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Influence of the fixed-point subgroup

Let A be a finite group acting on a finite group G.
We denote by

CG(A) = {x ∈ G | xa = x for any a ∈ A}

the fixed-point subgroup.
Many well-known results show that the structure of the centralizer CG(A)
of A has influence over the structure of G.

Thompson’s Theorem

Let A be a finite group of prime order acting on a finite group G. If
CG(A) = 1, then G is nilpotent.

Higman’s Theorem

If G is a nilpotent group admitting an automorphism φ of prime order q
and such that CG(φ) = 1, then G has nilpotency class bounded by some
function h(q) depending on q alone.
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Coprime action

The influence of CG(A) over the structure of G is especially strong if
(|A|, |G|) = 1, that is, the action of A on G is coprime.

If the action is coprime, then...

CG/N (A) = CG(A)N/N , for any A-invariant normal subgroup N

G = 〈CG(B) | A/B is cyclic〉 whenever A is a noncyclic abelian group
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Action on profinite groups

A profinite group G is a topological group that is isomorphic to an inverse
limit of finite groups.

In this realm all the usual concepts of group theory are interpreted
topologically, so for example, by a subgroup of a profinite group we mean
a closed subgroup and we say that a subgroup H is generated by a set S if
it is topologically generated by S.

By an automorphism of a profinite group we always mean a continuous
automorphism.

We say that a group A acts on a profinite group G coprimely if A is finite
while G is an inverse limit of finite groups whose orders are relatively
prime to the order of A.
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Engel groups

A group G is an Engel group if for every x, g ∈ G,

[x, g, g, . . . , g] = 1,

where g is repeated sufficiently many times depending on x and g.

If the number of times that g is repeated in the commutator is n and it
does not depends on x and g, then we say that G is an n-Engel group.

Any locally nilpotent group is an Engel group.
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Engel profinite groups

J. Wilson and E. Zelmanov proved the converse for profinite groups.

Theorem (Wilson and Zelmanov, 1992)

Any Engel profinite group is locally nilpotent.

If G is an n-Engel group even more can be said

Theorem (Burns and Medvedev, 1998)

Let G be an n-Engel profinite group. Then G has a normal subgroup N
which is nilpotent of nilpotency class c(n) and such that G/N is of finite
exponent e(n).

Note that the nilpotency class c(n) and the exponent e(n) exclusively
depends on the Engel class n.
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Coprime automorphisms whose fixed points are Engel

We consider the situation where A is an elementary abelian q-group acting
coprimely on a (pro)finite group G and the centralizers CG(a) consist of
Engel elements.

The results were obtained by subsets of the following set :
{C. Acciarri, P. Shumyatsky and D. Sanção da Silveira}.

Let A# denote the set of non-identity elements of A.
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Centralizers consisting of Engel elements in G

Theorem A1

Let q be a prime, n a positive integer and A an elementary abelian group
of order q2. Suppose that A acts coprimely on a finite group G and
assume that for each a ∈ A# every element of CG(a) is n-Engel in G.
Then the group G is k-Engel for some {n, q}-bounded number k.

A non-quantitative profinite version of the result above is the following

Theorem B1

Let q be a prime and A an elementary abelian q-group of order q2.
Suppose that A acts coprimely on a profinite group G and assume that all
elements in CG(a) are Engel in G for each a ∈ A#. Then G is locally
nilpotent.
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Relaxing the hypothesis on the fixed point subgroups

If, in Theorem A1, we relax the hypothesis that every element of CG(a) is
n-Engel in G and require instead that every element of CG(a) is n-Engel
in CG(a), then the result is no longer true.

Example

a finite non-nilpotent group G admitting a four-group of automorphisms A
such that CG(a) is abelian for each a ∈ A# can be constructed.
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Centralizers consisting of Engel elements

Theorem A2

Let q be a prime, n a positive integer and A an elementary abelian group
of order q3. Suppose that A acts coprimely on a finite group G and
assume that for each a ∈ A# every element of CG(a) is n-Engel in CG(a).
Then the group G is k-Engel for some {n, q}-bounded number k.

A non-quantitative profinite version of the result above states as follows

Theorem B2

Let q be a prime and A an elementary abelian q-group of order q3.
Suppose that A acts coprimely on a profinite group G and assume that
CG(a) is locally nilpotent for each a ∈ A#. Then G is locally nilpotent.
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Generalization for the terms of the lower central series and
the derived series

Theorem A1 can be generalized as follows:

Let q be a prime, n a positive integer and A an elementary abelian group
of order qr with r ≥ 2 acting on a finite q′-group G.

(1) If all elements in γr−1(CG(a)) are n-Engel in G for any a ∈ A#, then
γr−1(G) is k-Engel for some {n, q, r}-bounded number k.

(2) If, for some integer d such that 2d ≤ r − 1, all elements in the dth
derived group of CG(a) are n-Engel in G for any a ∈ A#, then the dth
derived group G(d) is k-Engel for some {n, q, r}-bounded number k.

Analogous generalizations of Theorems A2, B1 and B2 also hold.
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Idea of the proof of Theorem B2

Recall that q is a prime and A is an elementary abelian group of order q3.
Assume that A acts coprimely on a profinite group G and assume that
CG(a) is locally nilpotent for each a ∈ A#.

We want to show that G is locally nilpotent as well.

The proof of the result involves a number of ideas:

Lie-theoretical results of Zelmanov obtained in his solution of the
restricted Burnside problem;

the Lubotzky–Mann theory of powerful p-groups;

a Lazard’s criterion for a pro-p group to be p-adic analytic;

a theorem of Bahturin and Zaicev giving an important criterion for a
Lie algebra to satisfy a polynomial identity.
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Idea of the proof

Theorem (Ward, 1971). Let q be a prime and A an elementary abelian
group of order q3. Suppose that A acts coprimely on a finite group G and
assume that CG(a) is nilpotent for each a ∈ A#. Then G is nilpotent.

If G is a profinite group admitting a coprime group of automorphisms A
which is elementary abelian of order q3 and such that CG(a) is
pronilpotent for all a ∈ A#, then G is pronilpotent.

In view of the profinite version of Ward’s Theorem the group G is
pronilpotent and therefore G is the Cartesian product of its Sylow
subgroups.
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Idea of the proof

Proposition

For any locally nilpotent profinite group K there exist a positive integer n,
elements g1, g2 ∈ K and an open subgroup H ≤ K such that the law
[x, n y] ≡ 1 is satisfied on the cosets g1H, g2H, that is [g1h1, n g2h2] = 1
for all h1, h2 ∈ H.

Choose a ∈ A#. Since CG(a) is locally nilpotent, from the proposition
above it follows that CG(a) contains an open subgroup H and elements
u, v such that for some n the law [x, n y] ≡ 1 is satisfied on the cosets
uH, vH.
Let [CG(a) : H] = m and let π1(a) = π(m). Put T = Oπ′

1
(CG(a)).

Since T is isomorphic to the image of H in CG(a)/Oπ1(CG(a)), it is easy
to see that T satisfies the law [x, n y] ≡ 1, that is, T is n-Engel.

By the result of Burns and Medvedev the subgroup T has a nilpotent
normal subgroup U such that T/U has finite exponent, say e. Set
π2(a) = π(e).
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Idea of the proof

Note that the finite sets π1(a) and π2(a) depend on the choice of a ∈ A#.
Let

πa = π1(a) ∪ π2(a)

and set
π = ∪a∈A#πa and K = Oπ′(G).

The choice of the finite set π guarantees that CK(a) is nilpotent for every
a ∈ A#.
Theorem (Shumyatsky, 2001). Let q be a prime and A an elementary
abelian q-group of order q3. Suppose that A acts coprimely on a finite
group G and assume that CG(a) is nilpotent of class at most c for each
a ∈ A#. Then G is nilpotent and the class of G is {q, c}-bounded.

By the profinite version of the result above, the subgroup K is nilpotent.
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Idea of the proof

We have
G = P1 × P2 × · · · × Pr ×K,

where p1, p2, . . . , pr are the finitely many primes in π and P1, P2, . . . , Pr
are the corresponding Sylow subgroups of G.

For our purpose it is sufficient to show that each subgroup Pi is locally
nilpotent.

From now on w.l.o.g. we assume that G is a pro-p group for some prime p.

Since every finite subset of G is contained in a finitely generated
A-invariant subgroup we can also assume that G is finitely generated.
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Idea of the proof

We denote by Dj = Dj(G) the terms of the p-dimension central series of
G, i.e.

Dj = 〈[g1, . . . , gs]p
t | spt ≥ j, gk ∈ G〉 =

∏
spt≥j

γs(G)
pt .

The Dj form a filtration in the sense that [Di, Dj ] ≤ Di+j for all i, j and
all of the Dj/Dj+1 have exponent p. Thus we can consider the Lie ring
L(G) = ⊕Dj/Dj+1 that actually can be viewed as Lie algebra over Fp.

Consider Lp(G), the subalgebra generated by the first homogeneous
component D1/D2 in L(G).

Since any automorphism of G induces an automorphisms of L(G), in
particular the group A naturally acts on Lp(G).
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Idea of the proof

By applying a combination of results due to Wilson, Zelmanov, Khukhro
and Shumyatsky and the Lie-theoretical techniques created by Zelmanov in
the solution of the RBP we can show that Lp(G) is nilpotent.

Proving that Lp(G) is nilpotent relies on one of the most general form of
the positive solution of the restricted Burnside-type problems for Lie
algebras.

Theorem (Zelmanov, 1992)

Let L be a Lie algebra generated by finitely many elements a1, a2, . . . , am
such that each commutator in these generators is ad-nilpotent. If L
satisfies a polynomial identity, then L is nilpotent.
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Idea of the proof

Theorem (Lazard, 1965)

A finitely generated pro-p-group G is p-adic analytic if and only if Lp(G) is
nilpotent.

Thus G is p-adic analytic and we are in the position to apply

Theorem (Lubotzky and Mann, 1987)

A finitely generated pro-p group G is p-adic analytic if and only if it is of
finite rank, that is, if all closed subgroups of G are finitely generated.

Thus each centralizer CG(a) is finitely generated for every a ∈ A# and it
follows that CG(a) are nilpotent.

Finally applying the profinite version of Shumyatsky’s result we get that G
is nilpotent. This concludes our proof.
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T hank you!


