions

Left orderable groups

A group G is said to be left orderable if there is a total order < on
G such that for any x,y,z € G, x < y implies zx < zy.

Theorem (Farkas)

Let G be a Bieberbach group. Then the following statements are
equivalent.

@ Every nontrivial subgroup of G has a nontrivial center.
Q G is a poly-Z group.
_9 G is left orderable.

A\

Corollary

Let (X, r) be a finite solution of the YBE. Then G(X,r) is poly-Z
if and only if it is left orderable.

v



Main result

Main result

Theorem (Bachiller, C., Vendramin)

Let (X, r) be a finite non-degenerate involutive set-theoretic
solution of the Yang—Baxter equation. Then the following
statements are equivalent:

Q (X, r) is a multipermutation solution.
Q G(X,r) is left orderable.
Q G(X,r) is poly-Z.




Main result

Proof. Let G = G(X,r) and G = G(X, r). By the above Corollary,
we have the equivalence between (2) and (3). The Theorem of
Jespers and Okninski is the implication (1) = (3).

Let us prove (2) = (1).

For that purpose let us assume that (X, r) is not a
multipermutation solution. By the Theorem of Gateva-lvanova,
the solution (G, rg) is not a multipermutation solution. This
implies that the solution (G, rg) is not a multipermutation solution.
By the Theorem of C., Gateva-lvanova and Smoktunowicz, one
obtains that G(™ = {0} and G(™ = {0} for all m. Since G is
finite, there exists m such that G{mt1) = g(m) £ 0,



Main result

By the Theorem of Farkas, to prove that G is not left orderable it
suffices to prove that the non-trivial subgroup H = G(m+1) of
(G, ) has trivial center.

Let z € Z(H). Recall that

G/Soc(G) =G < Symy.

Since Soc(G) has finite index in G and G is torsion free, without
loss of generality we may assume that z € Soc(G). Notice that if
h € H, then

M(z)=hz—h=zh—h=z+h—h=1z (1)



Main result

Let Xi,...,Xs be the orbits of X under the action of G{™). These
orbits are the orbits of X under the action of G(™ through the
map A. Note that

H=GmY =\, —id)(b):ac G™ be G,

= (A —id)(x):ae G xeX),
:<y7X:Xay€Xi,1§i§S>+' (2)
The second equality follows from the fact that (G, +) is generated

by X and A, is an automorphism of (G, +). The third equality is
obtained using that \;(x) € X for all x € X and all a € G.



Main result

Since (G, +) is the free abelian group with basis X, the element z
can be uniquely written as

Z:ZI+"'+ZS,

where each z; € (Xj)1. From the uniqueness of the decomposition
of z and (1) one obtains that Ay(z;) = z for all i € {1,...,s} and
h € H. Now write each z; as

zi = Z ntt,

teX;

where each n, € Z. By (2), we have that }, . nr = 0. This

decomposition is unique since (G, +) is the free abelian group with

basis X. Let x,y € X; be such that x # y. Then there exists

g € G(™ such that A\g(x) = y.
I



Main result

From G(m+1) — g(m) it follows
GM = G(M+Y) 4 (Soc(G) N G™Y) = H + (Soc(G) N GM).

Thus g = g1 + g, where g1 € H and & € Soc(G) N G(™. Since
g € Soc(G), g = grg1. Therefore

Y = Xg(x) = Agag (X) = Ao Ay (X) = Agy (%)
Since zj = Ag, (2) = > ;e x. NtAg (t), we conclude that ny = ny.

Since ZteX; n; = 0, it follows that n; = 0 for all £ € X; and all
i€{l,...,s}. Therefore z=0 =1 and the result follows.
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Thank you for your attention!
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