Groups that have the same holomorph
as a finite perfect group

Andrea Caranti! & Francesca Dalla Volta?

Lecce, 5 September 2017

IDipartimento di Matematica
Universita degli Studi di Trento

2Dipartimento di Matematica e Applicazioni
Universita degli Studi di Milano—Bicocca

1/22



Four questions



It’s just opposite

Let G be a group.

2/22



It’s just opposite

Let G be a group.

Consider the , Where

X0y = yxX.

2/22



It’s just opposite

Let G be a group.

Consider the , Where
X0y = yx.

The opposite group of G is isomorphic to G

2/22



It’s just opposite

Let G be a group.

Consider the , Where
X0y = yx.
The opposite group of G is isomorphic to G via

inv: G— (G,0)

X x 1

2/22



Direct product

Let G= H x K be a direct product.

3/22



Direct product

Let G= H x K be a direct product.

Let

3/22



Direct product

Let G= H x K be a direct product.

Let

(x1,x2) © (y1,¥2) = (y1x1, X2¥2).

3/22



Direct product

Let G= H x K be a direct product.

Let

(x1,x2) © (y1,¥2) = (y1x1, X2¥2).

Is (G, o) isomorphic to G?

3/22



Direct product

Let G= H x K be a direct product.

Let
(x1,%2) © (y1,¥2) = (y1x1, %2)2).
Is (G, o) isomorphic to G? Yes, via

Hx K— (Hx K,o)
(xy) = (x1y)
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Central product

Let G = HK be a central product, so H, K < G, and HN K < Z(G).
Let
Is (G, o) isomorphic to G?

The answer is possibly not obvious.
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Characteristic subgroups

Let G= HiH>--- H, be a central product, so H; < G, and
Hin H; < Z(G) for i # j.

Let (G, o) be obtained from G by replacing H; with its opposite.

Are the H; still characteristic in (G, 0)?
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(Multiple) holomorphs



Spoiler/Connections

We will be discussing regular subgroups of the holomorph of a
group.
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Spoiler/Connections

We will be discussing regular subgroups of the holomorph of a

group. Therefore we have connections to

= skew right braces,
(ab)oc=(ao C)Cil(bo c).

which are equivalent to these subgroups.
= Hopf Galois extensions, which are linked to these subgroups:

[d C. Greither, B. Pareigis
Hopf Galois theory for separable field extensions
J. Algebra 106 (1987), 239-258
[§ N.P. Byott
Uniqueness of Hopf Galois structure of separable field

extensions
Comm. Algebra 24 (1996), 3217-3228 6/22
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Aut(G)G.
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The Holomorph

The holomorph of a group G is the natural semidirect product
Aut(G)G.

If S(G) is the group of permutations on the set G, and
p: G— S(G)
g (x— xg)

is the right regular representation, then

is (isomorphic to) the holomorph of G.
More generally, if N < S(G) is a regular subgroup, then
Ns(6)(N)

is isomorphic to the holomorph of N.
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Same Holomorph

So if N < S5(G) is regular, we may say (warning: abuse of
notation ahead) that G and N have the same holomorph if

Ns(c)(N) = Ns(6)(p(6)) = Aut(G)p(G) = Hol(G).
Note that such G and N need not be isomorphic. (Dihedral vs.
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Same Holomorph

So if N < S5(G) is regular, we may say (warning: abuse of
notation ahead) that G and N have the same holomorph if

Ns(c)(N) = Ns(6)(p(6)) = Aut(G)p(G) = Hol(G).
Note that such G and N need not be isomorphic. (Dihedral vs.

Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic,
then p(G) and N are conjugate under an element of

Ns(6)(Hol(G)) = Ns(c)(Ns(c)(p(G))),
the multiple (double) holomorph of G, and the group
T(G) = Ng(g)(Hol(G))/ Hol(G)
acts regularly on the set

H(G) = { N < S(G) : Nis regular, Ng(g)(N) = Hol(G) and N = G }g/22
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Describing the regular (normal) subgroups of
the holomorph



Regular subgroups of the holomorph

An element of the regular subgroup N < Hol(G) = can
be written uniquely as v(g)
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Regular subgroups of the holomorph

An element of the regular subgroup N < Hol(G) = can
be written uniquely as v(g), with 17(&) = g.

Now
Aut(G)p(G) 3 v(g) = )

for some
v : G— Aut(G)

which completely describes N. Such

Here
= xoy=x'Wyis a group operation on G,
= v:(G,0) — Nis an isomorphism,
» X0 = 0P = Wy = xo y,

= to be compared with x*) = xy.
10/22
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Regular normal subgroups of the holomorph

A regular normal subgroup N < Hol(G) = Aut(G)p(G) is described
by the map
v : G— Aut(G)
such that
N> v(g) =(g)r(e),

where 1¥(8) = g.
v is characterized by

1) =(x)7 for feAut(G), and  y(yx) = v(X)(y),
to be compared with y(x*™y) = ~(x)y(y).

For the braces:
Aut(G) < Aut(G, o).

» Skip ring setting, please
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(Aside) Groups and rings

In

[ A. Caranti and F. Dalla Volta
The multiple holomorph of a finitely generated abelian
group
J. Algebra 481 (2017), 327-347

we have redone the work of

[ W. H. Mills
Multiple holomorphs of finitely generated abelian groups
Trans. Amer. Math. Soc. 71 (1951), 379-392

Here the condition Aut(G) < Aut(G, o) translates into the study of
the commutative rings (G, +, -) such that every automorphism of

the group (G, +) is also an automorphism of the ring (G, +, ).
12/22
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From right to left

t: G— Inn(G) < Aut(G)
g (x— g 'xg)

Take < Hol(G), where X is the left regular
representation. (Actually, Ng()(A(G)) = Hol(G).) Then

= A(x) = v(x)p(x) for , as

YO = (xyx1)x = xy = .
= Here Y ¥y = yx_lx yields the opposite group.

13/22
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If N < Hol(G) is regular, then v : G — Aut(G) satisfies
V() =4(x)7 for feAut(G), and  (yx) = ¥(x)1(y).

These yield
v([8,87 1) = [1(e). Bl.
When 3 = (h), for some h € G, we obtain

V([h g71) = u[1(g), ).

This suggests to look at perfect groups G = G, where all values of

~ are inner automorphisms.
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Perfect groups

yields

Key fact:
Lemma
If G is a perfect group, then Z(G) < ker(7).

Proof.
If g € Z(G), the relation [y(g), h] = [g~ %, v(h™1)] (mod Z(G))

yields
[v(g), h] € 2(G)
i.e. v(g) is a central automorphism of G, and thus v(g) =1. O

15/22
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Two decompositions

Theorem

Let G be a finite perfect group.
= If N < Hol(G) is regular, then
Inn(G) = v(G) x t(ker(7)).

. , then

is a product of two characteristic subgroups.
In the general case,
A(h) = o(h™?),  for he ™ (7(G)),
follows from ~y(xo y) = y(yx).

16/22
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G=1Ly x---xL,.

Divide the L; in two groups, say,
H=1L; x - xLpy, K=Lmi1 X -+ X L.
Now the decomposition G = H x K corresponds to a

regular subgroup N < Hol(G):
=~ is trivial on K = ker(y) and y(h) = «(h™1) on H.

, as in Question 2:

(x1,x2) © (y1,¥2) = (y1x1, X2)2).

= All these N are isomorphic to G (see Question 2), so that
= T(G) is elementary abelian of order 2". 1722
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complicated. One still has a central product decomposition
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with the L; > Z(G) characteristic, centrally indecomposable.

The regular subgroups N < Hol(G) are still obtained by replacing
some of the L; with their opposites.

But this time

» the groups (G, o) = N need not have the same automorphism
group of G:
= Question 4: in this case Ns(g)(N) > Hol(G);
= even if they do, (G, o) = N need not be isomorphic to G:
* Question 3: in this case Nsg)(N) = Hol(G) but N2 G.
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For primes p =1 (mod 3), there is a family of groups Q, which

are

= pairwise non-isomorphic, even modulo the centre,

perfect,

centrally indecomposable, and such that

= , and

These are obtained from SL(3, p) by killing the transpose inverse
automorphism via the insertion of a non self-dual module

underneath.
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to G.
An isomorphism of G to (G, o) would induce
= an automorphism of K
= thereby inducing the identity on Z(K), and

= an anti-automorphism of H
= which is just the composition of an automorphism of H with
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amalgamated centres.

= Let z; generate Z(L;).

= Fix an isomorphism ( : L1 — Ly, and define z, = zg € L.
Then every isomorphism L; — L takes z; to z.

= Choose the amalgamation so that z, = zl’l.

= Then M and the L; are characteristic in G: an automorphism
of G
= takes M to M, and thus fixes the centre elementwise;
= if it takes Ly to Ly, then it takes z; to zo = z; ! je. it inverts

the centre.
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In fact for x,y € L
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So the L; are not characteristic in (G, o), and Aut(G, o) is twice as

big as Aut(G). s



Thanks

That’s All, Thanks!
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