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Four questions



It’s just opposite
.

Let G be a group.

Consider the opposite group (G, ◦), where

x ◦ y = yx.

The opposite group of G is isomorphic to G via

inv : G → (G, ◦)
x 7→ x−1
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Direct product
.

Let G = H × K be a direct product.

Let (G, ◦) be obtained from G by replacing H with its opposite

(x1, x2) ◦ (y1, y2) = (y1x1, x2y2).

Is (G, ◦) isomorphic to G? Yes, via

H × K → (H × K, ◦)
(x, y) 7→ (x−1, y)
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Central product
.

Let G = HK be a central product

, so H,K ⊴ G, and H ∩ K ≤ Z(G).

Let (G, ◦) be obtained from G by replacing H with its opposite.

Is (G, ◦) isomorphic to G?

The answer is possibly not obvious.
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Characteristic subgroups
.

Let G = H1H2 · · ·Hn be a central product

, so Hi ⊴ G, and
Hi ∩ Hj ≤ Z(G) for i ̸= j.

Assume all Hi are characteristic in G.

Let (G, ◦) be obtained from G by replacing H1 with its opposite.

Are the Hi still characteristic in (G, ◦)?
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(Multiple) holomorphs



Spoiler/Connections
.

We will be discussing regular subgroups of the holomorph of a
group.

Therefore we have connections to

• skew right braces,

(ab) ◦ c = (a ◦ c)c−1(b ◦ c).

which are equivalent to these subgroups.
• Hopf Galois extensions, which are linked to these subgroups:

C. Greither, B. Pareigis
Hopf Galois theory for separable field extensions
J. Algebra 106 (1987), 239–258
N. P. Byott
Uniqueness of Hopf Galois structure of separable field
extensions
Comm. Algebra 24 (1996), 3217–3228
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The Holomorph
.

The holomorph of a group G is the natural semidirect product
Aut(G)G.

If S(G) is the group of permutations on the set G, and

ρ : G → S(G)
g 7→ (x 7→ xg)

is the right regular representation, then

NS(G)(ρ(G)) = Aut(G)ρ(G) = Hol(G)

is (isomorphic to) the holomorph of G.

More generally, if N ≤ S(G) is a regular subgroup, then

NS(G)(N)

is isomorphic to the holomorph of N.
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Same Holomorph
.

So if N ≤ S(G) is regular

, we may say (warning: abuse of
notation ahead) that G and N have the same holomorph

if

NS(G)(N) = NS(G)(ρ(G)) = Aut(G)ρ(G) = Hol(G).

Note that such G and N need not be isomorphic. (Dihedral vs.
Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic,
then ρ(G) and N are conjugate under an element of

NS(G)(Hol(G)) = NS(G)(NS(G)(ρ(G))),

the multiple (double) holomorph of G, and the group

T(G) = NS(G)(Hol(G))/Hol(G)

acts regularly on the set

H(G) =
{

N ≤ S(G) : N is regular, NS(G)(N) = Hol(G) and N ∼= G
}
.
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Three sets
.

In increasing order

H(G) =
{

N ≤ S(G) : N is regular, NS(G)(N) = Hol(G) and N ∼= G
}

⊆

I(G) =
{

N ≤ S(G) : N is regular, and NS(G)(N) = Hol(G)
}

⊆
J (G) = {N ≤ S(G) : N is regular, and N ⊴ Hol(G) }.

The latter appears to be easier to compute.
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Describing the regular (normal) subgroups of
the holomorph



Regular subgroups of the holomorph
.

An element of the regular subgroup N ≤ Hol(G) = Aut(G)ρ(G) can
be written uniquely as ν(g)

, with 1ν(g) = g.

Now
Aut(G)ρ(G) ∋ ν(g) = γ(g)ρ(g),

for some
γ : G → Aut(G)

which completely describes N. Such γ are characterized by

γ(xγ(y)y) = γ(x)γ(y).

Here

• x ◦ y = xγ(y)y is a group operation on G,
• ν : (G, ◦) → N is an isomorphism,
• xν(y) = xγ(y)ρ(y) = xγ(y)y = x ◦ y,

• to be compared with xρ(y) = xy.
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Regular normal subgroups of the holomorph
.

A regular normal subgroup N ⊴ Hol(G) = Aut(G)ρ(G) is described
by the map

γ : G → Aut(G)
such that

N ∋ ν(g) = γ(g)ρ(g),
where 1ν(g) = g.

γ is characterized by

γ(xβ) = γ(x)β for β ∈ Aut(G),

and γ(yx) = γ(x)γ(y),

to be compared with γ(xγ(y)y) = γ(x)γ(y).

For the braces:
Aut(G) ≤ Aut(G, ◦).

.. Skip ring setting, please
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(Aside) Groups and rings
.

In

A. Caranti and F. Dalla Volta
The multiple holomorph of a finitely generated abelian
group
J. Algebra 481 (2017), 327–347

we have redone the work of

W. H. Mills
Multiple holomorphs of finitely generated abelian groups
Trans. Amer. Math. Soc. 71 (1951), 379–392

Here the condition Aut(G) ≤ Aut(G, ◦) translates into the study of
the commutative rings (G,+, ·) such that every automorphism of
the group (G,+) is also an automorphism of the ring (G,+, ·).
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From right to left
.

ι : G → Inn(G) ≤ Aut(G)
g 7→ (x 7→ g−1xg)

Take N = λ(G) ⊴ Hol(G), where λ is the left regular
representation. (Actually, NS(G)(λ(G)) = Hol(G).) Then

• λ(x) = γ(x)ρ(x)

for γ(x) = ι(x−1), as

yι(x−1)ρ(x) = (xyx−1)x = xy = yλ(x).

• Here y ◦ x = yγ(x)x = yx−1x = xy yields the opposite group.
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Commutators and perfect groups



Commutators
.

If N ⊴ Hol(G) is regular, then γ : G → Aut(G) satisfies

γ(xβ) = γ(x)β for β ∈ Aut(G), and

γ(yx) = γ(x)γ(y).

These yield
γ([β, g−1]) = [γ(g), β].

When β = ι(h), for some h ∈ G, we obtain

γ([h, g−1]) = ι([γ(g), h]).

This suggests to look at perfect groups G = G′

, where all values of
γ are inner automorphisms.

.. Skip Lemma, please
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Perfect groups
.

γ([h, g−1]) = ι([γ(g), h])

yields
[γ(g), h] ≡ [g−1, γ(h−1)] (mod Z(G)).

Key fact: central automorphisms of perfect groups are trivial.
Lemma
If G is a perfect group, then Z(G) ≤ ker(γ).

Proof.

If g ∈ Z(G), the relation [γ(g), h] ≡ [g−1, γ(h−1)] (mod Z(G))
yields

[γ(g), h] ∈ Z(G)

i.e. γ(g) is a central automorphism of G, and thus γ(g) = 1.
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The regular normal subgroups of the
holomorph of a perfect group



Two decompositions
.

Theorem
Let G be a finite perfect group.

• If N ⊴ Hol(G) is regular, then
Inn(G) = γ(G)× ι(ker(γ)).

• If G is centreless

, then
G = ι−1(γ(G))× ker(γ)

is a product of two characteristic subgroups.

In the general case,
γ(h) = ι(h−1), for h ∈ ι−1(γ(G)),

follows from γ(x ◦ y) = γ(yx).
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Centreless groups: how to obtain all regular normal subgroups
N of the holomorph

.
Let the Krull-Remak decomposition of G as an Aut(G)-group

be
G = L1 × · · · × Ln.

Divide the Li in two groups, say,
H = L1 × · · · × Lm, K = Lm+1 × · · · × Ln.

Now the ordered decomposition G = H × K corresponds to a
regular subgroup N ⊴ Hol(G):

• γ is trivial on K = ker(γ) and γ(h) = ι(h−1) on H.
• (G, ◦) ∼= N is obtained from G = H × K by replacing H with

its opposite, as in Question 2:

(x1, x2) ◦ (y1, y2) = (y1x1, x2y2).

• All these N are isomorphic to G (see Question 2), so that

• T(G) is elementary abelian of order 2n.
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The general case
.

When G is allowed to have a nontrivial centre, things become more
complicated.

One still has a central product decomposition

G = L1 · · · Ln,

with the Li ≥ Z(G) characteristic, centrally indecomposable.

The regular subgroups N ⊴ Hol(G) are still obtained by replacing
some of the Li with their opposites.

But this time
• the groups (G, ◦) ∼= N need not have the same automorphism

group of G:

• Question 4: in this case NS(G)(N) > Hol(G);

• even if they do, (G, ◦) ∼= N need not be isomorphic to G:

• Question 3: in this case NS(G)(N) = Hol(G) but N ̸∼= G.
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Examples



Killing automorphisms
.

For primes p ≡ 1 (mod 3), there is a family of groups Qp which
are

• pairwise non-isomorphic,

even modulo the centre,

• perfect,
• centrally indecomposable, and such that
• |Z(Qp)| = 3, and
• Aut(Qp) acts trivially on Z(Qp).

These are obtained from SL(3, p) by killing the transpose inverse
automorphism via the insertion of a non self-dual module
underneath.
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Example 1 (Negative answer to Question 3)
.

G = HK, a central product of two non-isomorphic Qp, with Z(H)

amalgamated with Z(K).

(Both have order 3.)

(G, ◦), obtained by replacing H with its opposite, is not isomorphic
to G.

An isomorphism of G to (G, ◦) would induce

• an automorphism of K

• thereby inducing the identity on Z(K), and

• an anti-automorphism of H

• which is just the composition of an automorphism of H with
inversion,

• thereby inducing inversion on Z(H).
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Example 2 (Negative answer to Question 4)
.

G = L1L2M, a central product of Qp’s, with L1 ∼= L2 ̸∼= M, with
amalgamated centres.

• Let z1 generate Z(L1).
• Fix an isomorphism ζ : L1 → L2, and define z2 = zζ1 ∈ L2.

Then every isomorphism L1 → L2 takes z1 to z2.

• Choose the amalgamation so that z2 = z−1
1 .

• Then M and the Li are characteristic in G

: an automorphism
of G

• takes M to M

, and thus fixes the centre elementwise;

• if it takes L1 to L2, then it takes z1 to z2

= z−1
1 , i.e. it inverts

the centre.
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Example 2 (continued)
.

G = L1L2M, a central product of Qp’s, with L1 ∼= L2 ̸∼= M,
amalgamating z2 = z−1

1 .

Get (G, ◦) by replacing L1 with its opposite.

There is an automorphism of (G, ◦) which

• is the identity on M,
• takes L1 to L2

, acting like ζ inv on L1.

In fact for x, y ∈ L1

(x ◦ y)ζ inv = (yx)ζ inv = (yζxζ)inv = xζ invyζ inv,

and zζ inv
1

= zinv
2 = z−1

2 = z1

is compatible with the identity on M.

So the Li are not characteristic in (G, ◦), and Aut(G, ◦) is twice as
big as Aut(G).
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Thanks
.

That’s All, Thanks!
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