Double chain conditions in infinite groups

Mattia Brescia

Advances in Group Theory and Applications Lecce – 8 September 2017

Finiteness Conditions

Let \mathfrak{U} be the universe of all groups and let \mathfrak{F} be the class of finite groups. Any intermediate class between them, i.e. any \mathfrak{X} such that

$$\mathfrak{F}\leqslant\mathfrak{X}\leqslant\mathfrak{U},$$

is said to be a finiteness class. The property of belonging to such class is called a finiteness or finitary condition.

Let \mathfrak{U} be the universe of all groups and let \mathfrak{F} be the class of finite groups. Any intermediate class between them, i.e. any \mathfrak{X} such that

$$\mathfrak{F}\leqslant\mathfrak{X}\leqslant\mathfrak{U},$$

is said to be a finiteness class. The property of belonging to such class is called a finiteness or finitary condition.

Classical non-trivial examples of finiteness conditions are

- Locally finiteness;
- Periodicity;
- Being finitely generated;

• ...

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

Very known examples of chain classes are

• For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;

 $H_0 < H_1 < \cdots < H_n < \cdots$

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

Very known examples of chain classes are

• For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;

$$H_0 < H_1 < \cdots < H_n < \cdots$$

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

- For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;
- For $T = (\mathbb{N}, >)$ and $\chi =$ "being a group", $C(T; \chi) = Min$;

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

- For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;
- For $T = (\mathbb{N}, >)$ and $\chi =$ "being a group", $C(T; \chi) = Min$;

$$H_0>H_1>\cdots>H_n>\cdots$$

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

- For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;
- For $T = (\mathbb{N}, >)$ and $\chi =$ "being a group", $C(T; \chi) = Min$;

$$H_0 > H_1 > \cdots > H_n > \cdots$$

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

- For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;
- For $T = (\mathbb{N}, >)$ and $\chi =$ "being a group", $C(T; \chi) = Min$;
- For $T = (\mathbb{N}, <)$ and $\chi =$ "being a finite group", $C(T; \chi) = Max$ -f

We will say that a group G satisfies the T-chain condition on χ -subgroups if there is no increasing function between T and the set of the χ -subgroups of G ordered by inclusion. Such class will be called a chain class and will here be denoted by C(T, χ).

Very known examples of chain classes are

- For $T = (\mathbb{N}, <)$ and $\chi =$ "being a group", $C(T; \chi) = Max$;
- For $T = (\mathbb{N}, >)$ and $\chi =$ "being a group", $C(T; \chi) = Min$;
- For T = (N, <) and χ ="being a finite group", C(T; χ) = Max-f

...

First examples coming in were

• Max (R. Baer, K. A. Hirsch, B. Amberg, ...);

- Max (R. Baer, K. A. Hirsch, B. Amberg, ...);
- Min (S. N. Černikov, V. P. Šunkov, D. I. Zaicev, ...);

- Max (R. Baer, K. A. Hirsch, B. Amberg, ...);
- Min (S. N. Černikov, V. P. Šunkov, D. I. Zaicev, ...);
- Max-n (P. Hall, D. H. McLain, J. S. Wilson, ...);

- Max (R. Baer, K. A. Hirsch, B. Amberg, ...);
- Min (S. N. Černikov, V. P. Šunkov, D. I. Zaicev, ...);
- Max-n (P. Hall, D. H. McLain, J. S. Wilson, ...);
- Max-ab (A. I. Malčev, B. I. Plotkin, O. J. Schmidt, ...).

Some of the many early relevant questions were

- Is $Max = (P\mathfrak{C})\mathfrak{F}$?
- Is $Min = \check{C}$?
- Is Max-sn = Max in the universe of locally soluble groups?

The answers to which are

- Is $Max = (P\mathfrak{C})\mathfrak{F}$? NO. (Thank you, Ol'šanskiť)
- Is Min = Č?
- Is Max-sn = Max in the universe of locally soluble groups?

The answers to which are

- Is $Max = (P\mathfrak{C})\mathfrak{F}$? NO. (Thank you, Ol'šanskiť)
- Is $Min = \check{C}$? NO. (Thank you again, Ol'šanskií)
- Is Max-sn = Max in the universe of locally soluble groups?

The answers to which are

- Is $Max = (P\mathfrak{C})\mathfrak{F}$? NO. (Thank you, Ol'šanskiť)
- Is $Min = \check{C}$? NO. (Thank you again, Ol'šanskiš)
- Is Max-sn = Max in the universe of locally soluble groups? Who knows!

For many years the quasi-totality of investigations about chain conditions were about changing the group theoretical property χ and showing results about Max- χ or Min- χ , i.e. about the classes of the groups satisfying the maximal or the minimal condition on χ -subgroups.

A recent inspiration came reading the works of D. I. Zaicev and T. S. Shores who, in particular, studied the class of groups presenting no chains of subgroups ordered as (Z, <).

For many years the quasi-totality of investigations about chain conditions were about changing the group theoretical property χ and showing results about Max- χ or Min- χ , i.e. about the classes of the groups satisfying the maximal or the minimal condition on χ -subgroups.

A recent inspiration came reading the works of D. I. Zaicev and T. S. Shores who, in particular, studied the class of groups presenting no chains of subgroups ordered as (Z, <).

 $\cdots < H_{-n} < \cdots < H_{-1} < H_0 < H_1 < \cdots < H_n < \cdots$

For many years the quasi-totality of investigations about chain conditions were about changing the group theoretical property χ and showing results about Max- χ or Min- χ , i.e. about the classes of the groups satisfying the maximal or the minimal condition on χ -subgroups.

A recent inspiration came reading the works of D. I. Zaicev and T. S. Shores who, in particular, studied the class of groups presenting no chains of subgroups ordered as (Z, <).

For many years the quasi-totality of investigations about chain conditions were about changing the group theoretical property χ and showing results about Max- χ or Min- χ , i.e. about the classes of the groups satisfying the maximal or the minimal condition on χ -subgroups.

A recent inspiration came reading the works of D. I. Zaicev and T. S. Shores who, in particular, studied the class of groups presenting no chains of subgroups ordered as (Z, <).

D. I. Zaicev (1971), T. S. Shores (1973) - Let G be a locally radical group. Then G satisfies the double chain condition on subgroups iff it satisfies either the maximal or the minimal condition on subgroups.

So in 2005 there came the first new work on the so-called "Double chain condition".

F. De Mari, F. de Giovanni (2005) - Let n be the subgroup property of "being normal". Then, in the universe of residually finite groups, $DC_n = Max-n$.

So in 2005 there came the first new work on the so-called "Double chain condition".

F. De Mari, F. de Giovanni (2005) - Let n be the subgroup property of "being normal". Then, in the universe of residually finite groups, $DC_n = Max-n$.

F. De Mari, F. de Giovanni (2005) - Let n be the subgroup property of "being normal". Then, in the universe of periodic soluble groups, $DC_n = Min-n$.

Moreover in the same paper

F. De Mari, F. de Giovanni (2005) - Let nn be the subgroup property of "being not normal". Then, in the universe of locally radical groups, G is a DC_{nn} -group if and only if G satisfies either Max-nn or Min-nn.

Moreover in the same paper

F. De Mari, F. de Giovanni (2005) - Let nn be the subgroup property of "being not normal". Then, in the universe of locally radical groups, G is a DC_{nn} -group if and only if G satisfies either Max-nn or Min-nn.

So is everything this predictable?

Theorem

F. de Giovanni, M. B. – 2015

Let G be a radical group. G satisfies DC_{sn} if and only if G satisfies one of the following:

- G satisfies Max-sn;
- G satisfies Min-sn;

Theorem

F. de Giovanni, M. B. – 2015

Let G be a radical group. G satisfies DC_{sn} if and only if G satisfies one of the following:

- G satisfies Max-sn;
- G satisfies Min-sn;
- G = HJ where J is the finite residual of G, H is polycyclic, $C_H(J)$ is finite and every subnormal subgroup of G is either Min or properly contains J.

Theorem

F. de Giovanni, M. B. – 2015

Let G be a radical group. G satisfies DC_{sn} if and only if G satisfies one of the following:

- G satisfies Max-sn;
- G satisfies Min-sn;
- G = HJ where J is the finite residual of G, H is polycyclic, $C_H(J)$ is finite and every subnormal subgroup of G is either Min or properly contains J.

Not everything is this predictable, indeed!

Let's get familiar with double chains!

Lemma

Let χ be an intersection-closed, quotient-transitive subgroup theoretical property and let G be a group satisfying $DC_{\overline{\chi}}$. If H/K is a section of G such that

$$H/K = \Pr_{n \in \mathbb{N}} H_n/K$$

and each H_n is different from K, then K is a χ -subgroup of G and such is every direct term of H/K.

Lemma

Let χ be an intersection-closed, quotient-transitive subgroup theoretical property and let G be a group satisfying $DC_{\overline{\chi}}$. If H/K is a section of G such that

$$H/K = \Pr_{n \in \mathbb{N}} H_n/K$$

and each H_n is different from K, then K is a χ -subgroup of G and such is every direct term of H/K.

Proof – Let us split $H/K = X/K \times Y/K$ where

$$X/K = \mathop{\text{\rm Dr}}_{n \in \mathbb{N}} H_{2n}/K \quad \text{and} \quad \mathop{\text{\rm Dr}}_{n \in \mathbb{N}} H_{2n-1}/K$$

(Proof, continued) Notice that, in general, if in a group G we have an infinite direct product

$$\underset{n\in\mathbb{N}}{\operatorname{Dr}} G_n$$

of non-trivial groups, we can define the following

$$U_{-k} = \Pr_{n > k} G_{2n-1} \quad \text{and} \quad U_k = (\Pr_{n \in \mathbb{N}} G_{2n-1}) \times (\Pr_{1 \leqslant n \leqslant k} G_{2n})$$

(Proof, continued) Notice that, in general, if in a group G we have an infinite direct product

$$\mathop{Dr}_{n\in\mathbb{N}}G_n$$

of non-trivial groups, we can define the following

$$U_{-k} = \Pr_{n > k} G_{2n-1} \quad \text{and} \quad U_k = (\Pr_{n \in \mathbb{N}} G_{2n-1}) \times (\Pr_{1 \leqslant n \leqslant k} G_{2n})$$

and hence have

 $\cdots < U_{-k} < \cdots < U_{-1} < U_0 < U_1 < \cdots < U_k < \cdots .$

(Proof, continued)

So there are two χ -subgroups P/K and Q/K of X/K and Y/K, respectively. Hence P χ G, Q χ G and K = P \cap Q is a χ -subgroup of G.

(Proof, continued)

So there are two χ -subgroups P/K and Q/K of X/K and Y/K, respectively. Hence P χ G, Q χ G and K = P \cap Q is a χ -subgroup of G.

Finally, the same argument applies to each H/H_n .

An application of the concept

Remind that:

An application of the concept

Remind that:

 A subgroup H of a group G is said to be *pronormal* in G if for each g ∈ G there exist x ∈ ⟨H, H^g⟩ such that H^x = H^g.

Remind that:

- A subgroup H of a group G is said to be *pronormal* in G if for each g ∈ G there exist x ∈ ⟨H, H^g⟩ such that H^x = H^g.
- A section H/K of a group G is said to be *ascendant* if H is an ascendant subgroup of G and K is a normal subgroup of H.

Remind that:

- A subgroup H of a group G is said to be *pronormal* in G if for each g ∈ G there exist x ∈ ⟨H, H^g⟩ such that H^x = H^g.
- A section H/K of a group G is said to be *ascendant* if H is an ascendant subgroup of G and K is a normal subgroup of H.
- A subgroup H of a group G is normal in G if and only if H is both pronormal and ascendant in G.

Lemma

F. de Giovanni, M. B. – 2017

Let G be a group satisfying DC_{np} and let H/K be an ascendant section of G which is a direct product of infinitely many cyclic non-trivial subgroups. Then:

1) H and K are normal in G;

Lemma

F. de Giovanni, M. B. – 2017

Let G be a group satisfying DC_{np} and let H/K be an ascendant section of G which is a direct product of infinitely many cyclic non-trivial subgroups. Then:

- 1) H and K are normal in G;
- 2) All cyclic subgroups of G/H are pronormal;

Lemma

F. de Giovanni, M. B. – 2017

Let G be a group satisfying DC_{np} and let H/K be an ascendant section of G which is a direct product of infinitely many cyclic non-trivial subgroups. Then:

- 1) H and K are normal in G;
- 2) All cyclic subgroups of G/H are pronormal;
- 3) G/K is a \overline{T} -group.

F.dG, M.B. (2017) - Let G be a finitely generated soluble DC_{np} -group. Then G satisfies Max.

F.dG, M.B. (2017) - Let G be a finitely generated soluble DC_{np} -group. Then G satisfies Max.

F.dG, M.B. (2017) - Let G be a radical torsion-free DC_{np} -group. Then G is either polycyclic or abelian.

F.dG, M.B. (2017) - Let G be a periodic locally radical DC_{np} -group. Then either G is a Černikov group or every subgroup of G is pronormal.

F.dG, M.B. (2017) - Let G be a locally nilpotent DC_{np} -group. Then G either nilpotent or a Černikov group. In particular, G satisfies either Max-np or Min-np.

F.dG, M.B. (2017) - Let G be a radical DC_{np} -group. Then G is either minimax or a \overline{T} -group.

