Groups that have the same holomorph as a finite perfect group

Andrea Caranti¹ & Francesca Dalla Volta²

Lecce, 5 September 2017

¹Dipartimento di Matematica Università degli Studi di Trento

²Dipartimento di Matematica e Applicazioni Università degli Studi di Milano–Bicocca

Four questions

Consider the opposite group (G, \circ) , where

 $x \circ y = yx$.

Consider the opposite group (G, \circ) , where

 $x \circ y = yx$.

The opposite group of G is isomorphic to G

Consider the opposite group (G, \circ) , where

 $x \circ y = yx$.

The opposite group of G is isomorphic to G via

inv : $G \to (G, \circ)$ $x \mapsto x^{-1}$

Let (G, \circ) be obtained from G by replacing H with its opposite

Let (G, \circ) be obtained from G by replacing H with its opposite

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

Let (G, \circ) be obtained from G by replacing H with its opposite

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

Is (G, \circ) isomorphic to G?

Let (G, \circ) be obtained from G by replacing H with its opposite

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

Is (G, \circ) isomorphic to G? Yes, via

$$egin{aligned} H imes K &
ightarrow (H imes K,\circ) \ (x,y) &\mapsto (x^{-1},y) \end{aligned}$$

Let G = HK be a central product

Let G = HK be a central product, so $H, K \leq G$, and $H \cap K \leq Z(G)$.

Let G = HK be a central product, so $H, K \leq G$, and $H \cap K \leq Z(G)$. Let (G, \circ) be obtained from G by replacing H with its opposite.

Let G = HK be a central product, so $H, K \leq G$, and $H \cap K \leq Z(G)$. Let (G, \circ) be obtained from G by replacing H with its opposite. Is (G, \circ) isomorphic to G? Let G = HK be a central product, so $H, K \leq G$, and $H \cap K \leq Z(G)$. Let (G, \circ) be obtained from G by replacing H with its opposite. Is (G, \circ) isomorphic to G?

The answer is possibly not obvious.

Let $G = H_1 H_2 \cdots H_n$ be a central product

Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \trianglelefteq G$, and $H_i \cap H_j \le Z(G)$ for $i \ne j$.

Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \subseteq G$, and $H_i \cap H_j \leq Z(G)$ for $i \neq j$.

Assume all H_i are characteristic in G.

Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \trianglelefteq G$, and $H_i \cap H_j \le Z(G)$ for $i \ne j$.

Assume all H_i are characteristic in G.

Let (G, \circ) be obtained from G by replacing H_1 with its opposite.

Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \subseteq G$, and $H_i \cap H_j \leq Z(G)$ for $i \neq j$.

Assume all H_i are characteristic in G.

Let (G, \circ) be obtained from G by replacing H_1 with its opposite.

Are the H_i still characteristic in (G, \circ) ?

(Multiple) holomorphs

We will be discussing *regular subgroups of the holomorph* of a group.

We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

skew right braces,

$$(ab) \circ c = (a \circ c)c^{-1}(b \circ c).$$

which are equivalent to these subgroups.

We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

skew right braces,

$$(ab) \circ c = (a \circ c)c^{-1}(b \circ c).$$

which are equivalent to these subgroups.

• Hopf Galois extensions, which are linked to these subgroups:

We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

skew right braces,

$$(ab) \circ c = (a \circ c)c^{-1}(b \circ c).$$

which are equivalent to these subgroups.

- Hopf Galois extensions, which are linked to these subgroups:
- C. Greither, B. Pareigis
 Hopf Galois theory for separable field extensions
 J. Algebra 106 (1987), 239–258

We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

skew right braces,

$$(ab) \circ c = (a \circ c)c^{-1}(b \circ c).$$

which are equivalent to these subgroups.

- Hopf Galois extensions, which are linked to these subgroups:
- C. Greither, B. Pareigis

Hopf Galois theory for separable field extensions

J. Algebra 106 (1987), 239-258

🔋 N. P. Byott

Uniqueness of Hopf Galois structure of separable field extensions

Comm. Algebra 24 (1996), 3217-3228

The holomorph of a group G is the natural semidirect product Aut(G)G.

The holomorph of a group G is the natural semidirect product Aut(G)G.

If S(G) is the group of permutations on the set G, and

$$ho: G o S(G)$$
 $g \mapsto (x \mapsto xg)$

is the right regular representation

The holomorph of a group G is the natural semidirect product Aut(G)G.

If S(G) is the group of permutations on the set G, and

$$ho: G o S(G)$$

 $g \mapsto (x \mapsto xg)$

is the right regular representation, then

 $N_{S(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G)$

is (isomorphic to) the holomorph of G.

The holomorph of a group G is the natural semidirect product Aut(G)G.

If S(G) is the group of permutations on the set G, and

$$ho: G o S(G)$$
 $g \mapsto (x \mapsto xg)$

is the right regular representation, then

 $N_{S(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G)$

is (isomorphic to) the holomorph of G.

More generally, if $N \leq S(G)$ is a regular subgroup

The holomorph of a group G is the natural semidirect product Aut(G)G.

If S(G) is the group of permutations on the set G, and

$$ho: G o S(G)$$

 $g \mapsto (x \mapsto xg)$

is the right regular representation, then

 $N_{S(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G)$

is (isomorphic to) the holomorph of G.

More generally, if $N \leq S(G)$ is a regular subgroup, then

 $N_{S(G)}(N)$

is isomorphic to the holomorph of N.

Same Holomorph

So if $N \leq S(G)$ is regular

Same Holomorph

So if $N \leq S(G)$ is regular, we may say

Same Holomorph

So if $N \leq S(G)$ is regular, we may say (warning: abuse of notation ahead)
So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that *G* and *N* have the same holomorph

So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that *G* and *N* have the same holomorph if

 $N_{\mathcal{S}(G)}(N) = N_{\mathcal{S}(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$

So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that *G* and *N* have the same holomorph if

$$N_{\mathcal{S}(G)}(N) = N_{\mathcal{S}(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that *G* and *N* have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph

So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that *G* and *N* have the same holomorph if

$$N_{\mathcal{S}(G)}(N) = N_{\mathcal{S}(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic

So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that G and N have the same holomorph if

$$N_{\mathcal{S}(G)}(N) = N_{\mathcal{S}(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic, then $\rho(G)$ and N are conjugate under an element of

$$N_{\mathcal{S}(G)}(\mathsf{Hol}(G)) = N_{\mathcal{S}(G)}(N_{\mathcal{S}(G)}(\rho(G))),$$

the multiple (double) holomorph of G

So if $N \le S(G)$ is regular, we may say (warning: abuse of notation ahead) that *G* and *N* have the same holomorph if

$$N_{\mathcal{S}(G)}(N) = N_{\mathcal{S}(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic, then $\rho(G)$ and N are conjugate under an element of

$$N_{\mathcal{S}(G)}(\mathsf{Hol}(G)) = N_{\mathcal{S}(G)}(N_{\mathcal{S}(G)}(\rho(G))),$$

the multiple (double) holomorph of G, and the group

$$T(G) = N_{S(G)}(\operatorname{Hol}(G)) / \operatorname{Hol}(G)$$

acts regularly on the set

 $\mathcal{H}(G) = \big\{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = Hol(G) \text{ and } N \cong G \big\}^{8/22}$

 $\mathcal{H}(G) = \left\{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = Hol(G) \text{ and } N \cong G \right\}$

 $\mathcal{H}(G) = \left\{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \operatorname{Hol}(G) \text{ and } N \cong G \right\}$ \cap $\mathcal{I}(G) = \left\{ N \leq S(G) : N \text{ is regular, and } N_{S(G)}(N) = \operatorname{Hol}(G) \right\}$

 $\mathcal{H}(G) = \left\{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \operatorname{Hol}(G) \text{ and } N \cong G \right\}$ $i \cap$ $\mathcal{I}(G) = \left\{ N \leq S(G) : N \text{ is regular, and } N_{S(G)}(N) = \operatorname{Hol}(G) \right\}$ $i \cap$ $\mathcal{J}(G) = \left\{ N \leq S(G) : N \text{ is regular, and } N \leq \operatorname{Hol}(G) \right\}.$

 $\mathcal{H}(G) = \left\{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \operatorname{Hol}(G) \text{ and } N \cong G \right\}$ $i \cap$ $\mathcal{I}(G) = \left\{ N \leq S(G) : N \text{ is regular, and } N_{S(G)}(N) = \operatorname{Hol}(G) \right\}$ $i \cap$ $\mathcal{J}(G) = \left\{ N \leq S(G) : N \text{ is regular, and } N \leq \operatorname{Hol}(G) \right\}.$

The latter appears to be easier to compute.

Describing the regular (normal) subgroups of the holomorph

An element of the regular subgroup $N \leq Hol(G) = Aut(G)\rho(G)$ can be written uniquely as $\nu(g)$

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \mathsf{Aut}(G)$

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N.

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N. Such γ are characterized by

 $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N. Such γ are characterized by

 $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$

Here

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N. Such γ are characterized by

 $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$

Here

• $x \circ y = x^{\gamma(y)}y$ is a group operation on *G*,

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N. Such γ are characterized by

 $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$

Here

- $x \circ y = x^{\gamma(y)}y$ is a group operation on *G*,
- $\nu: (G, \circ) \rightarrow N$ is an isomorphism,

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N. Such γ are characterized by

 $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$

Here

- $x \circ y = x^{\gamma(y)}y$ is a group operation on G,
- $\nu: (G, \circ) \rightarrow N$ is an isomorphism,
- $x^{\nu(y)} = x^{\gamma(y)\rho(y)} = x^{\gamma(y)}y = x \circ y,$

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\operatorname{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

 $\gamma: G \rightarrow \operatorname{Aut}(G)$

which completely describes N. Such γ are characterized by

 $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$

Here

- $x \circ y = x^{\gamma(y)}y$ is a group operation on G,
- $\nu: (G, \circ) \rightarrow N$ is an isomorphism,

•
$$x^{\nu(y)} = x^{\gamma(y)\rho(y)} = x^{\gamma(y)}y = x \circ y$$

• to be compared with $x^{\rho(y)} = xy$.

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

 γ is characterized by

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

 $\boldsymbol{\gamma}$ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$,

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

 γ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

 γ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$,

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

 γ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in Aut(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$, to be compared with $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y)$.

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in Aut(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$, to be compared with $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y)$. For the braces:

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

 γ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in Aut(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$, to be compared with $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y)$. For the braces:

 $\operatorname{Aut}(G) \leq \operatorname{Aut}(G, \circ).$

A regular normal subgroup $N \trianglelefteq Hol(G) = Aut(G)\rho(G)$ is described by the map

$$\gamma: G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in Aut(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$, to be compared with $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y)$. For the braces:

 $\operatorname{Aut}(G) \leq \operatorname{Aut}(G, \circ).$

(Aside) Groups and rings

In

A. Caranti and F. Dalla Volta The multiple holomorph of a finitely generated abelian group J. Algebra 481 (2017), 327–347

(Aside) Groups and rings

In

A. Caranti and F. Dalla Volta The multiple holomorph of a finitely generated abelian group J. Algebra 481 (2017), 327–347

we have redone the work of

(Aside) Groups and rings

In

A. Caranti and F. Dalla Volta The multiple holomorph of a finitely generated abelian group J. Algebra 481 (2017), 327–347

we have redone the work of

Multiple holomorphs of finitely generated abelian groups Trans. Amer. Math. Soc. **71** (1951), 379–392
(Aside) Groups and rings

In

A. Caranti and F. Dalla Volta The multiple holomorph of a finitely generated abelian group J. Algebra 481 (2017), 327–347

we have redone the work of

W. H. Mills

Multiple holomorphs of finitely generated abelian groups *Trans. Amer. Math. Soc.* **71** (1951), 379–392

Here the condition $Aut(G) \le Aut(G, \circ)$ translates into the study of the commutative rings $(G, +, \cdot)$

(Aside) Groups and rings

In

A. Caranti and F. Dalla Volta The multiple holomorph of a finitely generated abelian group J. Algebra 481 (2017), 327–347

we have redone the work of

W. H. Mills

Multiple holomorphs of finitely generated abelian groups Trans. Amer. Math. Soc. **71** (1951), 379–392

Here the condition $\operatorname{Aut}(G) \leq \operatorname{Aut}(G, \circ)$ translates into the study of the commutative rings $(G, +, \cdot)$ such that every automorphism of the group (G, +) is also an automorphism of the ring $(G, +, \cdot)$.

$\iota: G \to \mathsf{Inn}(G) \le \mathsf{Aut}(G)$ $g \mapsto (x \mapsto g^{-1}xg)$

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1} x g)$

Take $N = \lambda(G) \leq Hol(G)$, where λ is the left regular representation.

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1} x g)$

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1}xg)$

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1}xg)$

•
$$\lambda(x) = \gamma(x)\rho(x)$$

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1}xg)$

•
$$\lambda(x) = \gamma(x)\rho(x)$$
 for $\gamma(x) = \iota(x^{-1})$

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1} x g)$

•
$$\lambda(x) = \gamma(x)\rho(x)$$
 for $\gamma(x) = \iota(x^{-1})$, as

$$y^{\mu(x^{-1})\rho(x)} = (xyx^{-1})x = xy = y^{\lambda(x)}.$$

$$\iota: G
ightarrow \mathsf{Inn}(G) \leq \mathsf{Aut}(G)$$

 $g \mapsto (x \mapsto g^{-1}xg)$

•
$$\lambda(x) = \gamma(x)\rho(x)$$
 for $\gamma(x) = \iota(x^{-1})$, as

$$y^{t(x^{-1})\rho(x)} = (xyx^{-1})x = xy = y^{\lambda(x)}.$$

• Here $y \circ x = y^{\gamma(x)}x = y^{x^{-1}}x = xy$ yields the opposite group.

Commutators and perfect groups

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \rightarrow Aut(G)$ satisfies

$$\gamma(x^{\beta}) = \gamma(x)^{\beta}$$
 for $\beta \in \operatorname{Aut}(G)$, and

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \to Aut(G)$ satisfies

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$.

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \to Aut(G)$ satisfies

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$.

These yield

 $\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \to Aut(G)$ satisfies

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$.

These yield

 $\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

 $\gamma([h,g^{-1}]) = \iota([\gamma(g),h]).$

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \rightarrow Aut(G)$ satisfies

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$.

These yield

 $\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

 $\gamma([h,g^{-1}]) = \iota([\gamma(g),h]).$

This suggests to look at perfect groups G = G'

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \to Aut(G)$ satisfies

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$.

These yield

 $\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

 $\gamma([h,g^{-1}]) = \iota([\gamma(g),h]).$

This suggests to look at perfect groups G = G', where all values of γ are inner automorphisms.

If $N \trianglelefteq Hol(G)$ is regular, then $\gamma : G \to Aut(G)$ satisfies

 $\gamma(x^{\beta}) = \gamma(x)^{\beta}$ for $\beta \in \operatorname{Aut}(G)$, and $\gamma(yx) = \gamma(x)\gamma(y)$.

These yield

 $\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

 $\gamma([h,g^{-1}]) = \iota([\gamma(g),h]).$

This suggests to look at perfect groups G = G', where all values of γ are inner automorphisms.

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$
 yields
$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

Proof.

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

Proof.

If $g \in Z(G)$

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

Proof.

If $g \in Z(G)$, the relation $[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}$

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

Proof.

If $g \in Z(G)$, the relation $[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}$ yields $[\gamma(g), h] \in Z(G)$

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

Proof.

If $g \in Z(G)$, the relation $[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}$ yields $[\gamma(g), h] \in Z(G)$

i.e. $\gamma(g)$ is a central automorphism of G

$$\gamma([h,g^{-1}]) = \iota([\gamma(g),h])$$

$$[\gamma(g),h] \equiv [g^{-1},\gamma(h^{-1})] \pmod{Z(G)}.$$

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then $Z(G) \leq \ker(\gamma)$.

Proof.

If $g \in Z(G)$, the relation $[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}$ yields $[\gamma(g), h] \in Z(G)$

i.e. $\gamma(g)$ is a central automorphism of *G*, and thus $\gamma(g)=1$. \Box

The regular normal subgroups of the holomorph of a perfect group

Theorem

Let G be a finite perfect group.

Theorem

Let G be a finite perfect group.

• If $N \trianglelefteq Hol(G)$ is regular, then

 $\mathsf{Inn}(G) = \gamma(G) \times \iota(\mathsf{ker}(\gamma)).$

Theorem

Let G be a finite perfect group.

• If $N \trianglelefteq Hol(G)$ is regular, then

$$\mathsf{Inn}(G) = \gamma(G) \times \iota(\mathsf{ker}(\gamma)).$$

• If G is centreless

Theorem

Let G be a finite perfect group.

• If $N \trianglelefteq Hol(G)$ is regular, then

$$\mathsf{Inn}(G) = \gamma(G) \times \iota(\mathsf{ker}(\gamma)).$$

• If G is centreless, then

 $G = \iota^{-1}(\gamma(G)) \times \ker(\gamma)$

is a product of two characteristic subgroups.

Theorem

Let G be a finite perfect group.

• If $N \trianglelefteq Hol(G)$ is regular, then

$$\mathsf{Inn}(G) = \gamma(G) \times \iota(\mathsf{ker}(\gamma)).$$

• If G is centreless, then

 $G = \iota^{-1}(\gamma(G)) \times \ker(\gamma)$

is a product of two characteristic subgroups.

In the general case,

 $\gamma(h) = \iota(h^{-1}), \quad \text{for } h \in \iota^{-1}(\gamma(G)),$

Theorem

Let G be a finite perfect group.

• If $N \trianglelefteq Hol(G)$ is regular, then

$$\mathsf{Inn}(G) = \gamma(G) \times \iota(\mathsf{ker}(\gamma)).$$

• If G is centreless, then

 $G = \iota^{-1}(\gamma(G)) \times \ker(\gamma)$

is a product of two characteristic subgroups.

In the general case,

$$\gamma(h) = \iota(h^{-1}), \quad \text{for } h \in \iota^{-1}(\gamma(G)),$$

follows from $\gamma(x \circ y) = \gamma(yx)$.
Let the Krull-Remak decomposition of G as an Aut(G)-group

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Divide the L_i in two groups, say, $H = L_1 \times \cdots \times L_m$, $K = L_{m+1} \times \cdots \times L_n$.

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \qquad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \leq Hol(G)$:

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \qquad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq Hol(G)$:

• γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \qquad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq Hol(G)$:

- γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.
- (G, ∘) ≅ N is obtained from G = H × K by replacing H with its opposite, as in Question 2:

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \qquad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq Hol(G)$:

- γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.
- (G, ∘) ≅ N is obtained from G = H × K by replacing H with its opposite, as in Question 2:

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

• All these N are isomorphic to G (see Question 2), so that

Let the Krull-Remak decomposition of G as an Aut(G)-group be $G = L_1 \times \cdots \times L_n$.

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \qquad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq Hol(G)$:

- γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.
- (G, ∘) ≅ N is obtained from G = H × K by replacing H with its opposite, as in Question 2:

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

- All these N are isomorphic to G (see Question 2), so that
 - T(G) is elementary abelian of order 2^n .

When G is allowed to have a nontrivial centre, things become more complicated.

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n$$

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq Hol(G)$ are still obtained by replacing some of the L_i with their opposites.

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq Hol(G)$ are still obtained by replacing some of the L_i with their opposites.

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq Hol(G)$ are still obtained by replacing some of the L_i with their opposites.

But this time

the groups (G, ○) ≅ N need not have the same automorphism group of G:

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq Hol(G)$ are still obtained by replacing some of the L_i with their opposites.

- the groups (G, ○) ≅ N need not have the same automorphism group of G:
 - Question 4: in this case N_{S(G)}(N) > Hol(G);

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq Hol(G)$ are still obtained by replacing some of the L_i with their opposites.

- the groups (G, ○) ≅ N need not have the same automorphism group of G:
 - Question 4: in this case N_{S(G)}(N) > Hol(G);
- even if they do, $(G, \circ) \cong N$ need not be isomorphic to G:

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G=L_1\cdots L_n,$$

with the $L_i \ge Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq Hol(G)$ are still obtained by replacing some of the L_i with their opposites.

- the groups (G, ○) ≅ N need not have the same automorphism group of G:
 - Question 4: in this case N_{S(G)}(N) > Hol(G);
- even if they do, $(G, \circ) \cong N$ need not be isomorphic to G:
 - Question 3: in this case $N_{S(G)}(N) = Hol(G)$ but $N \not\cong G$.

Examples

pairwise non-isomorphic,

pairwise non-isomorphic, even modulo the centre,

- pairwise non-isomorphic, even modulo the centre,
- perfect,

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and
- Aut (Q_p) acts trivially on $Z(Q_p)$.

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and
- Aut (Q_p) acts trivially on $Z(Q_p)$.

These are obtained from SL(3, p)

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and
- Aut (Q_p) acts trivially on $Z(Q_p)$.

These are obtained from SL(3, p) by killing the transpose inverse automorphism

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and
- Aut (Q_p) acts trivially on $Z(Q_p)$.

These are obtained from SL(3, p) by killing the transpose inverse automorphism via the insertion of a non self-dual module underneath.

G = HK, a central product of two non-isomorphic Q_p , with Z(H) amalgamated with Z(K).

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

An isomorphism of G to (G, \circ) would induce

• an automorphism of K

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

- an automorphism of K
 - thereby inducing the identity on Z(K), and

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

- an automorphism of K
 - thereby inducing the identity on Z(K), and
- an anti-automorphism of H

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

- an automorphism of K
 - thereby inducing the identity on Z(K), and
- an anti-automorphism of H
 - which is just the composition of an automorphism of *H* with inversion,
G = HK, a central product of two non-isomorphic Q_p , with Z(H) amalgamated with Z(K). (Both have order 3.)

 (G, \circ) , obtained by replacing H with its opposite, is not isomorphic to G.

An isomorphism of G to (G, \circ) would induce

- an automorphism of K
 - thereby inducing the identity on Z(K), and
- an anti-automorphism of H
 - which is just the composition of an automorphism of *H* with inversion,
 - thereby inducing inversion on Z(H).

• Let z_1 generate $Z(L_1)$.

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta: L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$.

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*: an automorphism of *G*

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*: an automorphism of *G*
 - takes *M* to *M*

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*: an automorphism of *G*
 - takes *M* to *M*, and thus fixes the centre elementwise;

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*: an automorphism of *G*
 - takes *M* to *M*, and thus fixes the centre elementwise;
 - if it takes L₁ to L₂, then it takes z₁ to z₂

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*: an automorphism of *G*
 - takes *M* to *M*, and thus fixes the centre elementwise;
 - if it takes L_1 to L_2 , then it takes z_1 to $z_2 = z_1^{-1}$

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^{\zeta} \in L_2$. Then *every* isomorphism $L_1 \to L_2$ takes z_1 to z_2 .
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then *M* and the *L_i* are characteristic in *G*: an automorphism of *G*
 - takes *M* to *M*, and thus fixes the centre elementwise;
 - if it takes L₁ to L₂, then it takes z₁ to z₂ = z₁⁻¹, i.e. it inverts the centre.

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

• is the identity on *M*,

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L₁ to L₂

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta}x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}}y^{\zeta \operatorname{inv}},$$

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta}x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}}y^{\zeta \operatorname{inv}},$$

$$\zeta_1^{\zeta \text{ inv}}$$

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta}x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}}y^{\zeta \operatorname{inv}},$$

$$z_1^{\zeta \text{ inv}} = z_2^{\text{inv}}$$

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta} x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}} y^{\zeta \operatorname{inv}},$$

$$z_1^{\zeta \text{ inv}} = z_2^{\text{inv}} = z_2^{-1}$$

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta}x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}}y^{\zeta \operatorname{inv}},$$

$$z_1^{\zeta \text{ inv}} = z_2^{\text{inv}} = z_2^{-1} = z_1$$

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta}x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}}y^{\zeta \operatorname{inv}},$$

and

$$z_1^{\zeta \text{ inv}} = z_2^{\text{inv}} = z_2^{-1} = z_1$$

is compatible with the identity on M.

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta}x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}}y^{\zeta \operatorname{inv}},$$

and

$$z_1^{\zeta \text{ inv}} = z_2^{\text{inv}} = z_2^{-1} = z_1^{-1}$$

is compatible with the identity on M.

So the L_i are *not* characteristic in (G, \circ)

 $G = L_1 L_2 M$, a central product of Q_p 's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.

Get (G, \circ) by replacing L_1 with its opposite.

There is an automorphism of (G, \circ) which

- is the identity on *M*,
- takes L_1 to L_2 , acting like ζ inv on L_1 .

In fact for $x, y \in L_1$

$$(x \circ y)^{\zeta \operatorname{inv}} = (yx)^{\zeta \operatorname{inv}} = (y^{\zeta} x^{\zeta})^{\operatorname{inv}} = x^{\zeta \operatorname{inv}} y^{\zeta \operatorname{inv}},$$

and

$$z_1^{\zeta \text{ inv}} = z_2^{\text{inv}} = z_2^{-1} = z_1$$

is compatible with the identity on M.

So the L_i are *not* characteristic in (G, \circ) , and $Aut(G, \circ)$ is twice as big as Aut(G).

That's All, Thanks!