

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamica extension of left cycle sets

A new family of dynamical extensions of left cycle sets

Marco Castelli

Advances in Group Theory and Application

Lecce, September 5-8 2017

Marco Castelli A new family of dynamical extensions of left cycle sets UniSalento

・ロト ・同ト ・ヨト ・ヨ

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets

• Basic definitions and results;

- Some links between left cycle sets and Group Theory;
- A new dynamical extension of left cycle sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

UniSalento

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets • Basic definitions and results;

- Some links between left cycle sets and Group Theory;
- A new dynamical extension of left cycle sets.

イロト イヨト イヨト

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets • Basic definitions and results;

• Some links between left cycle sets and Group Theory;

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

UniSalento

• A new dynamical extension of left cycle sets.

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation on a set X is a pair (X, r), where the map $r : X \times X \to X \times X$ is such that

 $r_1r_2r_1 = r_2r_1r_2$,

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

Problem (Drinfield, 1992)

Finding all the set-theoretic solutions of the Yang-Baxter equation.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation on a set X is a pair (X, r), where the map $r : X \times X \to X \times X$ is such that

$$r_1r_2r_1 = r_2r_1r_2$$
,

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

Problem (Drinfield, 1992)

Finding all the set-theoretic solutions of the Yang-Baxter equation.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called:

1) involutive if $r^2 = id_{X \times X}$;

2) non-degenerate if
$$\lambda_x, \rho_x \in Sym(X)$$
 for every $x \in X$;

3) square-free if
$$r(x, x) = (x, x)$$
 for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamica extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if r(x, x) = (x, x) for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if r(x, x) = (x, x) for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamica extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if
$$\lambda_x, \rho_x \in Sym(X)$$
 for every $x \in X$;

3) square-free if
$$r(x, x) = (x, x)$$
 for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamica extension of left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if
$$\lambda_x, \rho_x \in Sym(X)$$
 for every $x \in X$;

3) square-free if
$$r(x, x) = (x, x)$$
 for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

A new family of dynamical extensions of left cycle sets

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Marco Castelli

The solutions of the Yang-Baxter equation are in bijective corrispondence with **non-degenerate left cycle sets**, where

Definition (Rump, 2004)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

1)
$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$$
 for all $x, y, z \in X$;

 the left multiplication σ_x : X → X, y → x ⋅ y is bijective for every x ∈ X;

3)
$$q: X \longrightarrow X, x \longmapsto x \cdot x$$
 is bijective.

Furthermore, we will call (X, \cdot) square-free if $q = id_X$.

A new family of dynamical extensions of left cycle sets

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Marco Castelli

The solutions of the Yang-Baxter equation are in bijective corrispondence with **non-degenerate left cycle sets**, where

Definition (Rump, 2004)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;

 the left multiplication σ_x : X → X, y → x ⋅ y is bijective for every x ∈ X;

3) $q: X \longrightarrow X, x \longmapsto x \cdot x$ is bijective.

Furthermore, we will call (X, \cdot) square-free if $q = id_X$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

UniSalento

A new family of dynamical extensions of left cycle sets

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Marco Castelli

The solutions of the Yang-Baxter equation are in bijective corrispondence with **non-degenerate left cycle sets**, where

Definition (Rump, 2004)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;

 the left multiplication σ_x : X → X, y → x ⋅ y is bijective for every x ∈ X;

3) $q: X \longrightarrow X, x \longmapsto x \cdot x$ is bijective.

Furthermore, we will call (X, \cdot) square-free if $q = id_X$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

A new family of dynamical extensions of left cycle sets

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets The solutions of the Yang-Baxter equation are in bijective corrispondence with **non-degenerate left cycle sets**, where

Definition (Rump, 2004)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- the left multiplication σ_x : X → X, y → x ⋅ y is bijective for every x ∈ X;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

UniSalento

3) $\mathfrak{q}: X \longrightarrow X, \ x \longmapsto x \cdot x$ is bijective.

Furthermore, we will call (X, \cdot) square-free if $q = id_X$.

A new family of dynamical extensions of left cycle sets

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets The solutions of the Yang-Baxter equation are in bijective corrispondence with **non-degenerate left cycle sets**, where

Definition (Rump, 2004)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- the left multiplication σ_x : X → X, y → x ⋅ y is bijective for every x ∈ X;

UniSalento

3) $q: X \longrightarrow X, x \longmapsto x \cdot x$ is bijective.

Furthermore, we will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Marco Castelli

A new family of dynamical extensions of left cycle sets

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets The solutions of the Yang-Baxter equation are in bijective corrispondence with **non-degenerate left cycle sets**, where

Definition (Rump, 2004)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- the left multiplication σ_x : X → X, y → x ⋅ y is bijective for every x ∈ X;

・ロト ・聞 ト ・ ヨト ・ ヨトー

UniSalento

3) $q: X \longrightarrow X, x \longmapsto x \cdot x$ is bijective.

Furthermore, we will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Non-degenerate left cycle sets

Example

If X is the set $\{1, 2, 3\}$ and \cdot the binary operation on X given by $\sigma_1 = \sigma_2 := id_X$ and $\sigma_3 := (12)$, then the pair (X, \cdot) is a non-degenerate left cycle set. Its multiplication table is

•	1	2	3
1	1	2	3
2	1	2	3
3	2	1	3

イロト イヨト イヨト

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Left cycle sets and Yang-Baxter equation

Theorem (Rump, 2004)

If (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$ then the pair (X, \cdot) , where \cdot is given by $x \cdot y := \lambda_x^{-1}(y)$ for every $x, y \in X$, is a left cycle set called the **associated left cycle set**.

Vice versa if (X, \cdot) is a non-degenerate left cycle set and σ_x its left multiplication then, the pair (X, r), where $r(x, y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$ for every $x, y \in X$, is a solution and we call it the **associated solution**.

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Left cycle sets and Yang-Baxter equation

Theorem (Rump, 2004)

If (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$ then the pair (X, \cdot) , where \cdot is given by $x \cdot y := \lambda_x^{-1}(y)$ for every $x, y \in X$, is a left cycle set called the **associated left cycle set**. Vice versa if (X, \cdot) is a non-degenerate left cycle set and σ_x its left multiplication then, the pair (X, r), where $r(x, y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$ for every $x, y \in X$, is a solution and we call it the **associated solution**.

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ...

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The retraction of a left cycle sets

Definition (Etingov, Schedler, Soloviev, 1999)

Let X be a non-degenerate left cycle set and \sim the relation on X given by

$$x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$$

Then \sim is a congruence called the **retract relation**. of X and X/ \sim is a non-degenerate left cycle set.

Definitior

A left cycle set (X, \cdot) is said **irretractable** if $X = X / \sim$, otherwise X is called **retractable**.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The retraction of a left cycle sets

Definition (Etingov, Schedler, Soloviev, 1999)

Let X be a non-degenerate left cycle set and \sim the relation on X given by

$$x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$$

Then \sim is a congruence called the **retract relation**. of X and X/ \sim is a non-degenerate left cycle set.

Definition

A left cycle set (X, \cdot) is said **irretractable** if $X = X / \sim$, otherwise X is called **retractable**.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

An example of retractable left cycle set

Example

Let X be a non-empty set and $\alpha \in Sym(X)$. Let \cdot be the binary operation on X given by

$$x \cdot y := \alpha(y)$$

for all $x, y \in X$. Then (X, \cdot) is a retractable left cycle set: indeed, $\sigma_x = \alpha$ for every $x \in X$.

《曰》 《圖》 《臣》 《臣》

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

An example of irretractable left cycle set

Example

Let $X := \{1, 2, 3, 4\}$ and \cdot be the operation on X given by

$$i \cdot j := \sigma_i(j)$$

for all $i, j \in X$, where $\sigma_i \in Sym(X)$ for all $i \in X$ and they are given by:

 $\sigma_1 := (34)$ $\sigma_2 := (1423)$ $\sigma_3 := (1324)$ $\sigma_4 := (12)$

<ロト <部ト < 注入 < 注入

UniSalento

Then (X, \cdot) is an irretractable left cycle set.

Marco Castelli

A conjecture about left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets

In 2004 Gateva-Ivanova posed the following conjecture:

Conjecture (Gateva-Ivanova, 2004)

Every square-free left cycle set X such that $2 \leq |X| < \infty$ is retractable.

vhere

Definition

A left cycle set (X, \cdot) is said square-free if q(x) = x for all $x \in X$.

イロト イヨト イヨト イヨト

UniSalento

A conjecture about left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

In 2004 Gateva-Ivanova posed the following conjecture:

Conjecture (Gateva-Ivanova, 2004)

Every square-free left cycle set X such that $2 \leq |X| < \infty$ is retractable.

where

Definition

A left cycle set (X, \cdot) is said square-free if q(x) = x for all $x \in X$.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamica extension of left cycle sets

The structure group of a left cycle set

Definition

Let (X, \cdot) be a non-degenerate left cycle set. Put $t_{x,y} := \sigma_x^{-1}(y)$ and $z_{x,y} := \sigma_x^{-1}(y) \cdot x$ for every $x, y \in X$. Then the group

$$G(X) := < X | xy = t_{x,y} z_{x,y}$$
 for every x,y $\in X >$

イロト イヨト イヨト イヨト

UniSalento

is called the **structure group** of the left cycle set (X, \cdot) .

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The structure group of a left cycle set

Theorem

Let X be a non-degenerate left cycle set. Then the structure group G(X) is

- Solvable (Etingov, Schedler, Soloviev);
- **Bieberbach** (*Gateva-Ivanova*, *Van den Bergh*);
- Garside (Chouraqui).

・ロト・西・・田・・田・ うくの

UniSalento

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The structure group of a left cycle set

Theorem

Let X be a non-degenerate left cycle set. Then the structure group G(X) is

- Solvable (Etingov, Schedler, Soloviev);
- **Bieberbach** (*Gateva-Ivanova*, *Van den Bergh*);
- Garside (Chouraqui).

< □ ▶ < 圕 ▶ < 콜 ▶ < 콜 ▶ < 콜 ▶ 를 ♡ Q.
UniSalento

Marco Castelli

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The structure group of a left cycle set

Theorem

Let X be a non-degenerate left cycle set. Then the structure group G(X) is

- **Solvable** (*Etingov*, *Schedler*, *Soloviev*);
- **Bieberbach** (*Gateva-Ivanova*, *Van den Bergh*);
- Garside (Chouraqui).

▲□▶▲륨▶▲불▶▲불▶ 불 ∽의 UniSalento

Marco Castelli

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The structure group of a left cycle set

Problem

Finding all the non-degenerate left cycle sets.

Application

Construction of non-trivial examples of groups having interesting properties.

▲日▼▲□▼▲□▼▲□▼ 2000

UniSalento

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

The structure group of a left cycle set

Problem

Finding all the non-degenerate left cycle sets.

Application

Construction of non-trivial examples of groups having interesting properties.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Irretractable left cycle sets and poly- $\ensuremath{\mathbb{Z}}$ groups

Theorem (Bachiller, Cedó, Vendramin, 2017)

Let X be an irretractable non-degenerate left cycle set. Then the structure group G(X) is not a poly- \mathbb{Z} group.

vhere

Definition

A group G is called a poly- \mathbb{Z} group if G has a subnormal series

$$<1> \triangleleft G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$$

such that $G_{i+1}/G_i \cong \mathbb{Z}$ for every $i \in \{0, \ldots, n-1\}$.

Marco Castelli A new family of dynamical extensions of left cycle sets UniSalento

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Irretractable left cycle sets and poly- $\ensuremath{\mathbb{Z}}$ groups

Theorem (Bachiller, Cedó, Vendramin, 2017)

Let X be an irretractable non-degenerate left cycle set. Then the structure group G(X) is not a poly- \mathbb{Z} group.

where

Definition

A group G is called a poly- \mathbb{Z} group if G has a subnormal series

$$<1> \lhd G_0 \lhd G_1 \lhd \cdots \lhd G_n = G$$

イロト イヨト イヨト イヨト

UniSalento

such that $G_{i+1}/G_i \cong \mathbb{Z}$ for every $i \in \{0, \ldots, n-1\}$.

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Irretractable left cycle sets and poly- $\ensuremath{\mathbb{Z}}$ groups

The poly- $\ensuremath{\mathbb{Z}}$ groups verify an important conjecture due to Kaplansky:

Conjecture (Kaplansky)

Let K be a field and G a torsion-free group. Then the group ring K[G] does not contain any non-trivial units.

New irretractable left cycle sets allow us to construct new non-trivial examples of torsion-free groups that are not poly- \mathbb{Z} groups. In particular, one can use these groups for testing Kaplansky's conjecture.

< ロト < 同ト < ヨト < ヨト

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Irretractable left cycle sets and poly- $\ensuremath{\mathbb{Z}}$ groups

The poly- $\ensuremath{\mathbb{Z}}$ groups verify an important conjecture due to Kaplansky:

Conjecture (Kaplansky)

Let K be a field and G a torsion-free group. Then the group ring K[G] does not contain any non-trivial units.

New irretractable left cycle sets allow us to construct new non-trivial examples of torsion-free groups that are not poly- \mathbb{Z} groups. In particular, one can use these groups for testing Kaplansky's conjecture.

・ロト ・得ト ・ヨト ・ヨ

A new construction of left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets Let X be a left cycle set, S a non-empty set and $\alpha : X \times X \times S \longrightarrow Sym(S)$, $(i, j, s) \mapsto \alpha_{i,j}(s, -)$. Then α is said **dynamical cocycle** of X if and only if

 $\alpha_{i\cdot j,i\cdot k}(\alpha_{i,j}(r,s),\alpha_{i,k}(r,t)) = \alpha_{j\cdot i,j\cdot k}(\alpha_{j,i}(s,r),\alpha_{j,k}(s,t)).$

for every $i, j, k \in X$, $s, t \in S$.

Proposition (Vendramin, 2015)

If α is a dynamical cocycle then $S \times_{\alpha} X := (S \times X, \cdot)$ is a left cycle set, where

 $(s,i) \cdot (t,j) := (\alpha_{ij}(s,t), i \cdot j),$

イロト イヨト イヨト イヨト

UniSalento

and we will call $S \times_{\alpha} X$ dynamical extension of X by α .

Marco Castelli A new family of dynamical extensions of left cycle sets

Definition

A new construction of left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets Let X be a left cycle set, S a non-empty set and $\alpha: X \times X \times S \longrightarrow Sym(S)$, $(i, j, s) \mapsto \alpha_{i,j}(s, -)$. Then α is said **dynamical cocycle** of X if and only if

$$\alpha_{i\cdot j,i\cdot k}(\alpha_{i,j}(r,s),\alpha_{i,k}(r,t)) = \alpha_{j\cdot i,j\cdot k}(\alpha_{j,i}(s,r),\alpha_{j,k}(s,t)).$$

for every $i, j, k \in X$, $s, t \in S$.

Proposition (Vendramin, 2015)

If α is a dynamical cocycle then $S \times_{\alpha} X := (S \times X, \cdot)$ is a left cycle set, where

$$(s,i)\cdot(t,j):=(\alpha_{ij}(s,t),i\cdot j),$$

and we will call $S \times_{\alpha} X$ dynamical extension of X by α .

Marco Castelli A new family of dynamical extensions of left cycle sets

Definition

UniSalento

イロト イヨト イヨト イヨト

A new construction of left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets Let X be a left cycle set, S a non-empty set and $\alpha: X \times X \times S \longrightarrow Sym(S)$, $(i, j, s) \mapsto \alpha_{i,j}(s, -)$. Then α is said **dynamical cocycle** of X if and only if

$$\alpha_{i\cdot j,i\cdot k}(\alpha_{i,j}(r,s),\alpha_{i,k}(r,t)) = \alpha_{j\cdot i,j\cdot k}(\alpha_{j,i}(s,r),\alpha_{j,k}(s,t)).$$

for every $i, j, k \in X$, $s, t \in S$.

Proposition (Vendramin, 2015)

If α is a dynamical cocycle then $S \times_{\alpha} X := (S \times X, \cdot)$ is a left cycle set, where

$$(s,i) \cdot (t,j) := (\alpha_{ij}(s,t), i \cdot j),$$

<ロ> (日) (日) (日) (日) (日)

UniSalento

and we will call $S \times_{\alpha} X$ dynamical extension of X by α .

Marco Castelli

A new family of dynamical extensions of left cycle sets

Definition

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cyc sets and Group Theory

A new dynamical extension of left cycle sets In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{a, b\}$ be the left cycle set given by $x \cdot y = y$ for every $x, y \in X$ and let $S := \{1, 2, 3, 4\}$ be a set. Let $\alpha : X \times X \times S \longrightarrow Sym(S)$ given by:

$$\begin{aligned} &\alpha(a, a, 1) = \alpha(a, a, 2) = \alpha(b, b, 1) = \alpha(b, b, 2) := (34);\\ &\alpha(a, a, 3) = \alpha(a, a, 4) = \alpha(b, b, 3) = \alpha(b, b, 4) := (12);\\ &\alpha(a, b, 1) = \alpha(a, b, 3) = \alpha(b, a, 1) = \alpha(b, a, 3) := id_5;\\ &\alpha(a, b, 2) = \alpha(a, b, 4) = \alpha(b, a, 2) = \alpha(b, a, 4) := (13)(24). \end{aligned}$$

Then $X \times_{\alpha} S$ is a square-free irretractable left cycle set of cardinality 8.

UniSalento

This is the square-free irretractable left cycle set of minimal cardinality.

Marco Castelli

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{a, b\}$ be the left cycle set given by $x \cdot y = y$ for every $x, y \in X$ and let $S := \{1, 2, 3, 4\}$ be a set. Let $\alpha : X \times X \times S \longrightarrow Sym(S)$ given by:

$$\begin{aligned} &\alpha(a, a, 1) = \alpha(a, a, 2) = \alpha(b, b, 1) = \alpha(b, b, 2) := (34);\\ &\alpha(a, a, 3) = \alpha(a, a, 4) = \alpha(b, b, 3) = \alpha(b, b, 4) := (12);\\ &\alpha(a, b, 1) = \alpha(a, b, 3) = \alpha(b, a, 1) = \alpha(b, a, 3) := id_5;\\ &\alpha(a, b, 2) = \alpha(a, b, 4) = \alpha(b, a, 2) = \alpha(b, a, 4) := (13)(24). \end{aligned}$$

Then $X \times_{\alpha} S$ is a square-free irretractable left cycle set of cardinality 8.

UniSalento

This is the square-free irretractable left cycle set of minimal cardinality.

Marco Castelli

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{a, b\}$ be the left cycle set given by $x \cdot y = y$ for every $x, y \in X$ and let $S := \{1, 2, 3, 4\}$ be a set. Let $\alpha : X \times X \times S \longrightarrow Sym(S)$ given by:

$$\begin{aligned} &\alpha(a, a, 1) = \alpha(a, a, 2) = \alpha(b, b, 1) = \alpha(b, b, 2) := (34);\\ &\alpha(a, a, 3) = \alpha(a, a, 4) = \alpha(b, b, 3) = \alpha(b, b, 4) := (12);\\ &\alpha(a, b, 1) = \alpha(a, b, 3) = \alpha(b, a, 1) = \alpha(b, a, 3) := id_5;\\ &\alpha(a, b, 2) = \alpha(a, b, 4) = \alpha(b, a, 2) = \alpha(b, a, 4) := (13)(24). \end{aligned}$$

Then $X \times_{\alpha} S$ is a square-free irretractable left cycle set of cardinality 8.

UniSalento

This is the square-free irretractable left cycle set of minimal cardinality.

Marco Castelli

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{a, b\}$ be the left cycle set given by $x \cdot y = y$ for every $x, y \in X$ and let $S := \{1, 2, 3, 4\}$ be a set. Let $\alpha : X \times X \times S \longrightarrow Sym(S)$ given by:

$$\begin{aligned} &\alpha(a, a, 1) = \alpha(a, a, 2) = \alpha(b, b, 1) = \alpha(b, b, 2) := (34);\\ &\alpha(a, a, 3) = \alpha(a, a, 4) = \alpha(b, b, 3) = \alpha(b, b, 4) := (12);\\ &\alpha(a, b, 1) = \alpha(a, b, 3) = \alpha(b, a, 1) = \alpha(b, a, 3) := id_5;\\ &\alpha(a, b, 2) = \alpha(a, b, 4) = \alpha(b, a, 2) = \alpha(b, a, 4) := (13)(24). \end{aligned}$$

Then $X \times_{\alpha} S$ is a square-free irretractable left cycle set of cardinality 8.

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets In 2016 Bachiller, Cedó, Jespers and Okniński found a new dynamical extension of left cycle sets which allows to construct new (irretractable) left cycle sets.

Marco Castelli A new family of dynamical extensions of left cycle sets

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

An example of dynamical extension

Theorem (Bachiller, Cedó, Jespers and Okniński, 2016)

Let A, B be non-trivial **abelian groups**, $S := A \times B$ and let I be the left cycle set given by $i \cdot j := j$ for every $i, j \in I$ a set with |I| > 1. Let $\varphi_1 : A \longrightarrow B$ be a function such that $\varphi_1(-a) = \varphi_1(a)$ for all $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be a **homomorphism**. Let $\alpha : I \times I \times S \longrightarrow Sym(S)$ given by

$$\alpha(i,j,(a,b))(c,d) := \begin{cases} (c,d-\varphi_1(a-c)), & \text{if } i=j\\ (c-\varphi_2(b),d), & \text{if } i\neq j \end{cases}$$

for all $i, j \in I$, $a, c \in A$ and $b, d \in B$. Then $X(A, B, I) := S \times_{\alpha} I$ is a left cycle set and it is irretractable whenever $\varphi_1^{-1}(\{0\}) = \{0\}$ and φ_2 is injective.

Marco Castelli A new family of dynamical extensions of left cycle sets <ロ> (日) (日) (日) (日) (日)

Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets

An example of dynamical extension

Theorem (Bachiller, Cedó, Jespers and Okniński, 2016)

Let A, B be non-trivial **abelian groups**, $S := A \times B$ and let I be the left cycle set given by $i \cdot j := j$ for every $i, j \in I$ a set with |I| > 1. Let $\varphi_1 : A \longrightarrow B$ be a function such that $\varphi_1(-a) = \varphi_1(a)$ for all $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be a **homomorphism**.Let $\alpha : I \times I \times S \longrightarrow Sym(S)$ given by

$$\alpha(i,j,(a,b))(c,d) := \begin{cases} (c,d-\varphi_1(a-c)), & \text{if } i=j\\ (c-\varphi_2(b),d), & \text{if } i\neq j \end{cases}$$

for all $i, j \in I$, $a, c \in A$ and $b, d \in B$. Then $X(A, B, I) := S \times_{\alpha} I$ is a left cycle set and it is irretractable whenever $\varphi_1^{-1}(\{0\}) = \{0\}$ and φ_2 is injective.

UniSalento

Marco Castelli

A new dynamical extension of left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets

A larger family of irretractable left cycle set is obtained by M. C., Francesco Catino and Giuseppina Pinto.

Let *I* be a left non-degenerate cycle set, let *A*, *B* be non-empty sets, $\gamma : B \longrightarrow Sym(A), \ \beta : A \times A \times I \longrightarrow Sym(B), \ S := A \times B$ and $\alpha : I \times I \times S \longrightarrow Sym(S)$ given by

$$\alpha(i,j,(a,b))(c,d) := \begin{cases} (c,\beta_{(a,c,i)}(d)), & \text{if } i = j \\ (\gamma_b(c),d), & \text{if } i \neq j \end{cases}$$

for all $i, j \in I$, $a, c \in A$ and $b, d \in B$.

Marco Castelli A new family of dynamical extensions of left cycle sets UniSalento

(日) (同) (三) (三)

A new dynamical extension of left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets A larger family of irretractable left cycle set is obtained by M. C., Francesco Catino and Giuseppina Pinto. Let *I* be a left non-degenerate cycle set, let *A*, *B* be non-empty sets,

 $\gamma: B \longrightarrow Sym(A), \ \beta: A \times A \times I \longrightarrow Sym(B), \ S:= A \times B \text{ and} \\ \alpha: I \times I \times S \longrightarrow Sym(S) \text{ given by}$

$$\alpha(i,j,(a,b))(c,d) := \begin{cases} (c,\beta_{(a,c,i)}(d)), & \text{if } i = j \\ (\gamma_b(c),d), & \text{if } i \neq j \end{cases}$$

(日) (同) (三) (三)

UniSalento

for all $i, j \in I$, $a, c \in A$ and $b, d \in B$.

Marco Castelli

extension of left cvcle sets

A new dynamical extension of left cycle sets

Theorem (M. C., F. Catino, G. Pinto, 2017)

If $\gamma : B \longrightarrow Sym(A)$ and $\beta : A \times A \times I \longrightarrow Sym(B)$ are such that 1) $\gamma_b \gamma_d = \gamma_d \gamma_b$, 2) $\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$ 3) $\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$, A new dynamical 4) $\beta_{(a,c,i,i)}\beta_{(a',c,i)} = \beta_{(a',c,i,i)}\beta_{(a,c,i)}$ hold for all $a, a', c \in A$, $b, d \in B$ and $i, j \in I$, $i \neq j$, then α is a

dynamical cocycle and so $X(A, B, I, \beta, \gamma) := S \times_{\alpha} I$ is a non-degenerate left cycle set.

《曰》 《圖》 《臣》 《臣》

UniSalento

Marco Castelli

Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

A new dynamical extension of left cycle sets

Theorem (M. C., F. Catino, G. Pinto, 2017)

 $X(A, B, I, \beta, \gamma)$ is irretractable if and only if γ is injective and they hold:

- 1) For every $i \in I$, $a, c \in A$, $a \neq c$ there exists $e \in A$ such that $\beta_{(a,e,i)} \neq \beta_{(c,e,i)}$
- 2) If $id_A \in \gamma(B)$, for all $a, c \in A$, $i, j \in I$ such that $i \neq j$ and $\sigma_i = \sigma_j$ exists $e \in A$ such that $\beta_{(a,e,i)} \neq id_B$ or $\beta_{(c,e,j)} \neq id_B$.

イロト イヨト イヨト イヨト

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Observation

Let *I* be the left cycle set given by $x \cdot y = y$ for all $x, y \in I$, $\varphi_1 : A \longrightarrow B$ a function such that $\varphi_1(-a) = \varphi_1(a)$ for every $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be an homomorphism. Put

$$\beta_{(a,c,i)} := t_{-\varphi_1(a-c)}$$
 and $\gamma_b := t_{-\varphi_2(b)}$

for all $a, c \in A, b \in B$ and $i \in I$, where t_v is the translation by v. Then $X(A, B, I, \beta, \gamma)$ is the non-degenerate left cycle set X(A, B, I) obtained by Bachiller, Cedó, Jespers and Okniński.

イロト イヨト イヨト イヨト

UniSalento

A family of irretractable left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets

Example (M.C., F. Catino, G. Pinto, 2017)

Let k > 1, $I := \{1, 2\}$ the left cycle set given by $x \cdot y = y$ for every $x, y \in I$, $A = B := \mathbb{Z}/2k\mathbb{Z}$ and $\delta := (1 \dots 2k)$. Put

 $\beta_{(\mathbf{a},\mathbf{a},i)} := i d_A \qquad \beta_{(\mathbf{a},\mathbf{b},1)} := \delta$

$$eta_{(a,b,2)} := \delta^2 \qquad \gamma_a := t_{-a-1}$$

for all $i \in I$ and $a \in A$, $b \in B$, $a \neq b$ where $t_a : A \rightarrow A$, $t_a(x) := x + a$ for all $a \in A$.

Then $X(A, B, I, \beta, \gamma)$ is an irretractable square-free left cycle set different from those obtained by Bachiller, Cedó, Jespers and Okniński.

Marco Castelli A new family of dynamical extensions of left cycle sets ヘロア 人間ア 人間ア 人間アー

A family of irretractable left cycle sets

A new family of dynamical extensions of left cycle sets

> Marco Castelli

Basic definitions and results

Some links between left cycle sets and Group Theory

A new dynamical extension of left cycle sets Example (M.C., F. Catino, G. Pinto, 2017)

Let k > 1, $I := \{1, 2\}$ the left cycle set given by $x \cdot y = y$ for every $x, y \in I$, $A = B := \mathbb{Z}/2k\mathbb{Z}$ and $\delta := (1 \dots 2k)$. Put

$$\beta_{(a,a,i)} := id_A \qquad \beta_{(a,b,1)} := \delta$$

$$\beta_{(a,b,2)} := \delta^2 \qquad \gamma_a := t_{-a-1}$$

UniSalento

for all $i \in I$ and $a \in A$, $b \in B$, $a \neq b$ where $t_a : A \to A$, $t_a(x) := x + a$ for all $a \in A$. Then $X(A, B, I, \beta, \gamma)$ is an irretractable square-free left cycle set different from those obtained by Bachiller, Cedó, Jespers and Okniński.

Marco Castelli

> Marco Castelli

Basic definitions and results

Some links between left cycl sets and Group Theory

A new dynamical extension of left cycle sets

Thanks!

Marco Castelli A new family of dynamical extensions of left cycle sets UniSalento

æ

・ロト ・部ト ・ヨト ・ヨト