On groups with automorphisms whose fixed points are Engel

Cristina Acciarri

University of Brasilia & University of Padua

Advances in Group Theory and Applications 2017 Lecce, 5th September 2017

Let A be a finite group acting on a finite group G.

Let A be a finite group acting on a finite group G. We denote by

$$C_G(A) = \{ x \in G \mid x^a = x \text{ for any } a \in A \}$$

the fixed-point subgroup.

Let A be a finite group acting on a finite group G. We denote by

$$C_G(A) = \{ x \in G \mid x^a = x \text{ for any } a \in A \}$$

the fixed-point subgroup.

Many well-known results show that the structure of the centralizer $C_G(A)$ of A has influence over the structure of G.

Let A be a finite group acting on a finite group G. We denote by

$$C_G(A) = \{ x \in G \mid x^a = x \text{ for any } a \in A \}$$

the fixed-point subgroup.

Many well-known results show that the structure of the centralizer $C_G(A)$ of A has influence over the structure of G.

Thompson's Theorem

Let A be a finite group of prime order acting on a finite group G. If $C_G(A)=1,$ then G is nilpotent.

Let A be a finite group acting on a finite group G. We denote by

$$C_G(A) = \{ x \in G \mid x^a = x \text{ for any } a \in A \}$$

the fixed-point subgroup.

Many well-known results show that the structure of the centralizer $C_G(A)$ of A has influence over the structure of G.

Thompson's Theorem

Let A be a finite group of prime order acting on a finite group G. If $C_G(A)=1,$ then G is nilpotent.

Higman's Theorem

If G is a nilpotent group admitting an automorphism ϕ of prime order q and such that $C_G(\phi) = 1$, then G has nilpotency class bounded by some function h(q) depending on q alone.

Coprime action

The influence of $C_G(A)$ over the structure of G is especially strong if (|A|, |G|) = 1, that is, the action of A on G is coprime.

Coprime action

The influence of $C_G(A)$ over the structure of G is especially strong if (|A|, |G|) = 1, that is, the action of A on G is coprime.

If the action is coprime, then...

• $C_{G/N}(A) = C_G(A)N/N$, for any A-invariant normal subgroup N

Coprime action

The influence of $C_G(A)$ over the structure of G is especially strong if (|A|, |G|) = 1, that is, the action of A on G is coprime.

If the action is coprime, then...

• $C_{G/N}(A) = C_G(A)N/N$, for any A-invariant normal subgroup N

• $G = \langle C_G(B) \mid A/B \text{ is cyclic} \rangle$ whenever A is a noncyclic abelian group

A profinite group G is a topological group that is isomorphic to an inverse limit of finite groups.

A profinite group G is a topological group that is isomorphic to an inverse limit of finite groups.

In this realm all the usual concepts of group theory are interpreted topologically, so for example, by a subgroup of a profinite group we mean a closed subgroup and we say that a subgroup H is generated by a set S if it is topologically generated by S.

A profinite group G is a topological group that is isomorphic to an inverse limit of finite groups.

In this realm all the usual concepts of group theory are interpreted topologically, so for example, by a subgroup of a profinite group we mean a closed subgroup and we say that a subgroup H is generated by a set S if it is topologically generated by S.

By an automorphism of a profinite group we always mean a continuous automorphism.

A profinite group G is a topological group that is isomorphic to an inverse limit of finite groups.

In this realm all the usual concepts of group theory are interpreted topologically, so for example, by a subgroup of a profinite group we mean a closed subgroup and we say that a subgroup H is generated by a set S if it is topologically generated by S.

By an automorphism of a profinite group we always mean a continuous automorphism.

We say that a group A acts on a profinite group G coprimely if A is finite while G is an inverse limit of finite groups whose orders are relatively prime to the order of A.

Engel groups

A group G is an Engel group if for every $x, g \in G$,

$$[x,g,g,\ldots,g]=1,$$

where g is repeated sufficiently many times depending on x and g.

Engel groups

A group G is an Engel group if for every $x, g \in G$,

$$[x,g,g,\ldots,g]=1,$$

where g is repeated sufficiently many times depending on x and g.

If the number of times that g is repeated in the commutator is n and it does not depends on x and g, then we say that G is an n-Engel group.

Engel groups

A group G is an Engel group if for every $x, g \in G$,

$$[x,g,g,\ldots,g]=1,$$

where g is repeated sufficiently many times depending on x and g.

If the number of times that g is repeated in the commutator is n and it does not depends on x and g, then we say that G is an n-Engel group.

Any locally nilpotent group is an Engel group.

Engel profinite groups

J. Wilson and E. Zelmanov proved the converse for profinite groups.

Theorem (Wilson and Zelmanov, 1992)

Any Engel profinite group is locally nilpotent.

Engel profinite groups

J. Wilson and E. Zelmanov proved the converse for profinite groups.

Theorem (Wilson and Zelmanov, 1992)

Any Engel profinite group is locally nilpotent.

If G is an n-Engel group even more can be said

Theorem (Burns and Medvedev, 1998)

Let G be an n-Engel profinite group. Then G has a normal subgroup N which is nilpotent of nilpotency class c(n) and such that G/N is of finite exponent e(n).

Engel profinite groups

J. Wilson and E. Zelmanov proved the converse for profinite groups.

Theorem (Wilson and Zelmanov, 1992)

Any Engel profinite group is locally nilpotent.

If G is an n-Engel group even more can be said

Theorem (Burns and Medvedev, 1998)

Let G be an n-Engel profinite group. Then G has a normal subgroup N which is nilpotent of nilpotency class c(n) and such that G/N is of finite exponent e(n).

Note that the nilpotency class c(n) and the exponent e(n) exclusively depends on the Engel class n.

Coprime automorphisms whose fixed points are Engel

We consider the situation where A is an elementary abelian q-group acting coprimely on a (pro)finite group G and the centralizers $C_G(a)$ consist of Engel elements.

Coprime automorphisms whose fixed points are Engel

We consider the situation where A is an elementary abelian q-group acting coprimely on a (pro)finite group G and the centralizers $C_G(a)$ consist of Engel elements.

The results were obtained by subsets of the following set : {C. Acciarri, P. Shumyatsky and D. Sanção da Silveira}.

Coprime automorphisms whose fixed points are Engel

We consider the situation where A is an elementary abelian q-group acting coprimely on a (pro)finite group G and the centralizers $C_G(a)$ consist of Engel elements.

The results were obtained by subsets of the following set : {C. Acciarri, P. Shumyatsky and D. Sanção da Silveira}.

Let $A^{\#}$ denote the set of non-identity elements of A.

Centralizers consisting of Engel elements in ${\boldsymbol{G}}$

Theorem A1

Let q be a prime, n a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts coprimely on a finite group G and assume that for each $a \in A^{\#}$ every element of $C_G(a)$ is n-Engel in G. Then the group G is k-Engel for some $\{n, q\}$ -bounded number k.

Centralizers consisting of Engel elements in ${\boldsymbol{G}}$

Theorem A1

Let q be a prime, n a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts coprimely on a finite group G and assume that for each $a \in A^{\#}$ every element of $C_G(a)$ is n-Engel in G. Then the group G is k-Engel for some $\{n, q\}$ -bounded number k.

A non-quantitative profinite version of the result above is the following

Centralizers consisting of Engel elements in ${\boldsymbol{G}}$

Theorem A1

Let q be a prime, n a positive integer and A an elementary abelian group of order q^2 . Suppose that A acts coprimely on a finite group G and assume that for each $a \in A^{\#}$ every element of $C_G(a)$ is n-Engel in G. Then the group G is k-Engel for some $\{n, q\}$ -bounded number k.

A non-quantitative profinite version of the result above is the following

Theorem B1

Let q be a prime and A an elementary abelian q-group of order q^2 . Suppose that A acts coprimely on a profinite group G and assume that all elements in $C_G(a)$ are Engel in G for each $a \in A^{\#}$. Then G is locally nilpotent.

Relaxing the hypothesis on the fixed point subgroups

If, in Theorem A1, we relax the hypothesis that every element of $C_G(a)$ is *n*-Engel in *G* and require instead that every element of $C_G(a)$ is *n*-Engel in $C_G(a)$, then the result is no longer true.

Relaxing the hypothesis on the fixed point subgroups

If, in Theorem A1, we relax the hypothesis that every element of $C_G(a)$ is *n*-Engel in G and require instead that every element of $C_G(a)$ is *n*-Engel in $C_G(a)$, then the result is no longer true.

Example

a finite non-nilpotent group G admitting a four-group of automorphisms A such that $C_G(a)$ is abelian for each $a \in A^{\#}$ can be constructed.

Centralizers consisting of Engel elements

Theorem A2

Let q be a prime, n a positive integer and A an elementary abelian group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that for each $a \in A^{\#}$ every element of $C_G(a)$ is n-Engel in $C_G(a)$. Then the group G is k-Engel for some $\{n, q\}$ -bounded number k.

Centralizers consisting of Engel elements

Theorem A2

Let q be a prime, n a positive integer and A an elementary abelian group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that for each $a \in A^{\#}$ every element of $C_G(a)$ is n-Engel in $C_G(a)$. Then the group G is k-Engel for some $\{n, q\}$ -bounded number k.

A non-quantitative profinite version of the result above states as follows

Theorem B2

Let q be a prime and A an elementary abelian q-group of order q^3 . Suppose that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$. Then G is locally nilpotent.

Theorem A1 can be generalized as follows:

Theorem A1 can be generalized as follows:

Let q be a prime, n a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G.

Theorem A1 can be generalized as follows:

Let q be a prime, n a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G.

(1) If all elements in $\gamma_{r-1}(C_G(a))$ are *n*-Engel in *G* for any $a \in A^{\#}$, then $\gamma_{r-1}(G)$ is *k*-Engel for some $\{n, q, r\}$ -bounded number *k*.

Theorem A1 can be generalized as follows:

Let q be a prime, n a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G.

(1) If all elements in $\gamma_{r-1}(C_G(a))$ are *n*-Engel in *G* for any $a \in A^{\#}$, then $\gamma_{r-1}(G)$ is *k*-Engel for some $\{n, q, r\}$ -bounded number *k*.

(2) If, for some integer d such that $2^d \leq r-1$, all elements in the dth derived group of $C_G(a)$ are n-Engel in G for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ is k-Engel for some $\{n, q, r\}$ -bounded number k.

Theorem A1 can be generalized as follows:

Let q be a prime, n a positive integer and A an elementary abelian group of order q^r with $r \ge 2$ acting on a finite q'-group G.

(1) If all elements in $\gamma_{r-1}(C_G(a))$ are *n*-Engel in *G* for any $a \in A^{\#}$, then $\gamma_{r-1}(G)$ is *k*-Engel for some $\{n, q, r\}$ -bounded number *k*.

(2) If, for some integer d such that $2^d \leq r-1$, all elements in the dth derived group of $C_G(a)$ are n-Engel in G for any $a \in A^{\#}$, then the dth derived group $G^{(d)}$ is k-Engel for some $\{n, q, r\}$ -bounded number k.

Analogous generalizations of Theorems A2, B1 and B2 also hold.

Recall that q is a prime and A is an elementary abelian group of order q^3 . Assume that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$.

Recall that q is a prime and A is an elementary abelian group of order q^3 . Assume that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$. We want to show that G is locally nilpotent as well.

Recall that q is a prime and A is an elementary abelian group of order q^3 . Assume that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$. We want to show that G is locally nilpotent as well.

The proof of the result involves a number of ideas:

• Lie-theoretical results of Zelmanov obtained in his solution of the restricted Burnside problem;

Recall that q is a prime and A is an elementary abelian group of order q^3 . Assume that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$. We want to show that G is locally nilpotent as well.

The proof of the result involves a number of ideas:

- Lie-theoretical results of Zelmanov obtained in his solution of the restricted Burnside problem;
- the Lubotzky–Mann theory of powerful *p*-groups;

Recall that q is a prime and A is an elementary abelian group of order q^3 . Assume that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$. We want to show that G is locally nilpotent as well.

The proof of the result involves a number of ideas:

- Lie-theoretical results of Zelmanov obtained in his solution of the restricted Burnside problem;
- the Lubotzky–Mann theory of powerful *p*-groups;
- a Lazard's criterion for a pro-p group to be p-adic analytic;

Recall that q is a prime and A is an elementary abelian group of order q^3 . Assume that A acts coprimely on a profinite group G and assume that $C_G(a)$ is locally nilpotent for each $a \in A^{\#}$. We want to show that G is locally nilpotent as well.

The proof of the result involves a number of ideas:

- Lie-theoretical results of Zelmanov obtained in his solution of the restricted Burnside problem;
- the Lubotzky–Mann theory of powerful *p*-groups;
- a Lazard's criterion for a pro-p group to be p-adic analytic;
- a theorem of Bahturin and Zaicev giving an important criterion for a Lie algebra to satisfy a polynomial identity.

Theorem (Ward, 1971). Let q be a prime and A an elementary abelian group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that $C_G(a)$ is nilpotent for each $a \in A^{\#}$. Then G is nilpotent.

Theorem (Ward, 1971). Let q be a prime and A an elementary abelian group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that $C_G(a)$ is nilpotent for each $a \in A^{\#}$. Then G is nilpotent.

If G is a profinite group admitting a coprime group of automorphisms A which is elementary abelian of order q^3 and such that $C_G(a)$ is pronilpotent for all $a \in A^{\#}$, then G is pronilpotent.

Theorem (Ward, 1971). Let q be a prime and A an elementary abelian group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that $C_G(a)$ is nilpotent for each $a \in A^{\#}$. Then G is nilpotent.

If G is a profinite group admitting a coprime group of automorphisms A which is elementary abelian of order q^3 and such that $C_G(a)$ is pronilpotent for all $a \in A^{\#}$, then G is pronilpotent.

In view of the profinite version of Ward's Theorem the group G is pronilpotent and therefore G is the Cartesian product of its Sylow subgroups.

Proposition

For any locally nilpotent profinite group K there exist a positive integer n, elements $g_1, g_2 \in K$ and an open subgroup $H \leq K$ such that the law $[x, n y] \equiv 1$ is satisfied on the cosets g_1H, g_2H , that is $[g_1h_1, n g_2h_2] = 1$ for all $h_1, h_2 \in H$.

Proposition

For any locally nilpotent profinite group K there exist a positive integer n, elements $g_1, g_2 \in K$ and an open subgroup $H \leq K$ such that the law $[x, n y] \equiv 1$ is satisfied on the cosets g_1H, g_2H , that is $[g_1h_1, n g_2h_2] = 1$ for all $h_1, h_2 \in H$.

Choose $a \in A^{\#}$. Since $C_G(a)$ is locally nilpotent, from the proposition above it follows that $C_G(a)$ contains an open subgroup H and elements u, v such that for some n the law $[x, n y] \equiv 1$ is satisfied on the cosets uH, vH.

Proposition

For any locally nilpotent profinite group K there exist a positive integer n, elements $g_1, g_2 \in K$ and an open subgroup $H \leq K$ such that the law $[x, n y] \equiv 1$ is satisfied on the cosets g_1H, g_2H , that is $[g_1h_1, n g_2h_2] = 1$ for all $h_1, h_2 \in H$.

Choose $a \in A^{\#}$. Since $C_G(a)$ is locally nilpotent, from the proposition above it follows that $C_G(a)$ contains an open subgroup H and elements u, v such that for some n the law $[x, n y] \equiv 1$ is satisfied on the cosets uH, vH.

Let $[C_G(a): H] = m$ and let $\pi_1(a) = \pi(m)$. Put $T = O_{\pi'_1}(C_G(a))$.

Proposition

For any locally nilpotent profinite group K there exist a positive integer n, elements $g_1, g_2 \in K$ and an open subgroup $H \leq K$ such that the law $[x, n y] \equiv 1$ is satisfied on the cosets g_1H, g_2H , that is $[g_1h_1, n g_2h_2] = 1$ for all $h_1, h_2 \in H$.

Choose $a \in A^{\#}$. Since $C_G(a)$ is locally nilpotent, from the proposition above it follows that $C_G(a)$ contains an open subgroup H and elements u, v such that for some n the law $[x, ny] \equiv 1$ is satisfied on the cosets uH, vH.

Let $[C_G(a): H] = m$ and let $\pi_1(a) = \pi(m)$. Put $T = O_{\pi'_1}(C_G(a))$.

Since T is isomorphic to the image of H in $C_G(a)/O_{\pi_1}(C_G(a))$, it is easy to see that T satisfies the law $[x, ny] \equiv 1$, that is, T is n-Engel.

Proposition

For any locally nilpotent profinite group K there exist a positive integer n, elements $g_1, g_2 \in K$ and an open subgroup $H \leq K$ such that the law $[x, n y] \equiv 1$ is satisfied on the cosets g_1H, g_2H , that is $[g_1h_1, n g_2h_2] = 1$ for all $h_1, h_2 \in H$.

Choose $a \in A^{\#}$. Since $C_G(a)$ is locally nilpotent, from the proposition above it follows that $C_G(a)$ contains an open subgroup H and elements u, v such that for some n the law $[x, ny] \equiv 1$ is satisfied on the cosets uH, vH.

Let $[C_G(a): H] = m$ and let $\pi_1(a) = \pi(m)$. Put $T = O_{\pi'_1}(C_G(a))$.

Since T is isomorphic to the image of H in $C_G(a)/O_{\pi_1}(C_G(a))$, it is easy to see that T satisfies the law $[x, ny] \equiv 1$, that is, T is n-Engel.

By the result of Burns and Medvedev the subgroup T has a nilpotent normal subgroup U such that T/U has finite exponent, say e. Set $\pi_2(a) = \pi(e)$.

Note that the finite sets $\pi_1(a)$ and $\pi_2(a)$ depend on the choice of $a \in A^{\#}$. Let

$$\pi_a = \pi_1(a) \cup \pi_2(a)$$

and set

$$\pi = \cup_{a \in A^{\#}} \pi_a$$
 and $K = O_{\pi'}(G)$.

Note that the finite sets $\pi_1(a)$ and $\pi_2(a)$ depend on the choice of $a \in A^{\#}$. Let

$$\pi_a = \pi_1(a) \cup \pi_2(a)$$

and set

$$\pi = \cup_{a \in A^{\#}} \pi_a \text{ and } K = O_{\pi'}(G).$$

The choice of the finite set π guarantees that $C_K(a)$ is nilpotent for every $a \in A^{\#}$.

Theorem (Shumyatsky, 2001). Let q be a prime and A an elementary abelian q-group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that $C_G(a)$ is nilpotent of class at most c for each $a \in A^{\#}$. Then G is nilpotent and the class of G is $\{q, c\}$ -bounded.

Note that the finite sets $\pi_1(a)$ and $\pi_2(a)$ depend on the choice of $a \in A^{\#}$. Let

$$\pi_a = \pi_1(a) \cup \pi_2(a)$$

and set

$$\pi = \cup_{a \in A^{\#}} \pi_a$$
 and $K = O_{\pi'}(G)$.

The choice of the finite set π guarantees that $C_K(a)$ is nilpotent for every $a \in A^{\#}$.

Theorem (Shumyatsky, 2001). Let q be a prime and A an elementary abelian q-group of order q^3 . Suppose that A acts coprimely on a finite group G and assume that $C_G(a)$ is nilpotent of class at most c for each $a \in A^{\#}$. Then G is nilpotent and the class of G is $\{q, c\}$ -bounded.

By the profinite version of the result above, the subgroup K is nilpotent.

We have

$$G = P_1 \times P_2 \times \cdots \times P_r \times K,$$

where p_1, p_2, \ldots, p_r are the finitely many primes in π and P_1, P_2, \ldots, P_r are the corresponding Sylow subgroups of G.

We have

$$G = P_1 \times P_2 \times \cdots \times P_r \times K,$$

where p_1, p_2, \ldots, p_r are the finitely many primes in π and P_1, P_2, \ldots, P_r are the corresponding Sylow subgroups of G.

For our purpose it is sufficient to show that each subgroup P_i is locally nilpotent.

We have

$$G = P_1 \times P_2 \times \cdots \times P_r \times K,$$

where p_1, p_2, \ldots, p_r are the finitely many primes in π and P_1, P_2, \ldots, P_r are the corresponding Sylow subgroups of G.

For our purpose it is sufficient to show that each subgroup P_i is locally nilpotent.

From now on w.l.o.g. we assume that G is a pro-p group for some prime p.

We have

$$G = P_1 \times P_2 \times \cdots \times P_r \times K,$$

where p_1, p_2, \ldots, p_r are the finitely many primes in π and P_1, P_2, \ldots, P_r are the corresponding Sylow subgroups of G.

For our purpose it is sufficient to show that each subgroup P_i is locally nilpotent.

From now on w.l.o.g. we assume that G is a pro-p group for some prime p.

Since every finite subset of G is contained in a finitely generated A-invariant subgroup we can also assume that G is finitely generated.

We denote by $D_j=D_j({\cal G})$ the terms of the $p\text{-dimension central series of }{\cal G},$ i.e.

$$D_j = \langle [g_1, \dots, g_s]^{p^t} \mid sp^t \ge j, g_k \in G \rangle = \prod_{sp^t \ge j} \gamma_s(G)^{p^t}.$$

We denote by $D_j=D_j({\cal G})$ the terms of the $p\text{-dimension central series of }{\cal G},$ i.e.

$$D_j = \langle [g_1, \dots, g_s]^{p^t} \mid sp^t \ge j, g_k \in G \rangle = \prod_{sp^t \ge j} \gamma_s(G)^{p^t}.$$

The D_j form a filtration in the sense that $[D_i, D_j] \leq D_{i+j}$ for all i, j and all of the D_j/D_{j+1} have exponent p.

We denote by $D_j=D_j({\cal G})$ the terms of the $p\text{-dimension central series of }{\cal G},$ i.e.

$$D_j = \langle [g_1, \dots, g_s]^{p^t} \mid sp^t \ge j, g_k \in G \rangle = \prod_{sp^t \ge j} \gamma_s(G)^{p^t}.$$

The D_j form a filtration in the sense that $[D_i, D_j] \leq D_{i+j}$ for all i, j and all of the D_j/D_{j+1} have exponent p. Thus we can consider the Lie ring $L(G) = \bigoplus D_j/D_{j+1}$ that actually can be viewed as Lie algebra over \mathbb{F}_p .

We denote by $D_j=D_j({\cal G})$ the terms of the $p\text{-dimension central series of }{\cal G},$ i.e.

$$D_j = \langle [g_1, \dots, g_s]^{p^t} \mid sp^t \ge j, g_k \in G \rangle = \prod_{sp^t \ge j} \gamma_s(G)^{p^t}.$$

The D_j form a filtration in the sense that $[D_i, D_j] \leq D_{i+j}$ for all i, j and all of the D_j/D_{j+1} have exponent p. Thus we can consider the Lie ring $L(G) = \bigoplus D_j/D_{j+1}$ that actually can be viewed as Lie algebra over \mathbb{F}_p . Consider $L_p(G)$, the subalgebra generated by the first homogeneous

component D_1/D_2 in L(G).

We denote by $D_j=D_j({\cal G})$ the terms of the $p\text{-dimension central series of }{\cal G},$ i.e.

$$D_j = \langle [g_1, \dots, g_s]^{p^t} \mid sp^t \ge j, g_k \in G \rangle = \prod_{sp^t \ge j} \gamma_s(G)^{p^t}.$$

The D_j form a filtration in the sense that $[D_i, D_j] \leq D_{i+j}$ for all i, j and all of the D_j/D_{j+1} have exponent p. Thus we can consider the Lie ring $L(G) = \bigoplus D_j/D_{j+1}$ that actually can be viewed as Lie algebra over \mathbb{F}_p . Consider $L_p(G)$, the subalgebra generated by the first homogeneous component D_1/D_2 in L(G).

Since any automorphism of G induces an automorphisms of L(G), in particular the group A naturally acts on $L_p(G)$.

By applying a combination of results due to Wilson, Zelmanov, Khukhro and Shumyatsky and the Lie-theoretical techniques created by Zelmanov in the solution of the RBP we can show that $L_p(G)$ is nilpotent.

By applying a combination of results due to Wilson, Zelmanov, Khukhro and Shumyatsky and the Lie-theoretical techniques created by Zelmanov in the solution of the RBP we can show that $L_p(G)$ is nilpotent.

Proving that $L_p(G)$ is nilpotent relies on one of the most general form of the positive solution of the restricted Burnside-type problems for Lie algebras.

Theorem (Zelmanov, 1992)

Let L be a Lie algebra generated by finitely many elements a_1, a_2, \ldots, a_m such that each commutator in these generators is ad-nilpotent. If L satisfies a polynomial identity, then L is nilpotent.

Theorem (Lazard, 1965)

A finitely generated pro- $p\mbox{-}p\mbox{-}g\mbox{roup}\ G$ is $p\mbox{-}a\mbox{adj}\mbox{til}$ if and only if $L_p(G)$ is nilpotent.

Theorem (Lazard, 1965)

A finitely generated pro-p-group G is p-adic analytic if and only if $L_p(G)$ is nilpotent.

Thus G is p-adic analytic and we are in the position to apply

Theorem (Lazard, 1965)

A finitely generated pro-p-group G is p-adic analytic if and only if $L_p(G)$ is nilpotent.

Thus G is p-adic analytic and we are in the position to apply

Theorem (Lubotzky and Mann, 1987)

A finitely generated pro-p group G is p-adic analytic if and only if it is of finite rank, that is, if all closed subgroups of G are finitely generated.

Theorem (Lazard, 1965)

A finitely generated pro-p-group G is p-adic analytic if and only if $L_p(G)$ is nilpotent.

Thus G is p-adic analytic and we are in the position to apply

Theorem (Lubotzky and Mann, 1987)

A finitely generated pro-p group G is p-adic analytic if and only if it is of finite rank, that is, if all closed subgroups of G are finitely generated.

Thus each centralizer $C_G(a)$ is finitely generated for every $a \in A^{\#}$ and it follows that $C_G(a)$ are nilpotent.

Theorem (Lazard, 1965)

A finitely generated pro-p-group G is p-adic analytic if and only if $L_p(G)$ is nilpotent.

Thus G is p-adic analytic and we are in the position to apply

Theorem (Lubotzky and Mann, 1987)

A finitely generated pro-p group G is p-adic analytic if and only if it is of finite rank, that is, if all closed subgroups of G are finitely generated.

Thus each centralizer $C_G(a)$ is finitely generated for every $a \in A^{\#}$ and it follows that $C_G(a)$ are nilpotent.

Finally applying the profinite version of Shumyatsky's result we get that G is nilpotent. This concludes our proof.

Thank you!