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Resumen

Uno de los temas méas importantes en teoria de grupos finitos es el estudio
de la relacion entre los invariantes globales y locales de un grupo. Sea G
un grupo finito y p un primo. Los p-subgrupos de G son los subgrupos
de G cuyo orden es una potencia de p, y los subgrupos locales de G son los
normalizadores propios de p-subgrupos de G. Como paradigma de todo esto,
podemos citar un teorema clasico de Frobenius, que ha inspirado muchos
resultados recientes. Este teorema establece que un grupo G posee un p-
complemento normal si y sélo si cada uno de sus subgrupos locales tiene un
p-complemento normal.

En esta tesis, nuestra atencién se centra en el estudio de caracteres de
grupos finitos; tanto ordinarios, aquellos asociados a una representacion so-
bre el cuerpo de los niimeros complejos, como modulares, aquellos asociados
a una representacion sobre un cuerpo de caracteristica p. Nos interesa espe-
cialmente la relacién entre los caracteres de un grupo G y los caracteres de
sus subgrupos locales. La conjetura de McKay es el ejemplo clave del tipo
de problemas en el que estamos interesados. Esta conjetura es un problema
central dentro de toda la teoria de representaciones y de caracteres de gru-
pos finitos. Si G es un grupo finito y p es un primo, la conjetura de McKay
afirma que tanto G' como el normalizador de un p-subgrupo de Sylow de G
tienen el mismo nimero de caracteres irreducibles de grado no divisible por
p. Por tanto, predice la existencia de una biyeccién entre tales conjuntos de
caracteres. El capitulo 3 de este trabajo trata de un caso particular de esta
conjetura en el que no sélo encontraremos una biyeccion de tipo McKay,
sino que esta biyeccién serd natural.

Como hemos mencionado, nos interesa relacionar los caracteres de un
grupo G con los caracteres de sus subgrupos locales. La situacién es es-
pecialmente atractiva cuando podemos establecer esa relacién a través de
correspondencias naturales. Quizd, el ejemplo mas representativo sea la
correspondencia de Glauberman. Supongamos que un p-grupo P actia so-
bre un grupo K cuyo orden no es divisible por p. Entonces existe una
biyeccién natural * entre los caracteres irreducibles de K que son fijados por
la accién de P, denotamos por Irrp(K) a este conjunto, y los caracteres ir-
reducibles del grupo C' = Cg (P) de puntos fijados por la accién. De hecho,
si x € Irrp(K), entonces

xc = ex™ + pA,
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donde e es un nimero natural no divisible por p y A es o bien un carédcter
de C o bien es cero. Por tanto, x* es la tinica constituyente del caracter x¢
que aparece con multiplicidad no divisible entre p. Vemos que x determina
candnicamente a x* y lo mismo ocurre en sentido contrario.

La palabra natural ya ha aparecido en varias ocasiones en este resumen.
De hecho, volvera a aparecer en distintas situaciones a lo largo de este tra-
bajo. Por tanto, conviene que aclaremos qué entendemos cuando tildamos
una biyeccion de natural o canonica. Para ello, usaremos palabras de I.
M. Isaacs. La siguiente cita estd extraida (y traducida) del importantisimo
articulo de 1973 [Isa73] en el que I. M. Isaacs prueba la conjetura de McKay
en el caso en que el orden de G es impar: «La palabra‘“natural” quiere decir
que la correspondencia se construye a través de un algoritmo y que el resul-
tado es independiente de cualquier eleccién tomada al aplicar el algoritmos.

Sea x un caracter de G. El cuerpo de valores Q(x) de x es la menor de
las extensiones de cuerpo de Q que contiene todos los valores de . Si nos
encontramos en la situacién de tener una correspondencia de Glauberman
y los caracteres x y x* se corresponden, entonces sus cuerpos de valores
coinciden Q(x) = Q(x*). Esto se debe a que la biyeccién * conmuta con la
accion de automorfismos de Galois sobre caracteres. En general, esperamos
que las biyecciones naturales no sean meras biyecciones entre conjuntos,
es decir, que tengan propiedades adicionales. Por ejemplo, esperamos que
conmuten con la accién de ciertos automorfismos de Galois y con la accién de
ciertos automorfismos de grupo. En este sentido, las biyecciones naturales
deben proporcionar mas informaciéon que relacione la estructura global y
local del grupo.

Guidn de la tesis

Todos los grupos que consideramos en esta tesis son finitos. Los primeros
tres capitulos de la tesis tratan sobre caracteres ordinarios, mientras que
los dos ultimos estan dedicados al estudio de caracteres modulares, también
conocidos como caracteres de Brauer. Los resultados originales que contiene
esta tesis aparecen en los siguientes articulos [NV12], [Vall4], [NTV14],
[NV15], [SV16] y [Vall6].

En el capitulo 1 exponemos la teoria de caracteres ordinaria basica que
vamos a usar a lo largo de la tesis. Nuestra referencia para caracteres or-
dinarios es [Isa76]. También incluimos en este capitulo una pequena ex-
posicién de la teoria de B -characteres de Isaacs que, aunque no es ele-
mental, serd usada con bastante frecuencia a lo largo de este trabajo (en los
capitulos 2, 3y 4). Finalmente, y para la comodidad del lector, presentamos
al final de este primer capitulo resultados bien conocidos sobre los grupos
PSLy(q), puesto que estos constituyen todo el bagaje sobre grupos simples
que necesitaremos en el capitulo 3.
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En el capitulo 2 empieza nuestro trabajo original. Un caracter lineal A
de un grupo G no es méas que un homomorfismo G — C*. Por tanto, los
caracteres lineales son los mas faciles de comprender. También, un grupo es
abeliano si y sélo si todos sus caracteres son lineales. Un carédcter y de G se
dice monomial si estd inducido a partir de algin caracter lineal. Desde esta
perspectiva, los caracteres monomiales también deben ser ficiles de entender.
Sin embargo, los grupos en los que todos los caracteres son monomiales son
muy dificiles de entender. De hecho, varios problemas importantes sobre
ellos siguen abiertos [Nav10]. Ademds, no existen demasiados resultados
que garanticen que un cierto caricter es monomial. Una excepcién es un
bonito resultado de R. Gow [Gow75]: un carédcter racional de grado impar
en un grupo resoluble es monomial. Nosotros extendemos este resultado de
Gow en los Teoremas A y B. Estos dos resultados son, por tanto, criterios
para asegurar la monomialidad de un caracter, y tienen que ver con los
cuerpos de valores de los caracteres asi como con sus grados. Ademas, la
conclusién del Teorema B nos permite construir una correspondencia natural
de tipo global/local, hecho que mostramos en el Teorema C.

Si usamos la teoria de B -caracteres de Isaacs, la conclusion del Teorema
B puede hacerse méas fuerte. Lo bueno es que esta nueva conclusién nos
permite dar una nueva forma de calcular un invariante global de un grupo
de forma local. Este es el contenido de la seccién 2.3.

Concluimos el capitulo 2 estudiando una conjetura de Feit [Fei80]. Si x
es un cardcter de un grupo G, escribimos f, para denotar al menor natural
n de forma que Q(x) € Q,, (donde Q,, es el cuerpo ciclotémico que resulta
de adjuntar a Q una raiz primitiva n-ésima de la unidad).

CONJETURA (Feit). Sea G un grupo finito y sea x un cardcter irreducible
(ordinario) de G. Existe un elemento g € G de forma que el orden de g es
exactamente fy.

Esta conjetura fue probada para grupos resolubles por G. Amit y D.
Chillag en [AC86]. Nosotros probamos una versién global/local del teorema
de Amit y Chillag en nuestro Teorema D. La prueba del Teorema D requiere
el uso de la teoria de caracteres especiales de Gajendragadkar y el uso del
cardcter mdgico 1 que Isaacs define en su ya mencionado articulo [Isa73].

En el capitulo 3 estudiamos el caso autonormalizante de la conjetura
de McKay. Sea p un primo y sea P un p-subgrupo de Sylow de G. En el
Teorema E probamos que si Ng(P) = P y p es impar, entonces existe una
biyeccion natural entre los caracteres irreducibles de G de grado no divisible
por p y los caracteres del grupo abeliano P/P’. Para probar el Teorema E
estd hemos necesitado la descripcién del comportamiento de los caracteres
de PSLa(¢q) bajo la accién de automorfismos de cuerpo y un resultado general
de extensién de caracteres que probamos en la secciéon 3.3. Cabe mencionar
que la conclusién del Teorema E es cierta sin restricciones sobre el primo p
si asumimos que el grupo G es p-resoluble.
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La correspondencia natural dada en el Teorema E estd descrita en tér-
minos de la restricciéon de caracteres de G a P. Como consecuencia de
ello, conmuta con la accién de automorfismos de Galois y con la accién de
cualquier automorfismo de G que estabilice a P. Estas propiedades hacen
que el Teorema E tenga como corolario una caracterizacién de los grupos
que tienen un p-subgrupo de Sylow autonormalizante para p impar. Discu-
tiremos este corolario en la seccién 3.4.

En la seccién 3.5 estudiamos una extensién del Teorema E al caso en que
N¢(P) = Cg(P)P. En este caso nuestra biyeccién natural sélo se da entre
caracteres que pertenecen al bloque principal. En el Teorema F probamos
que si Ng(P) = Cg(P)P y ademés G es p-resoluble, entonces existe una
biyeccién natural de tipo McKay para G (y esta biyeccién coincide con la
dada por el Teorema E cuando N¢g(P) = P).

El capitulo 4 proporciona al lector la teoria de caracteres modular nece-
saria para desarrollar el capitulo 5. La primera parte contiene resultados
bien conocidos sobre caracteres de Brauer, mientras que, en la segunda parte,
probamos resultados mas especificos. Procedemos de esta forma ya que la
naturaleza del capitulo 5 es muy técnica.

La seccion 4.1 es un compendio de resultados sobradamente conocidos
sobre caracteres de Brauer. Nuestra referencia en este caso es [Nav98].
En la seccion 4.2, introducimos la nocién de isomorfismo central de ternas
de caracteres modulares (que es andloga a la nocién de isomorfismo central
de ternas de caracteres ordinarios definida por G. Navarro y B. Spéath en
[NS14]) y estudiamos propiedades de las ternas de caracteres que son cen-
tralmente isomorfas. En la seccion 4.3 introducimos el concepto de acciéon
de Galois pretendida (cuando nos movemos en un terreno muy técnico, la
traduccién al castellano no es muy agradable). Estas pretendidas acciones
de Galois serviran para compensar el hecho de que los automorfismos de
Galois no actiian sobre los caracteres irreducibles de Brauer. En el capitulo
5 motivamos esta definicion.

En el capitulo 5, estudiamos una version modular de la igualdad de
cardinales derivada de la correspondencia de Glauberman-Isaacs. Suponga-
mos que un grupo A actia sobre un grupo G y que, ademds, (|G|, |A4]) =
1. Entonces, por la correspondencia de Glauberman-Isaacs se tiene que el
nimero de caracteres irreducibles ordinarios de G que son fijados por la
accion de A coincide con el nimero de caracteres irreducibles ordinarios del
grupo C¢(A) de puntos fijados por la accién. K. Uno [Uno83] probé que
lo mismo ocurre para caracteres de Brauer (con respecto al primo p) si el
grupo G es p-resoluble. El siguiente problema aparece en [Nav94].

CONJETURA. Supongamos que un grupo A actia sobre un grupo G y
que, ademds, (|G|,|A|]) = 1. Sea C = Cg(A). Denotemos por IBra(Q)
al conjunto de caracteres irreducibles de Brauer de G fijados por A y por

Universitat de Valencia Carolina Vallejo Rodriguez



X1

IBr(C) al conjunto de caracteres irreducibles de Brauer de C. Entonces
[IBra(G)] = [IBr(C)|.

El resultado principal del capitulo 5 es un teorema de reduccién para
la conjetura anterior. Dicho de una forma maés precisa, en el Teorema G
probamos que si todos los grupos finitos simples satisfacen lo que llamamos
la condicion inductiva de Brauer-Glauberman, entonces la conjetura ante-
rior se satisface para grupos cualesquiera G y A. En la ultima seccién de
este trabajo 5.7, pretendemos responder algunas preguntas naturalmente
relacionadas con el tema de este ultimo capitulo, asi como plantear nuevas
cuestiones.
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Introduction

One of the main topics in the Theory of Finite Groups is the study of the
relationship between the global and the local invariants of a finite group.
Let G be a finite group, and let p be a prime. The p-subgroups of G are
the subgroups of G of order a power of p, and the local subgroups of G are
the proper normalizers of the p-subgroups of G. A paradigmatic example of
this is an old theorem of Frobenius, which has inspired many recent results,
that asserts that a group G has a normal p-complement if and only if every
local subgroup has a normal p-complement.

In this thesis we focus our attention on characters: ordinary characters,
associated with representations over the field of complex numbers, and mod-
ular characters, associated with representations over fields of prime charac-
teristic p. We are particularly interested in the relation between the char-
acters of G and the characters of the local subgroups of G. A fundamental
example of the kind of problems we are interested in is the McKay conjec-
ture, which is nowadays at the center of the Representation and Character
Theory of Finite Groups. If p is a prime and G is a finite group, then the
McKay conjecture asserts that G and the normalizer of a Sylow p-subgroup
of G have the same number of ordinary irreducible characters of degree
not divisible by p (therefore predicting the existence of a bijection between
these two character sets). Chapter 3 of this work concerns a particular case
of this conjecture in which not only can we find a bijection but a natural
correspondence.

As we said, we are interested in relating the characters of G and the
characters of the local subgroups of G. The situation is especially appealing
if we can establish this relation by means of natural correspondences. The
canonical example of the type of character correspondence that interests us
is the Glauberman correspondence. If a p-group P acts on a group K of
order not divisible by p, then there is a natural bijection * between the set
of irreducible ordinary characters of K fixed under the action of P, denoted
Irrp(K), and the irreducible characters of the subgroup C = Cg(P) of
points fixed under the action. In fact, if x € Irrp(K), then the restriction
xc of x to C can be written as

xc = ex™ + pA,

XV
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where p does not divide e, and A is zero or a character of C. Hence we see
that x canonically determines x* and viceversa.

The word natural has appeared more than once in this introduction and
we will talk again about natural or canonical correspondences throughout
this work. We feel it is worth mentioning what we mean by that. We shall
not give an exact definition of what it is, instead we quote I. M. Isaacs in
his landmark paper [Isa73] (in which he proved the McKay conjecture for
groups of odd order): «The word “natural” is intended to mean that an
algorithm is given for constructing the correspondence and that the result
is independent of any choices made in application of the algorithms».

Let x be an ordinary character of a group G. The field of values Q(x)
of x is the smallest field extension of Q containing all the values of x. In
the Glauberman correspondence situation, if xy and x* are correspondents,
then Q(x) = Q(x*). This is because * commutes with the action of Galois
automorphisms. In general, we expect natural correspondences of characters
to have more properties than being a mere bijection. For instance, natural
correspondences are expected to commute with certain Galois actions and
with the action of certain group automorphisms, and therefore they should
provide additional information as relating the global and the local structure.
In this sense, the benefits of having natural bijections are multiple.

We come back to the Glauberman correspondence as in the third para-
graph of this introduction. At first sight, it does not seem to go from global
(a finite group G) to local (a local subgroup of G), but this is only superfi-
cial. If a p-group P acts on a group K with (|P|,|K]|) = 1, then we form the
semidirect product G = K x P and we notice that Ng(P) = C x P, where
C = Cg(P). By using some elementary character theory, one can show
that the Glauberman correspondence implies that a natural bijection exists
between the set irreducible ordinary characters of G of degree not divisible
by p, and the set of irreducible ordinary characters of N (P) of degree not
divisible by p. Hence, the McKay conjecture in the case where the group G
has a normal p-complement follows from the Glauberman correspondence.

Outline of the thesis

All the groups we will consider in this work are finite unless otherwise stated.
The first three chapters of this thesis concern ordinary characters and the
last two chapters are devoted to modular characters (which are also known
as Brauer characters). The original results contained in this thesis appear in
[NV12] (joint work with G. Navarro), [Vall4], [NTV14] (joint work with
G. Navarro and P. H. Tiep), [NV15] (joint work with G. Navarro), [SV16]
(joint work with B. Spéth) and [Vall6].

Chapter 1 is an expository chapter containing the background on or-
dinary character theory needed for the rest of the work. Our reference is
[Isa76]. We also include a brief exposition of Isaacs Br-theory since this
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deep theory will be used in Chapters 2, 3 and 4 of the present work. Fi-
nally, for the reader’s convenience we present some well-known results about
groups of type PSLa(gq) that essentially constitute the background on simple
groups needed in Chapter 3.

In Chapter 2 we start our original work. A linear character A of a group
G is just an homomorphism G — C*. Hence, linear characters are the eas-
iest to understand. A character y is said to be monomial if there exists a
subgroup U of G and a linear character A of U such that A induces x. Thus,
from this perspective, monomial characters should also be easy to under-
stand. However, groups in which every character is monomial are actually
very hard to understand and still several open problems on them remain
unsolved (see Section 12 of [Nav10]). Also, it is unfortunate that there are
not many conditions known for a character to be monomial. In [Gow75]
R. Gow proved that an odd degree rational-valued irreducible character of
a solvable group is monomial. We extend Gow’s result in Theorems A and
B. Both results are monomiality criteria which deal with fields of values and
degrees of characters. The conclusion of Theorem B allows us to construct
natural correspondences of characters of global/local type in Theorem C.

We actually found that the conclusion of Theorem B could be strength-
ened by using Isaacs B -theory, and this stronger conclusion leads to a new
way of computing a global invariant of a group locally. This is the content
of Section 2.3.

We conclude Chapter 2 by studying a conjecture of Feit [Fei80]. For a
character x of a group G, we write f, to denote the smallest integer n such
that Q(x) < Q, (where Q, is the cyclotomic field obtained by adjoining a
primitive n-th root of unity to Q).

CONJECTURE (Feit). Let G be a finite group and let x be an irreducible
character of G. Then there exists an element g € G whose order is exactly

fx-

This conjecture is known to hold for solvable groups by work of G. Amit
and D. Chillag [AC86]. We prove a global/local version of Amit-Chillag’s
theorem in Theorem D. The proof of Theorem D requires highly non-trivial
results on solvable groups: properties of Gajendragadkar special characters
and properties of the magical character ¢ defined in the above-mentioned
paper of I. M. Isaacs [Isa73].

In Chapter 3 we study the self-normalizing case of the McKay conjec-
ture. Let p be a prime and let P be a Sylow p-subgroup of a group G. If
N¢g(P) = P and p is odd, then in Theorem E we prove that there exists
a natural correspondence between the irreducible characters of G of degree
not divisible by p and the irreducible characters of the abelian group P/P’.
Among other things, the proof of Theorem E requires the description of the
behavior of the character theory of PSLa(g) under the action of field auto-
morphisms (given in Section (15B) of [IMINO07]) and a key general extension
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theorem that we prove in Section 3.3. We mention that the conclusion of
Theorem E also holds without any restriction on p if G is assumed to be
p-solvable.

The natural correspondence given by Theorem E can be entirely de-
scribed in terms of the restriction of characters of G to P. Moreover, it
commutes with Galois action and the action of automorphisms of G that
stabilize P. These properties lead to an interesting consequence: a charac-
terization of groups having a self-normalizing Sylow p-subgroup for odd p,
that we discuss in Section 3.4.

In Section 3.5 we study an extension of Theorem E to the case where
Ng(P) = Cg(P)P and p is odd, but only between characters in the re-
spective principal blocks. In Theorem F, we prove that if G is p-solvable
and N¢g(P) = Cg(P)P, then there exists a natural McKay correspondence
(which in the case where Ng(P) = P is the one given by Theorem E).

Chapter 4 provides the modular character-theoretical background for
Chapter 5. The first part provides the basic background on Brauer charac-
ters. Due to the highly technical nature of the results contained in Chapter
5, in the second part of Chapter 4 we prove more specialized results on
Brauer characters.

In Section 4.1 we collect well-known results on Brauer characters. Our
reference is [Nav98]. In Section 4.2 we introduce the notion of central
isomorphism of modular character triples (which is analogous to the notion
of central isomorphism of ordinary character triples defined by G. Navarro
and B. Spéath in [NS14]) and we study its properties. In Section 4.3 we
introduce the concepts of fake Galois conjugate (modular) character triples
and fake Galois actions. Fake Galois actions try to remedy the fact that,
in general, the Galois group Gal(Q¢/Q) does not act on the irreducible
Brauer characters of the group G (they will be key in Chapter 5).

In Chapter 5 we study a modular version of the Glauberman-Isaacs
bijection. Let A act on G with (JA4|,|G|) = 1. By the Glauberman-Isaacs
correspondence, the number of irreducible ordinary characters of G fixed
under the action of A equals the number of irreducible ordinary characters
of the subgroup Cg(A) of fixed points. By work of K. Uno [Uno83], the
same holds for p-Brauer characters whenever G is a p-solvable group. The
following was asked in [Nav94].

CONJECTURE. Suppose that a group A acts on G with (|A],|G|) = 1.
Write C = Cg(A). Also write IBra(G) to denote the set of irreducible
Brauer characters of G fized under the action of A and IBr(C) to denote
the set of irreducible Brauer characters of C'. Then

[IBra(G)| = |IBr(C)|.
The main result of Chapter 5 is a reduction theorem for the above conjec-

ture. More precisely, in Theorem G we prove that if every simple non-abelian
group satisfies what we call the inductive Brauer-Glauberman condition then
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the above conjecture holds for all groups G and A. In the final Section 5.7
we intend to answer (and raise) some questions related to this topic.
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CHAPTER 1

Preliminaries on ordinary character theory of
finite groups

Unless otherwise stated all groups considered are finite.

1.1. Algebras, representations and characters

Let F be a field. Given a group G, the group algebra F[G] of G over F
consists of all the formal sums
Z a‘gga

geG

where a4 € F for every g € G. The group algebra F[G] is an F-vector space
in the obvious way. The elements of G can be viewed as elements of F[G]
via the identification of g € G with the formal sum }} _. a;x where ag = 1
and a, = 0 for © # ¢. In fact, the elements of G form an F-basis of F[G].
Define the product of two elements of G in F[G] as the product in G and
extends this definition of product to all F'[G] by linearity. Then F[G] is an
F-algebra.

An F-representation X of the group G is a homomorphism
X:G— GL,(F),
where GL,,(F") denotes the group of invertible matrices of size n x n over F.
The positive integer n is called the degree of the F-representation X.
Let X be an F-representation of G. We can extend X to the group
algebra F[G] by linearity and we obtain an algebra homomorphism

F[G] — Mat, (F),

where Mat,, (F') denotes the F-algebra of square matrices of size n x n over
F. Conversely, any algebra homomorphism F[G] — Mat,(F) yields an
F-representation of G by restriction to elements of G.

Two F-representations X and ) of G are said to be similar if there
exists some M € GL,,(F) such that X(g) = M 19 (g)M for every g € G.

Let X be an F-representation of G. We say that X is reducible if X
is similar to an F-representation ) of G in block upper triangular form

with at least two blocks. Note that ) has the form ( EDOI 25) ) and
2

1



2 1.1. Algebras, representations and characters

(by the product formula for matrices in block form) 2); and )y are F-
representations of G of degree strictly lower than the degree of X. We say
that X is irreducible if X is not reducible.

An F-character of a group G is defined as the trace function x of an F-
representation X of G (we say that X affords x). The trace is an invariant
under similarity in Mat, (F'), so the following is straightforward from the
definitions.

LEMMA 1.1. Let F be a field and let G be a group.

(a) Every F-character of G is constant on conjugacy classes of G.
(b) Similar F-representations afford the same F'-character.

Let x be an F-character of G and let X : G — GL,(F) be an F-
representation affording x. The number n is called the degree of x. Notice
that the degree of y is the degree of any F-representation affording x. We say
that an F-character x of G is irreducible if an F-representation affording
x is irreducible.

If X and 9 are two F-representations of G, then

3(9) = < %ég) @?g) )

defines an F-representation of G. Let x be the F-character afforded by X
and 9 by the F-character afforded by 2). Then, it is obvious that y + ¥ is
the F-character afforded by 3. Thus, sums of characters are also characters.
Moreover, a character y is irreducible if y cannot be written as the sum of
two characters.

From now on, and unless otherwise stated, we fix F' = C. (We refer to
complex characters just as characters or sometimes as ordinary characters.)
We denote by Irr(G) the set of irreducible characters of G. The map sending
every g € G to 1 € C* is a representation of G of degree one. The character
afforded by this representation 1 is the principal character of G. A
linear character A of GG is a character of G of degree equal to 1. In
this case, A is a homomorphism G — C*. Of course, linear characters are
irreducible.

THEOREM 1.2. Let G be a group. The number of irreducible characters
of G is equal to the number of conjugacy classes of G.

PRrROOF. See Corollary 2.7 of [Isa76]. O

We have seen that similar representations afford the same character. In
the complex case, it is remarkable that most of the relevant information
contained in a representation can be recovered from its trace.

THEOREM 1.3. Let G be a group, two representations X and Q) are sim-
ilar if and only if they afford the same character.

PRrROOF. See Corollary 2.9 of [Isa76]. O
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1. Preliminaries on ordinary character theory of finite groups 3

A class function on a group G is a function ¢ : G — C constant on
conjugacy classes. It follows from Lemma 1.1 that every character is a class
function. We usually denote the set of class functions by cf(G). The set
cf(G) has a structure of vector space in the natural way. It is clear that the
dimension of cf(G) is equal to the number of conjugacy classes of G.

THEOREM 1.4. Let G be a group. The set Irr(G) is a basis of cf(G).
Moreover, every character x of G can be expressed as a sum of irreducible
characters of G.

PROOF. See Theorem 2.8 of [Isa76]. O

By Theorem 1.4, if 4 is a character of GG, then we can write

¢ = Z a’XX)

xelrr(G)

where the a, are non-negative integers. If a, # 0, then x is called a con-
stituent of x and a, is the multiplicity of x as a constituent of .

Let ¢ and 6 be two characters of a group G, we define the product 6
for each g € G as

©0(g) = »(9)0(9)-

It can be proved that there exists a representation affording @6 (see Theorem
4.1 and Corollary 4.2 of [Isa76]). Hence, products of characters are also
characters.

Let Clg(g1),--.,Clg(gr) be the conjugacy classes of G (where g; € G
are conjugacy class representatives and ¢g; = 1) and let x1,...,x% be the
irreducible characters of G (set x1 = 1¢ the principal character of G). The
k x k matrix X (G) = (Xi(gj))ﬁjzl is known as the character table of G.
The character table codifies fundamental information about the group. The
first column of the character table is the multiset of degrees of the irreducible
representations of G.

THEOREM 1.5. Let G be a group. Then
Gl= > x()*
x€lrr(G)

PROOF. See Corollary 2.7 of [Isa76]. O

Hence, the first column of the character table of G determines |G|. Also,
as a consequence of this result, we obtain that the group G is abelian if and
only if every irreducible character of G is linear. The following is another
fundamental relation between the degrees of irreducible characters and the
order of the group.

THEOREM 1.6. Let x € Irr(G). Then x(1) divides |G]|.
PROOF. See Theorem 3.11 of [Isa76]. O
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4 1.1. Algebras, representations and characters

We can define an inner product on the vector space cf(G). Let ¢,0 €
cf(G). We set

[0, 6] = ‘(1;, > #(9)8(9) € C,
geG
where we denote by w the complex conjugate of w € C. It is easy to check
that [ , | satisfies the axioms of an inner product. Indeed [ , | makes cf(G)
into a finite dimensional Hermitian space.
By the First Orthogonality Relation (see Corollary 2.4 of [Isa76)), if
X, ¥ € Irr(G) then

[ 9] = Oy,

where §;; is the Kronecker delta symbol. In particular, Irr(G) is an orthonor-
mal basis for cf(G) with respect to the inner product [ , ]. The Second
Orthogonality Relation (see Theorem 2.13 of [Isa76]) is a consequence of
the first one and states that if g, h € G, then

> xlo)x(®)

xelrr(G)

is equal to |Cg(g)] if g and h are conjugate, and is zero otherwise.

Let x € Irr(G). The map Xx: G — C defined by X(g) = x(g) is a class
function of G. By Lemma 2.2(c) of [Nav98], if V' is a C[G]-module affording
X, then V* = Hom¢(V,C) is a C[G]-module affording . (The proof of
Lemma 2.2(c) also applies for ordinary characters, we give this reference
since, unlike in [Isa76], a module affording X is provided.) Hence Y € Irr(G)
and X(g) = x(g~!) for every g € G. We call ¥ the complex conjugate of
X-

Let x be a character of G. We define the kernel of x as

ker(x) = {g€ G | x(g9) = x(1)}.

LEMMA 1.7. Let x be a character of G and let X be a representation
affording x. Then

ker(x) = ker(X).

In particular, the kernel of x is a normal subgroup of G.
PROOF. See Lemma 2.19 of [Isa76]. O

We say that the character x is faithful if ker(x) = 1.

Let N < G and let x be a character of G such that N < ker(x). If
we define X(gN) = x(g) for every g € G, then X is a character of G/N.
Conversely, if ¥ is a character of G/N then the function x(g) = X(gN) is a
character of G, and obviously N € ker(x). In both cases, x is irreducible if
and only if  is irreducible (see Lemma 2.22 of [Isa76]). Usually we shall
identify y and Y. In general, we can identify the characters of G/N with
the characters of G containing N in their kernel.
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1. Preliminaries on ordinary character theory of finite groups 5

It is easy to see that the linear characters of G are exactly the irre-
ducible characters of G containing the commutator subgroup G’ in their
kernel. Hence we can identify the linear characters of G with the irreducible
characters of the abelian group G/G’ and the index |G : G’| gives the num-
ber of linear characters of G. The set of linear characters of G has a group
structure given by the product of characters. In fact, the group of linear
characters of G is isomorphic to G/G".

Let x be a character of G. We can define a map det(x) : G — C* by
choosing X a representation that affords x and setting

det(x)(g) = det(X(g)).

We claim that det(y) is a uniquely defined linear character of G. Actually if
X is a G-representation that affords the character y, then det(X) : G — C*
is a homomorphism and thus, a linear representation. For the uniqueness,
just notice that two representations afford the same character if and only if
they are similar, in this case both have the same determinant.

Let x be a character of G. We write o(x) to denote the order of A =
det(x) as an element of the group of linear characters of G. We call o(x)
the determinantal order of x. Then o(x) = o()\) = |G : ker(\)].

1.2. Induction and restriction of characters

Two essential features in character theory are restriction and induction of
characters. If ¢ is a class function of G and H < G, then the restricted
function @p is obviously a class function of H. Also, if ¢ is a character,
then o is a character.

Let 0 be a class function of some subgroup H of G. We define the
induced class function #% : G — C of 6 to G by

1w
0% (g) = ] > O(zga")

zelG

for every g € G, where 0(y) = 0(y) if y € H and 0(y) = 0 otherwise. It is
easy to check that A% is a class function of G. In fact, by Corollary 5.3 of
[Isa76), if 6 is a character of H < G, then the class function 6% is also a
character of G.

It is an elementary exercise to check that induction is a transitive oper-
ation on characters. As a consequence, if ¢ is a character of H < G such
that ¢ € Irr(G), then ¥ € Irr(S) for every H < S < G.

Let H < G and let 8 be a character of H. We can describe the kernel of
the induced character #¢ as follows

ker(609) = ] (ker(9))" = core (ker(9)),
zeG

where coreg(H ) is the intersection of all the G-conjugates of H, for H < G.
(See Lemma 5.11 of [Isa76]).

Universitat de Valencia Carolina Vallejo Rodriguez




6 1.2. Induction and restriction of characters

Frobenius reciprocity (see Lemma 5.2 of [Isa76]) evidences that restric-
tion and induction of complex characters are closely related: if ¢ is a class
function of GG and 6 is a class function of H < (G, then

[om. 0] = [, 6°].

In particular, if ¢ and 6 are irreducible, then the multiplicity of 6 as con-
stituent of ¢z is equal to the multiplicity of ¢ as constituent of #<.

Let H < G and let 6 be a character of H. Let g € G. We can define
09(x) = O(x9 ) for every z € G. Then it is immediate that 69 is a character
of H9 and [0,0] = [09,6079]. In particular, @ is irreducible if and only if 69
is irreducible. Notice that if g € H, then #9 = 6 because # is constant on
conjugacy classes of H.

Mackey’s formula relates the operations of induction and restriction of
characters.

LEMMA 1.8 (Mackey). Let H K < G. Let T be a set of representatives
of the double cosets HgK. That is, G = |J,.pHtK. Let 6 be a character of

H. Then
(09K = D (0 i)™
teT
In particular, if G = HK then (0%)k = (Op~x)"™.
PRrOOF. This is problem 5.6 of [Isa76]. O

Restriction and induction of characters behave well with respect to nor-
mal subgroups. Let N< G. If § € Irr(IV) and g € G, then we have seen that
69 € Irr(IN). Hence conjugation defines a natural action of G on Irr(N). Let
Gy be the stabilizer of 6 under this action. We call Gy the inertia sub-
group of # in G. Note that N < Gy < G. Let g € G. Then it follows from
the definition that G = Ggs. For H < G, we say that 6 is H-invariant if
H c Gy.

THEOREM 1.9 (Clifford). Let N< G and let x € Irr(G). Let 0 be an irre-
ducible constituent of xn and denote by 01, ..., 0 the different G-conjugates
of 8 in G with 81 = 6. Then

where e = [xn, 0].
PROOF. See Theorem 6.2 of [Isa76]. O

We establish now some notation. Let N< G, 0 € Irr(N) and y € Irr(G).
If 6 is such that [xn, 0] # 0 we say that 6 lies under x or that y lies over
6. We write Irr(G|6) to denote the set of irreducible characters of G' that
lie over 6 and we sometimes write Irr(xy) to denote the set of irreducible
characters of N lying under y.
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1. Preliminaries on ordinary character theory of finite groups 7

By Clifford’s theorem, if N < G, x € Irr(G) and 6 € Irr(xn), then the
number e = x(1)/6(1) is the multiplicity of 6 in xn. If Gg = G, this number
e is the degree of an irreducible projective representation of G/N and divides
|G/N|. (We will talk about projective representations in Chapter 4.) More
generally, we have the following.

THEOREM 1.10. Let N < G and let 6 € Irr(N). If x € Irr(G|6) then
e = [xn,0] divides |G : NJ|.

PRrROOF. See Corollary 11.29 of [Isa76] O

The following result is fundamental and it will be often used throughout
this work.

THEOREM 1.11 (Clifford Correspondence). Let N < G and let § be an
irreducible character of N. Then
(a) If v € Trr(Gyl6) then ¥ is irreducible.
(b) The map ¢ — < from Trr(Ggl6) onto Irr(G|6) is a bijection.
(c) Let x = ¢& where ¢ € Irr(Gg|6). Then 1 is the unique irreducible
constituent of xa, which lies over 6.
(d) Let & = x where ¢ € Irr(Gyl). Then [y, 0] = [xn, 6]

PROOF. See Theorem 6.11 of [Isa76]. O

If N< G, 0 €Irr(N) and x € Irr(G|6), then by the Clifford correspon-
dence, there exists a unique ¢ € Irr(Gy|6) such that )@ = x. We say that
1 is the Clifford correspondent of 6 and y.

We discuss now some results on extension of characters. Let H < G and
¢ € Irr(H), we say that ¢ extends to G if there exists x € Irr(G) such that

XH = $-

THEOREM 1.12 (Gallagher). Let N<a G and let x be an irreducible char-
acter of G such that 6 = xn is irreducible. Then, the map

Irr(G/N) — Irr(G|0)
B = Bx,

s a bijection.

PRrROOF. See Corollary 6.17 of [Isa76]. O

The following results give us sufficient conditions for extending irre-

ducible characters from normal subgroups. Recall that if x is an irreducible
character of a group G, we have defined the determinantal order o(x) of x.

THEOREM 1.13. Let N < G and 0 € Irt(N) be invariant in G. Suppose
that (|G : N|,0(8)0(1)) = 1. Then there exists a unique extension x € Irr(G)
of 0 such that (|G : N|,0(x)) = 1. In fact, o(x) = o(0). In particular, this
holds if (|G : N|,|N|) = 1.

PROOF. See Corollary 8.16 of [Isa76]. O
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8 1.3. Actions and characters

Whenever the hypotheses of Theorem 1.13 hold, we call x the canonical
extension of . We sometimes write y = f. The following are two useful
extendibility criteria (which however do not guarantee the existence of a
canonical extension).

THEOREM 1.14. Let N < G. Let 0 € Irr(N) be G-invariant. Suppose
that G/N s cyclic. Then 6 extends to G.

PRrROOF. See Corollary 11.22 of [Isa76]. O

THEOREM 1.15. Let N< G. Let 6 € Irr(N) be G-invariant. Suppose that
for every prime p, the character 0 extends to P for every P/N € Syl,(G/N).
Then 6 extends to G.

PRrROOF. See Corollary 11.31 of [Isa76]. O

1.3. Actions and characters

Let a : G — H be a group isomorphism. Denote by ¢g* the image of g € G
under a. If y is a character of GG, then the map y® : H — C defined by
x*(h) = x(h® ") for every h € H is a character of H. Moreover

Dx* X1 =[x xJ,
by straightforward computations. Consequently x¢ is irreducible if and only
if x is irreducible.

We see that Aut(G) acts naturally on Irr(G). Let CI(G) be the set of
conjugacy classes of G. Recall that we write Clg(g) to denote the conjugacy
class of the element g € G. Then Aut(G) acts on Cl(G) via Clg(g)* =
Clg(g®) for every g € G and for every a € Aut(G). Notice that if « € Aut(G)
and x € Irr(G), then x*(¢g%) = x(g) for every g € G. (In the same way, if a
group A acts on a group G by automorphisms, then A acts on Irr(G) and
on CIl(G).)

THEOREM 1.16 (Brauer’s Lemma on the character table). Let A be a
group which acts on Irr(G) and on C1(G). Assume that

x(g) = x"(g*),
for all x € Irr(G), g € G and a € A; where g* belongs to the conjugacy class
Clg(g)®. Then for each a € A, the number of irreducible characters of G
fized by a is equal to the number of conjugacy classes of G fixed by a.

PROOF. See Theorem 6.32 of [Isa76]. O

As a consequence of Brauer’s Lemma on the character table (see Lemma
13.23 of [Isa76]), if a cyclic group A acts on G by automorphisms, then the
actions of A on Irr(G) and on Cl(G) are permutation isomorphic.

Let A and G be groups. Suppose that A acts by automorphisms on G and
(IG],]4]) = 1 (we will say that A acts coprimely on G). We write Irr4(G)
to denote the subset of Irr(G) consisting of fixed points under the action
of A. Then there exists an important natural correspondence of characters
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1. Preliminaries on ordinary character theory of finite groups 9

between Irr4(G) and Irr(Cg(A)). When A is solvable, this correspondence
was constructed by G. Glauberman [Gla68]. If A is not a solvable group,
then |A| is even by the Odd Order Theorem [FT63]. Consequently |G|
is solvable of odd order. In this case, I. M. Isaacs [Isa73] gave a totally
different construction of the desired correspondence. T. R. Wolf [Wol78b)]
proved that when both constructions apply, when A is solvable and |G| is
odd, they yield the same map. This is what we call the Glauberman-Isaacs
correspondence (when A is solvable we refer to the map as the Glauberman
correspondence).

THEOREM 1.17 (Glauberman-Isaacs correspondence). Suppose that A
acts coprimely on G. Let C = Cg(A). Write Irr5(G) to denote the subset
of Irr(G) consisting of fized points under the action of A. There exists a
natural correspondence

m(G,A): Irra(G) — Irr(C),

such that:

(a) If B< A and D = Cg(B), then (g 4y = T(p,A/B) © T(G,B)-
(b) If A is a p-group and we write x* = mq 4)(x) for x € Irra(G), then

Xo = ex” + pA,
where p does not divide e and A is a character of C or zero.

PROOF. See Theorem 2.1 of [Wol79]. O

We consider another important example of group action on irreducible
characters: Galois action. Let n be an integer divisible by |G|. Consider
@y, the n-th cyclotomic field obtained by adjoining a primitive n-th root of
unity to Q. Then x(g) € Q,, for every g € G and for every x € Irr(G) (using
that if M € GL,,(C) with M™ = I,,,, then M is similar to a diagonal matrix
whose entries are n-th roots of unity). Let E < C be the field of all algebraic
numbers. Then the theory described at the beginning of this chapter can
be developed over the field E instead of C, and it works exactly as well as
for C. If we write Irrg(G) to denote the irreducible E-characters of G, then
Irrg(G) = Irr(G) (see the discussion on page 22 of [Isa76]).

Let x € Irr(G). If 0 € Gal(Q,/Q), then we define the function

X°: G —C

as x7(g) = x(g)? for every g € G. Let X be an irreducible E-representation
affording y. If 0 € Gal(Q,/Q), then by elementary field theory we can
extend o to & € Gal(E/Q). Define ¥%(g) = (%(g))? by applying & to each
entry of the matrix X(g), for every g € G. Clearly, X7 is an E-representation
of G and

trace(X° (g)) = trace(X(g9))” = x(9)7 = x(9)” = x"(9).
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10 1.4. Basic B;-theory

Hence, if x € Irr(G), then x? € Char(G). Since

X7, x7] = |1G| QEZC:: x(9)°x(9)°

= ,1G| > x(9)°x(9)”

geG
=[x]7 =1,

we conclude that x? € Irr(G). Note that x(g)7 = x(g) for every g € G and
for every o € Gal(Q,,/Q) (see Lemma 20.7 of [Isa94]). Hence Gal(Q,/Q)
acts on Irr(G).

Let x be a character of a group G, the field of values Q(x) of x is the
minimum field extension of ( containing all values of x. Hence

Q(x) = Qx(9) | g € G).

LEMMA 1.18. Let x be an irreducible character of a group G. Let F/Q

be an abelian Galois extension. Suppose that Q(x) € F. Then x% is an
irreducible character of G for every o € Gal(F'/Q).

PrOOF. Let X be an FE-representation of G affording y. Write F,, =
F n Qy, where n = |G|. Since F'/Q is an abelian Galois extension, by
Theorem 18.21 of [Isa94] F,,/Q is a Galois extension. Thus o, € Gal(F,/Q)
and we can extend op, to o € Gal(Q,/Q). From the discussion preceding
this lemma we have that Y% = y is irreducible. O

It is immediate to check that the Galois action on characters commutes
with the action induced by group automorphisms.

A character x of G is said to be real if x only takes real values (equiv-
alently Q(x) € R). It is well-known that a group of odd order has no
non-principal real irreducible character.

THEOREM 1.19 (Burnside). Let G be a group of odd order. If x € Irr(G)
is not principal, then X # X.

PROOF. See Problem 3.6 of [Isa76]. O

1.4. Basic B;-theory

Throughout this section 7 is a set of primes and G is a mw-separable group.
We write 7’ to denote the complementary set of primes of w. If n is an
integer, then n, is the greatest integer whose prime factors lie in 7 and such
that n, divides n. If n = n,, we say that n is a m-number, and if n, = 1
then we say that n is a 7’-number. If 7 consists of a single prime p, then we
write m = p and 7’ = p’.

The m-special characters of G where introduced by Gajendragadkar
in 1979 [Gaj79] as the subset of Irr(G) consisting of characters x with
X(1) a m-number and such that for every subnormal subgroup S of G, the
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1. Preliminaries on ordinary character theory of finite groups 11

determinantal order of every irreducible constituent of yg is a m-number. Of
course, the principal character is always a m-special character. In the words
of Isaacs, the m-special characters of G are those characters that think that
G is a m-group. In fact, if G is a m-group, then every Irr(G) is m-special,
and if G is a 7’-group, the only w-special is the principal character 1. We
collect some properties of the m-special characters. We begin with going
down properties.

PRrROPOSITION 1.20. Let G be a w-separable group. Let M < G and let
x € Irr(G) be w-special. Then:
(a) Every irreducible constituent of x s is w-special.

(b) O4(G) < ker(x).
PROOF. See Proposition 4.1 and Corollary 4.2 of [Gaj79]. O
The following are going up properties of the m-special characters.

PROPOSITION 1.21. Let G be a w-separable group and let N< G. Suppose
that 0 € Irr(N) is m-special.
(a) If G/N is a w-group, then every x € Irr(G|0) is m-special.
(b) Assume that 0 is G-invariant. If G/N is a 7'-group then 6 has a
unique w-special irreducible constituent 6. In fact, 6 extends 0.
(c) 6C has a w-special constituent iff 0 is K-invariant for some Hall
7' -subgroup K of G.

PROOF. See Propositions 4.3 and 4.5, and Corollary 4.8 of [Gaj79]. O

Let H be a Hall m-subgroup of G. The m-special characters of G restrict
to irreducible characters of H injectively.

PROPOSITION 1.22. Let G be a w-separable group and let H be a Hall
w-subgroup of G. Then the map x — xg s an injection from the set of -
special characters of G into the set of irreducible characters of H. Moreover,
if X is a w-special character of G, then Q(x) € Q|g|, -

PROOF. See Propositions 6.1 and 6.3 of [Gaj79]. O

The following feature about special characters is particularly surprising.
Although it is not common that a product of irreducible characters remains
irreducible, for special characters the following is true.

PROPOSITION 1.23. Let G be w-separable. Let o be a w-special character
of G and 8 a w'-special character of G. Then af is irreducible. Moreover,
if a8 = o' for some w-special o/ and some 7'-special 3, then o = o and
g=p.

Proor. This is Proposition 7.2 of [Gaj79]. O

Gajendragadkar’s m-special characters are the foundation of Isaacs’ B,-
theory. In the important paper [Isa84], Isaacs defined a canonical set B (G)
of Irr(G) whose elements are called Br-characters of G. The definition of
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12 1.4. Basic B;-theory

B (G) is rather involved and we only give a few details below (for further
details see Sections 4 and 5 of [Isa84]). The B -characters can be seen as a
generalization of the w-special characters. In fact, the w-special characters
of G are exactly those elements in B;(G) of m-degree (see Lemma 5.4 of
[Isa84]) and every Bj-character is induced from some m-special character.
In particular, 1¢ € Br(G).

Perhaps, the most important application of this theory is the fact that
B,y-characters constitute a canonical lift of the so called p-Brauer characters
(on which we will talk in Chapters 4 and 5) in p-solvable groups.

We say that x € Irr(G) is m-factorable if there exist a m-special o €
Irr(G) and a 7'-special 8 € Irr(G) such that x = «f. Suppose that G
is m-separable. For every x € Irr(G), there exists a particular pair (W,~)
where W < G, v € Irr(W) is m-factorable and v = x. This pair (W,~)
is determined up to G-conjugacy. Any such pair is called a nucleus for
X, and the character in the pair is called a nucleus character for x. Let
X € Irr(G). Then x is a Br-character if some nucleus character for x is
m-special. Notice that if x is a Br-character, then every nucleus character
is m-special, by the G-conjugacy property of the nuclei. We write B;(G) to
denote the set of B,-characters of G.

The following properties of B;-characters remind of those of w-special
characters.

THEOREM 1.24. Let G be a w-separable group and let x € Br(G). Then:
(a) For any N < G, the irreducible constituents of xn lie in Br(N),
(b) O (G) < ker(x), and
(c) Qx) € Qry-

PRrROOF. See Corollaries 5.3, 7.5 and 12.1 of [Isa84]. O

The set B;(G) is closed under group automorphisms and Galois action.

THEOREM 1.25. Let G be m-separable. Let x € Br(G), a € Aut(G) and
o € Gal(Q|)/Q). Then x“ and x° lie in B(G).

PROOF. Follows from the definition of B-characters in [Isa84]. O

We will also need some more recent results concerning the character
theory of m-separable groups.

THEOREM 1.26. Let G be a m-separable group. Let ¥ € Br(G) and
suppose that (W,v) is a nucleus for 1. Then, the map o — (ay) is an
injection from the set of ©'-special characters of W into Irr(G). Moreover,
let (Wi, ~vi) be nuclei for v; € Bz(G) and let o; € Trr(W;) be w’-special, for
i = 1,2. If (qm)9 = (272)®, then the pairs (W;,~;) for i = 1,2 are
G-conjugate.

PROOF. See Theorems 9.1 and 9.2 of [Nav97]. O

In [INO1] the authors refer to the irreducible characters (ay)“ given by
Theorem 1.26 as the satellites of ) € B;(G). They note that the satellites
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1. Preliminaries on ordinary character theory of finite groups 13

of 1 € Bz(G) do only depend on ¢ and that 1) is a satellite of itself. In fact,
the second part of Theorem 1.26 implies that the sets of satellites of distinct
members of B (G) are disjoint.

Satellites will be useful for us mainly because of the following result.

THEOREM 1.27. Let G be a m-separable group. FEvery x € Irr(G) of
7' -degree is a satellite of a unique 1 € Br(G) of ©’-degree.

PROOF. See Theorem 3.6 of [INO1]. O

Therefore, in a w-separable group G, for every x € Irr(G) of 7'-degree,
Theorem 1.27 guarantees the existence of a pair (W, ), where W < G and
v € Irr(W) is m-special, and a m'-special o € Trr(W) such that x = ()%,

1.5. The projective special linear group PSLs(q)

In Chapter 3 we will need to study certain character correspondences in
groups PSLy(33") for a > 1. We will need to understand the action of field
automorphisms on characters. We include this section in order to make
this work as self-contained as possible. Throughout this section p is an odd
prime. Let ¢ = pf. We write G = GLa(q), H = SLa(q), Z = Z(H) and
S = PSLa(q) = H/Z. We write F' = F, to denote the Galois field of ¢
elements, and let o be a generator of the cyclic multiplicative group F*.
Then IF), is the prime field of F.

0

1.5.1. Automorphisms of PSLy(q). Let § = ( (g 1 > € G. Then ¢

is an element of order ¢ — 1 that acts on H as

a b 5_ a o 1b
c d "\ ac d ’

for every < CCZ Z ) € H. We notice that

52=<3‘ 2)(8‘ a01>eZ(G)H,

and thus 62 acts on H as an inner automorphism (We remark that in the
case where ¢ is even, § actually acts as an inner automorphism because every
non-zero element of F' is a square). We have that ¢ stabilizes Z. Hence ¢
induces an automorphism of S of order ¢ — 1, which we denote again by 4,
via

(x2)° = 2°2Z,
for every x € H. The automorphisms in {(§) < Aut(S) are called diagonal

automorphisms. We have §2 induces an inner automorphism of S. So if
we embed S < Aut(S), then we have that (§) n S = (5%).

Let ¢ be the Frobenius automorphism ¢ : F' — F of F given by ¢(a) =
aP € F for every a € F. We have that ¢ € Gal(F/F),) generates the full Galois
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14 1.5. The projective special linear group PSLy(q)

group Gal(F'/F)). The Frobenius automorphism ¢ induces an automorphism
of H by applying ¢ to each entry of a matrix x € H (also in G). Then ¢
stabilizes Z, and hence, ¢ defines an automorphism of S, which we denote
again by ¢, via

(x2)? =a¥Z,

for every x € G. If we embed S < Aut(S), we have that {(p) n S = 1. To

see this, suppose that some ¢/ # 1 acts on H as the inner automorphism

. b .
associated to x = CCL d ) € H. In particular, for every e € F'*, we would

(0 A ) (a2 h).

This yields ¢/ (e) = e~! for every e € F* and a = 0 = d. However, if we

have

compute the action of ¢/ on elements of type < (1) ? > € H for ge F, we

get a contradiction. The automorphisms in (p) are called field automor-
phisms.

The automorphisms d¢ and ¢d of H differ by an inner automorphism of
H, therefore the same holds in Aut(S). It is straightforward to check that

a b
foreveryx:(c d>eH

Lo et a (a=1)aPb
ala=HPe d '

Since (o 1)a? = aP~! € (a?), we have that =107 pd € (§%) < S. Write
d =05 € Aut(S)/S and p = pS € Aut(S)/S. Thus, § and B commute in
the outer automorphism group Out(S) = Aut(S)/S of S.

We can embed PGLz(q) into Aut(S). Let t: G — Aut(S) be defined by
x € G sends yZ to y*Z for every y € H. Then ¢ is a homomorphism with
kernel Z(G). We identify PGLy(q) with ¢(G), so that PGLa(q) < Aut(S)
and S is a subgroup of PGL3(q) of index 2. Since (§) < PGLz(q) is not

contained in S we have that PGL2(q) = S{). Also S n {5y = <52>. In fact,
there exists an automorphism v of S such that

PGL2(g) = 5 % (7).
If g =3 mod 4, then let

’y-L( _01 (1J )eAut(S).
If g =1 mod 4, then —1 is a square in F. Let ¢ € I be such that €2 = —1.

Then let
0 -1
7=L<€ 0 )eAut(S).
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1. Preliminaries on ordinary character theory of finite groups 15

It is well-known that every automorphism of S is a product of an inner
automorphism, a diagonal automorphism and a field automorphism (see for
instance Theorem 12.5.1 of [Car93]). Thus

Aut(S) = PGLa(q) x (p) = (5 3 (7)) @ (¢).

In particular |Aut(S)| = fq(¢*> — 1). We have noticed that [0,5] = 1 in
Out(S). In fact, B
Out(S) = @ x @.

Suppose that some 6y’ acts on H as an inner automorphism of H. By

computing the action of ¢’ on elements of the form < 8 a91 ) € H and

( [1) ? ) € H, we get a contradiction.

1.5.2. Conjugacy classes and irreducible characters of PSLy(q).
Let E be a quadratic extension of F, so that |E| = ¢®. Let G = Gal(E/F)
and p be the nontrivial element of G. It is easy to show that u is exactly
the automorphism of F taking every z € E to 2?7 € E. Since ¢ is odd, we
can fix e € F* a non-square so that E = F[y/€] is a quadratic extension of
F. Notice that any z € E has the form z = a + by/e. We write Z = a — by/e,
so that u(z) = zZ. Now, every quadratic polynomial »[X] € F[X] factors in
E[X]. Thus, every x € H has eigenvalues in F.

Let € H. Then there are three possibilities for the eigenvalues A\, A\~*
of the matrix x:
(a) A= "te{1,—1},
(b) A# A7 lin F* and
(c) A # A~! not in F*.

Case (a): If A = A~ € {1,—1} then x is H-conjugate to one of the

following
I, —I,u= ((1) 1 ),—u,u'z (é ; ),—u’.

Indeed, suppose z # Al and let < Z > be an eigenvector of x associated to
the eigenvalue \. We first assume a # 0. Let y = Z a(ll € H, we have

that x¥ ( é > =A ( (1) ) . By matrix calculation, it follows x¥ = ( (1) i )

—1 . . .
or z¥ = < 0 _Cl ) for some ¢ € F*. Finally, conjugating by an element

of the form < E]l dQl ) for some d € F*, we get that = is conjugate to +u

if ¢ is a square and z is conjugate to +u’ if ¢ is a non-square. In case a = 0,
we have that b # 0. Then an analogous argument with b playing the role of
a shows that x is conjugate to +u or +u’.
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16 1.5. The projective special linear group PSLy(q)

0 At
defines a conjugacy class. We have that d()\) is conjugate to d(A~!) and
d()) is not conjugate to other matrix of this form since the eigenvalues are
similarity invariants. There are %(q — 3) such classes, the same as pairs
(M FX

Case (c): If A # A~! do not lie in F*. Write T = {z € EX | 2z = 1}.
Then A € T. Notice that T = {c + dy/e : ¢,d € F and ¢® — d?c = 1}. Since
the norm map E* — F* is surjective, we have that T is a cyclic group of

order ¢ + 1. An element ¢ + d\/e acts on E, which is a vector space over
de

Case (b): If A # A~ ! lie in F'*, then the matrix d(\) = ( A0 )

F', and can be represented as the matrix < ¢ € H, with respect to

d
the F-basis {1, +/€}. Clearly T is isomorphic to the group of matrices of this
form, so we write 7' < H under this identification. Let t € T'— Z. Then ¢
defines a non-central conjugacy class in H. We have that t is conjugate to
t~1. Moreover, if t' ¢ {t,t71}, then the eigenvalues of ¢ and ¢’ are distinct, so
that the matrices ¢ and ' are not conjugate in GLa(¢?). In particular, they
are not conjugate in H. Thus, each pair {\,A"'} € T defines a conjugacy

class, and there are (g — 1) such classes.

Write d = d(a) = ( (g agl

T < H. By Theorem 38.1 of [Dor71], the set

). Let ¢t be a generator of the subgroup

{Iv _Ia u, —u, ulv —U,, dlv tm}a

where 1 < | < %(q —3)and 1 < m < %(q — 1), is a complete set of
representatives of the conjugacy classes of H. Write e = (—1)%. Let p
be a primitive (¢ — 1)-th root of unity and let o be a (¢ + 1)-th primitive
root of unity. By Theorem 38.1 of [Dor71], the character table of H is the
following:

Class: I —I u u’ dt tm

1y 1 1 1 1 1 1

St q q 0 0 1 -1

& sa+1)  Jelg+1)  F(1+yeq) (- kg  (=1) 0

&2 sa+1)  jelg+1) (- eq 1+ eq)  (-1) 0

m 3a—1) —gela—1) (=14 eq) 5(-1—-/q) 0 (=pm+t

72 3(a—1)  —gela—1) F(-1-yeq) 5(-1+/q) 0 (=pm+t

Xi g+1  (=Di(g+1) 1 1 pit + pt 0

0; g—1 (=1)i(g—1) -1 -1 0 —(oI™ 4 g—I™)

where 1 < 4,1 < 3(¢—3) and 1 < j,m < 1(¢—1). As in [Dor71], the
columns for the classes —u, —u’ are omitted. These values can be obtained

from the relations x(—u) = X)E(_Ig)x(u) and y(—u') = X)E(_Ig)x(u’), for every
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1. Preliminaries on ordinary character theory of finite groups 17

X € Irr(H). Just notice that if y € Irr(H) and X is a representation affording
X; then X(—I) = AT, where A€ {1} and A = X250
Let D = {d) < H. We have that D is isomorphic to F'*. Let U be the

subgroup of H consisting of upper unitriangular matrices. It is easy to see

that Ny (U) = {( 8 abl ) | ae F*,be F} and Ny(U)/U = D. Every

€ € Irr(D) can be viewed as a character of Ny (U) containing U in its kernel.
Under this identification, the character £ is called the principal series
character of H associated to £ (see Section 2.3 of [Bon11] for properties of
the principal series characters). The character £ is irreducible if and only
if € is non-real. Moreover ¢ and ¢ yield the same principal series character.
The characters y; in the above character table are principal series characters
associated to some non-real { € Irr(D). We write x; = xg, if x; comes from
the pair {£,&}. If & € Irr(D) is real-valued, then £ decomposes as the
sum of two irreducible characters. By Mackey’s Lemma 1.8, we have that
(INH(D))H = 1y + Sty, where Sty is the Steinberg character of H. Let &
be the only non-principal real-valued character of D, namely &y(d!) = (—1).
Then (&)7 = & + &. We write &) = & and & = &.

Recall T' = {t) < H is cyclic of order ¢ + 1. Every n € Irr(T") has associ-
ated a virtual character m, of H (the description of 7, is more complicated
than for principal series characters, see Section 4.3 of [Bon11] for properties
of my). In fact, m, = Sty — 1y and m, is actually a character whenever
7 is non-principal. The irreducible constituents of 7, for 7 non-principal,
are cuspidal characters of H. If € Irr(T) is non-real, then m, = 7y is
irreducible. The characters 6; in the above character table are associated
to pairs {n,77} < Irr(T). We write 6, = 6, if 0 is associated to the pair
{n,7}. The characters n; and 7, are the irreducible constituents of m,, the
character associated to the unique real-valued irreducible character ng # 17
of T', namely 7y(t") = (—1)". We write 0, = 6, and 6f = 65.

Recall that e = 1 if q;21 is even and e = —1 otherwise. Hence, &(—1) =
e = —no(—I). We write e¢ = £{(—1) for £ € Irr(D) and e, = n(—1) for
n € Irr(T). We re-write the character table of H in this new notation:

Class: I -1 u u’ dt tm

1y 1 1 1 1 1 1

Sty q q 0 0 1 -1

& sa+1)  $@+1) 01+ e  3(1-./eq) €o(al) 0

& sa+1)  $@+1)  F(1-yeq 31+ /eq) &o(al) 0

U 3a—1) —5(@—-1) -1+ fq 3(-1- e 0 —no(t™)

U sa—1) —5(@-1) 3(-1—\eq) 5(-1+ e 0 —no(t™)

Xe qg+1 (g + D)eg 1 1 &(ah) + €(al) 0

On g—1  (¢—1Dey -1 -1 0 —n(t™) —n(™)

As before 1 < i,1 < 1(¢g—3) and 1 < j,m < 1(¢—1) and the columns for the
classes —u, —u’ are omitted. With this notation x¢(—u) = x¢(—u') = e¢ for
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18 1.5. The projective special linear group PSLy(q)

every non-real £ € Irr(A), and 6, (—u) = 6,(—u') = —e, for every non-real
n € Irr(T).

The irreducible characters of S are those of H which contain Z in their
kernel, so we can calculate the character table of S from the character table
of H. In Chapter 3, we will be interested in the case where ¢ = 33 for some
(% > 1, hence in the case where ¢ =3 mod 4. Assume ¢ =3 mod 4, so that

5(¢—1) is odd and thus e = —1. Since —1 is not a square of F' (because the

subgroup of squares of F'’* has order %(q — 1)), we can fix e = —1. Hence,

—d > forc,de F
c

the subgroup T of H consists of matrices of the form ( cci

with ¢2 + d? = 1. Set w = < (1] _01 > € T. Provided that ©Z = —xZ for

every x € H, it is easy to check that a complete set of representatives of the
conjugacy classes of S is

{(I1Z,uZW' Z,wZ,d'Z,t™ 7},

where 1 < 1 < (¢ —3) and 1 < m < 3(¢ — 3). Notice that w = galatl),

1
If %(q —3)<j<i(¢g—1), then —t7 is conjugate to —t—7 = %7, Thus
t'Z = —t1Z defines the same class as t™Z, where m = q;—l —j. Also

notice that w = tala+) has order two in S. The character table of S is the
following:

Class: 1z uZ u'Z dz tmZ

1g 1 1 1 1 1

Sts q 0 0 1 —1

) 1/2(g—1) 1/2(-1+14y/q) 1/2(—1—1i/q) 0 —no(t™)

U 1/2(g—1) 1/2(-1—14yq) 1/2(—1+1i/q) 0 —no(t™)

Xe g+1 1 1 &(al) + &(ab) 0

by q—1 1 -1 0 —n@™) —nE™)

Here 1 <1< 1(¢g—3)and 1 <m < i(g+1).

Consider ¢ € Aut(S). We see that ¢ fixes the classes defined by 17,
uwZ, w'Z and wZ, and permutes the classes of type d'Z and the classes of
type t""Z. In particular, ¢ fixes the trivial character 15 and the Steinberg
character St. Also notice that (n))? has degree (¢ — 1) and takes the
same values as 7, on uZ and «'Z. We conclude that (n})? = n|. Similarly
(n6)? = ng. Furthermore, for every non-real ¢ € Irr(D) and every non-real
n € Irr(T)

X? = X¢w and 9;7'0 = (97]99.

Hence, we can characterize the irreducible characters of S fixed by ¢ in
terms of the irreducible characters of D and T fixed by .
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CHAPTER 2

Monomial characters and Feit numbers

2.1. Introduction

Let G be a finite group. There are few results guaranteeing that a single
irreducible character x € Irr(G) is monomial. Recall that x is monomial if
there exist a subgroup U < G and a linear character A € Irr(U) such that
A& = . For instance, if G is a supersolvable group, then every irreducible
character of G is monomial (see Theorem 6.22 of [Isa76]). However, this
result depends more on the structure of the group rather than on proper-
ties of the characters themselves. An exception is a lovely result by Gow
[GowT5] from 1975: an odd degree rational-valued irreducible character of
a solvable group is monomial. The first aim in this chapter is to generalize
Gow’s result.

It is convenient now to define the Feit number of a character. If x €
Irr(G), then we have already mentioned that Q(x) S Q|g|, so there is a
smallest integer f, such that Q(x) < Qp, . The number f, is called the Feit
number of x.

Our first original result, which generalizes Gow’s result, has been pub-
lished by the author in [Vall4].

THEOREM A. Let G be a solvable group. Let x € Irr(G). If x(1) is
odd and (x(1), fy) = 1, then there exists a subgroup U < G and a linear
character \ of U such that \¢ = x. Moreover, if p is a linear character of

some subgroup W < G such that u© = x, then there exists some g € G such
that W = U9 and p = M.

Notice that we not only prove the monomiality of x, but also uniqueness
in the induction. The conditions x(1) odd and G solvable are necessary
as they are for Gow’s original result: SL2(3) has a rational-valued non-
monomial character of degree 2, and Ag has a rational-valued non-monomial
character of degree 5. The new condition (x(1), fy) = 1 is also necessary:
Let G be SmallGroup(108,15). We checked with GAP that every irreducible
character x of degree 3 is not monomial and f, = 3.

In particular, Theorem A guarantees that an odd degree irreducible
character of a solvable group with values in some 2« for a = 0 is monomial.
In Theorem B below we generalize this latter statement for odd primes,
although an oddness condition is still necessary. Let p be a prime. We recall
that Irr, (G) denotes the subset of irreducible characters of G that have
degree not divisible by p.

19



20 2.1. Introduction

THEOREM B. Let G be a p-solvable group for some prime p. Let P €
Syl,(G). Assume that Ng(P)/P has odd order. If x € Irryy (G) takes values
in Qpa for some a = 0, then there exist a subgroup U and a linear character
A of U with Q(\) € Qpa such that x = X&. Also, if ju is a linear character
of some subgroup W < G such that u& = x, then W = V9 and p = N9 for
some g € G. In particular Q(p) € Qpe.

Theorem B has been published in a joint work of the author with G.
Navarro [NV12]. Notice that the condition |Ng(P)/P| odd is superfluous
if p = 2. Unfortunately, this oddness condition is necessary in general: if
p = 3, then SLy(3) has a rational-valued non-monomial character of degree
2. The p-solvability condition is also necessary. For instance, let G = SL3(3)
and p = 3. In this case, |[Ng(P) : P| = 3 for a Sylow p-subgroup P of G.
The group G has a rational-valued character of degree 12 which cannot be
induced from any proper subgroup of G.

By using non-trivial Isaacs B;-theory the conclusion of Theorem B can
be strengthened: such a x is a Bp-character. We prove this fact in Section
2.4. It does not seem easy at all how to control the behavior of the normal
constituents of x without using this deep theory. We also use B, to provide
an alternative prove of Theorem A above.

Let G be a finite group, let p be a prime and let ¢ > 0. How many
p'-degree irreducible characters does G have with field of values contained
in Qpe? It does not seem easy at all how to answer this question in general.
However, if G is p-solvable and N¢(P)/P has odd order, then this number
can be computed locally. We write X,(G) = {x € Irry(G) | Q(x) <
Qpe}. We prove that there exists a canonical bijection from Xp.(G) onto
Xpe(Ng(P)). Theorem C below also appears in [NV12].

THEOREM C. Let G be a p-solvable group and let P € Syl,(G). Write
N = N¢g(P) and assume that N/P has odd order. Define a map

0 Xpe(G) = Xpa(N)
in the following way: If x € Xpa(G), choose a pair (U, \) where P <U < G
and X € Trr(U) is linear with Q(\) € Qpa such that A\ = x, then set
Q(x) = Mvan)YN. Then Q is a well-defined canonical bijection.

At the end of this chapter, we will come back to Feit numbers. The Feit
number f, is a classic invariant in character theory that has been studied
by Burnside, Blichfeldt and Brauer, among others. But it was W. Feit who
following work of Blichfeldt made an astonishing conjecture that remains
open until today (see for instance [Fei80]).

CONJECTURE (Feit). Let G be a finite group and let x € Irr(G). Then
there exists an element g € G whose order is exactly f,.

If G is an abelian group, then Feit’s Conjecture holds for every x € Irr(G)
since G is isomorphic to Irr(G). In [AC86], G. Amit and D. Chillag proved
Feit’s Conjecture for solvable groups.
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2. Monomial characters and Feit numbers 21

We prove a global/local variation (with respect to a prime p) of the
Amit-Chillag theorem (for odd-degree characters of p’-degree).

THEOREM D. Let p be a prime and let G be a solvable group. Let
X € Irr(G) of degree not divisible by p, and let P € Syl,(G). If x(1) is odd,
then there exists g € Ng(P)/P' such that o(g) = fy. In particular, the Feit
number f, divides |Ng(P) : P'|.

Theorem D appears in [Vall6]. It is unfortunate that we really need
to assume that x(1) is odd, as G = GL2(3) shows us: if x € Irr(G) is non-
rational of degree 2, then f, = 8; but the normalizer of a Sylow 3-subgroup
of G has exponent 6. Also, Theorem A is not true outside solvable groups,
as shown by G = A5, p = 2, and any x € Irr(G) of degree 3 (which has
fx="9).

This chapter is structured in the following way: In Section 2.2 we prove
our two monomiality criteria, namely Theorem A and Theorem B. In Section
2.3 we study character correspondences and we prove Theorem C. In Section
2.4 we strengthen the conclusion of Theorem B by using Isaacs’ B,-theory.
We also give an alternative proof of Theorem A by making use of this deep
theory. The results contained in Section 2.4 appear in a joint work of the
author together with G. Navarro [NV15]. Finally, in Section 2.5 we prove
Theorem D.

2.2. Two criteria for monomiality

Let N < G and x € Irr(G). Let 0 € Irr(N) be a constituent of xn. Write
T = Gy for the inertia subgroup of §. By Clifford’s correspondence there is
a unique 1 € Irr(T)0) such that & = x. Of course, Q(x) < Q(v), but in
general these two fields are not equal. The semi-inertia subgroup of 6 is
defined as

T* ={ge G| 6 =67 for some o € Gal(Q(6)/Q)}.

Since T < T*, then n = ¢T" e Irr(T*|6) also induces y. Moreover Q() =
Q(x). Due to this fact, when dealing with character fields and normal
subgroups, the semi-inertia group is a useful tool.

LEMMA 2.1. Let N< G and x € Irr(G). Let 6 € Irr(N) be a constituent
of xn. Write T and T* for the inertia and the semi-inertia groups of 0. If
Y € Irr(T|0) is the Clifford correspondent of x, then Q™) = Q(x).

PROOF. See Lemma 2.2 of [NT10]. O

We do not need more preparation in order to prove Theorem A, which
we restate below. We recall that if H < G, then

coreg(H) = ﬂ HY.
geG
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22 2.2. Two criteria for monomiality

THEOREM 2.2. Let G be a solvable group. Let x € Irr(G). If x(1) is
odd and (x(1), fy) = 1, then there exists a subgroup U < G and a linear
character \ of U such that \¢ = x. Moreover, if p is a linear character of

some subgroup W < G such that u@ = x, then there exists some g € G such
that W = U9 and p = \9.

PRrROOF. First, we prove by induction on |G| that x is monomial. We
prove it in a series of steps.

Step 1. We may assume X is faithful and that there are no proper sub-
groups H < G and 1) € Irr(H) such that ¥ = x and Q(¢0) = Q(x).

Let K = ker(x). If K > 1, all the hypotheses hold in G/K so by
induction we are done. Assume there exists H < G and ¢ € Irr(H) with
Q(¢) = Q(x) such that )¢ = y. Then the degree of 1 divides the degree
of x and fy, = fy. By induction hypothesis 1 is monomial, and thus x is
monomial.

Step 2. F(G) =[], 1) Op(G).

Let p be a prime. Suppose that p divides x(1). In particular p is odd,
and p does not divide f,. Let M be a normal p-subgroup of G. Since
Q(x) < Qy, we have that Q|p;) n Q(x) = Q. Hence xy is rational-valued.
If &£ € Irr(M), then [xar, €] = [xar, €]. Since x(1) is odd, there exists a real
irreducible constituent & of xas. Since |M| is odd, we have that £ = 1y,
by Theorem 1.19. By Step 1, we know that x is faithful and we conclude
M =1.

Step 3. F = F(G) is abelian.

Let M be a normal p-subgroup of G, where p does not divide x(1). It
then follows that the irreducible constituents of yas are linear. Let A\ €
Irr(M) be under x. We have that M’ < ker(\9) = ker(X\)? for every g € G.
Then M’ < coreg(ker())) < ker(x) = 1, so that M is abelian. Hence F is
abelian by Step 2.

Step 4. Let N < G and let 0 € Irr(N) be under x. Let g € G. Then
09 = 7 for some o € Gal(Q(0)/Q). Also 0 is faithful.

Let T' = Gy be the stabilizer of § in G, and write T™* for the semi-inertia
subgroup of #. Recall T* = {g € G | 69 = 07 for some o € Gal(Q(0)/Q)}.
By Lemma 2.1, if ¢ € Irr(T|0) is the Clifford correspondent of y, then
n = ¢T* € Irr(T*) induces x and Q(n) = Q(x). By Step 1, we have that
T* = @, and so every G-conjugate of # is actually a Galois conjugate. Thus
ker(09) = ker(0) for every g € G. It follows that ker(f) < G and ker(#) is
contained in ker(x) by Clifford’s theorem. So 6 is faithful by Step 1.

Final Step. If X € Irr(F) is under x, then A\ = x.

Let X\ € Irr(F') be under x. If y € G is such that \Y = A, then we have
[z,y] € ker()\) for every x € F. By Step 4, A is faithful, so the element y
centralizes F'. Since F' is self-centralizing, see 6.1.4 of [KS04], necessarily
y € F. We have proved G = F. Thus A\ is irreducible and thus A\ = y.
This finishes the proof that y is monomial.
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Now, we work by induction on |G| to show that if U and V are subgroups
of G and X € Irr(U) and p € Irr(V) are linear such that A* = x = u, then
there is some g € G such that V' = U9 and p = M\. Since K = ker(x) <
coreg (ker(X)) () coreg (ker(u)) we may assume that x is faithful, for if K > 1
then we can work in G/K. If p is a prime not dividing x(1), then O,(G)
is contained in both U and V, because |G : U| = x(1) = |G : V|. Let
F = F(G). By Step 2 (for which we only required that x is faithful), we
have that

F=]] 0,G)<UANV.
pix(1)

Now Ap and pp lie under y, so that pp = (Ap)? for some g € G by Clifford’s
theorem. We may assume that up = v = A\p, by replacing the pair (U, \)
by some G-conjugate. Thus U and V are contained in T' = (,, and also in
T*, the semi-inertia subgroup of v. Since \¢ and p® are irreducible, also
AT and pT are irreducible. By uniqueness of the Clifford correspondent, we
deduce that AT = p7. In particular AT = T = ¢ € Irr(T*|v). We know
that Q(¢) = Q(x), again using Lemma 2.1. If 7% < G, then the result
follows by induction. Hence, we may assume T* = G. In particular, arguing
as in the first part of the proof, we conclude that v = x. This implies that
U = F =V and the theorem is proven. O

Under the hypothesis of Theorem 2.2, it can also be proved that in fact
X is supermonomial, that is, that every character inducing x is monomial.
The arguments are the same as in the proof of Theorem 2.2.

Let G be solvable. Let x € Irr(G) be an odd degree character. If
fx = 2% for some a > 0, then Theorem 2.2 guarantees that the character
x is monomial. Let p be a prime. We can prove a p-version of the latter
statement for p-solvable groups, alas an oddness condition is still necessary.
This is our Theorem B mentioned in the introduction, which appears in this
section as Theorem 2.6.

The following Lemma follows from an standard argument and will be
often used along this work.

LEMMA 2.3. Let N< G and P € Syl (G). Let x € Irr(G) have p'-degree.
Then there is a P-invariant 6 € Irr(N) under x, and any two of them are
N¢(P)-congugate. In particular, if Ng(PN) = PN, then 0 is unique.

PROOF. Let ;) € Irr(IN) be under yx, let 71 = Gy, be the stabilizer of
01 in G and let ¥ € Irr(71|61) be the Clifford correspondent of x over 6;.
Since y has p’-degree, we have that |G : T1| is not divisible by p, and then
P < Ty for some h e G. Then P < T = Gy, where 0§ = (6;)" € Irr(N).
Also, if n € Irr(N) is also P-invariant under x, then by Clifford’s theorem
we have that n? = 6 for some g € G. Then P, P9 < T, and thus P9 = P
for some t € T' by Sylow Theory. Now 19 = §* = 0, and hence n and 6 are
N¢(P)-conjugate. The second part easily follows. O
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REMARK 2.4. Let 7 be a set of primes, let G be a m-separable group, let
H be a Hall -subgroup of G and let N < G. If x € Irr(G) has 7'-degree,
then there is some H-invariant 6 € Irr(N) under x and any two of them are
N¢(H)-conjugate. The argument is analogous to the one given in the proof
of Lemma 2.3

The following easy argument will be used sometimes in this chapter.

LEMMA 2.5. Let P be a p-group. Suppose that P acts coprimely on a
group N and that Cn(P) has odd order. Let 0 € Irr(N) be P-invariant. If
0 is real, then 0 = 1.

PROOF. let 0 € Irr(N) be By the Glauberman correspondence (see The-
orem 1.17) with respect to the coprime action of the p-group P on N, we
have a natural bijection

*: Trrp(N) — Irr(Cn (P)),

where Irrp(N) is the set of P-invariant irreducible characters of N. Since
0 is real, then also 6* is real. But Cx(P) has odd order by hypothesis.
Thus 6* = 1 by Theorem 1.19 on real characters of groups of odd order, and
therefore § = 1 since * is bijective and (1n)* = 1¢, (p)- O

Now, we can prove Theorem B.

THEOREM 2.6. Let G be a p-solvable group for some prime p. Let P €
Syl,(G). Assume that Ng(P)/P has odd order. If x € Irryy (G) takes values
in Qpa, then there exist a subgroup U and linear character N\ of U with
Q(\) € Qpe such that x = 9. Also, if there exist J < G and 1 € Trr(J)
with & = x, then 1 = 7/ for some linear character T of a subgroup W < J,
W =UY and 7 = X9 for some g € G. In particular Q(¢)) < Qpe.

Proor. We first show the existence of U and A\. We argue by induction
on |G|. Of course, we may assume that G is non-abelian, so G’ > 1.

Step 1. f N< G, 0 e Irr(N), g € G and o € Gal(Q(0)/Q), then we have
that (07)9 = (09)?. In particular, the stabilizer of 0 in G is the stabilizer of
0% in G.

This immediately follows from the corresponding definitions.

Step 2. Suppose that N < G and let 0 € Irr(N) be P-invariant under x.
If the complex conjugate 8 of 0 is also an irreducible constituent of X, then
0=280.

By Step 1, we have that 6 is also P-invariant, and therefore there exists
g € Ng(P) such that # = 9, by Lemma 2.3. Now, g2 fixes # (also using
Step 1). Now since Ng(P)/P has odd order by hypothesis, we conclude
that (gP) = (g?>P). Therefore g fixes § and 0 = @ is real.

Step 8. We have that N = Oy (G) < ker(x).

By Lemma 2.3, let € Irr(N) be P-invariant under x, let T be the
stabilizer of # in G and let ¢ € Irr(T") be the Clifford correspondent of x
over §. We prove now that 6 is real. By Step 2, it suffices to show that @ is
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under x. Notice that Q(xn) S Qpe N Q) = Q. In particular, xy is real-
valued and so 6 also lies under x. Notice that Cy(P) = Ny (P) < Ng(P)/P

has odd order by hypothesis. By Lemma 2.5, we have that § = 1. Hence
O, (G) < ker(x), as claimed.

Step 4. The character x is faithful. In particular N = 1.

Let L = ker(x). Then Ng,(PL/L)/(PL/L) =~ Ng(P)/PN(P) has
odd order. If L > 1, then the existence of suitable U and A is readily
obtained by applying the inductive hypothesis in G/L.

Step 5. G is not a p-group.
Otherwise, since p does not divide x(1), we would have x is linear. In
this case, there is nothing to prove.

Step 6. M = O,(G) > 1 is abelian.

Let v € Irr(M) be under x. Since y has p’-degree, then we have that
v is linear. Thus M’ is contained in the kernel of every G-conjugate of v.
Since x is faithful, we deduce that M is abelian. By Step 4, O, (G) =1 so
M >1.

Step 7. Let K be a minimal normal subgroup of G contained in G'. Let
p e Irr(K) be P-invariant under x. Then Q(u) € Qpe.

By Lemma 2.3, there exists a P-invariant p € Irr(K) lying under x. By
Step 4 K is an elementary abelian p-group. Hence p is linear and Q(u) < Q.
If a > 1, then Q(p) < Qpa. Otherwise, x is rational. Hence 1 lies under x.
By Step 2 p is real, hence rational.

Step 8. Let I be the stabilizer of p in G. Then I < G and p extends to
1.

Let Q/K be s Sylow g-subgroup of I/K. If p # ¢, then u extends to @
because K is a p-group. If ¢ = p, then I is a p-group. Since y has p’-degree,
then xq has some linear constituent, and hence p extends to Q). It follows
that p extends to I. Since y is linear and x faithful, then K ¢ I’, and thus
I <G.

Final Step. Let ¢ be the Clifford correspondent of y with respect to p.
Since both x and p have values in Qe (use Step 7), then also ¢ has values
in Qpa. Since (1) divides x(1), we have that (1) is a p’-number. Also I
contains P and the oddness condition still holds in I. By Step 8, we have
that I < G, so by induction hypothesis, there exists U < I and a linear
character A of U with values in Qe such that ¢ = M. Also ¢ = y.

Now, suppose that J < G and ¢ € Irr(J) with ¢ = x. Then |G : J|is a
p/-number and so K < J. Thus ¢ lies over some G-conjugate of ;. We may
replace the pair (J, p) by some G-conjugate and assume that ¢ actually lies
over . Let S =1 nJ = J, and let ) € Irr(S) be the Clifford correspondent
of ¢ with respect to . Then ¢ = n”, so that n® = @& = x. This implies
that n! is irreducible, lies over p and induces . By the uniqueness of the
Clifford correspondent n! = . Since the character ) = A\’ and X is a linear
character of U < I with values in Qpe, by the inductive hypothesis applied
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in I, we get that n = 79, where 7 is a linear character of a subgroup W < I
such that the pairs (U, ) and (W, 7) are conjugate in I. O

REMARK 2.7. Notice that we have actually proven that the character y
as in Theorem 2.6 is supermonomial.

REMARK 2.8. Let x be as in Theorem 2.6. Then f, = p?, where b = 0.
Suppose that y = 9 for some ¢ € Irr(H) and H < G. By Theorem 2.6,
Q(v) < Qup, so that fy divides p®. By the induction formula, we have that

Q(x) < Q(v). This implies that f, divides f,. Hence fy = fy.

REMARK 2.9. Let 7 be a set of primes, let G be a m-separable group
and let H be a Hall m-subgroup of G. We can mimic the proof Theorem 2.6
with 7 and H playing the role of p and P to get a w-version of this result
(use Remark 2.4 and Hall theory in w-separable groups).

2.3. Certain character correspondences

Let G be a finite group, let p be a prime and let a > 0. How many p’-degree
irreducible characters does G have with field of values contained in Qp? It
does not seem easy at all how to answer this question in general. However,
if G is p-solvable and Ng(P)/P has odd order, then this number can be
computed locally. We write X,«(G) = {x € Irry(GQ) | Q(x) S Qpe}. We
are going to prove that there exists a canonical bijection from Xpa(G) onto
Xpe(Ng(P)). The fact that there exists such a canonical bijection follows
by using the natural correspondences Irr,y (G) — Irry (Ng(P)) constructed
by Isaacs (in the case where p = 2) and Turull (in the case where |Ng(P)]
is odd) (see [Isa73] and [Tur08] for these highly non-trivial theorems). By
using the fact that Xp.(G) consists of monomial characters, see Theorem 2.6,
and the main result of [Isa90] it is easier to construct a canonical bijection
Xpe(G) = Xpa(Ng(P)), as we are going to show.

LEMMA 2.10. Let U < G and let p be a prime. Let \ be a linear character
of U such that x = A& € Irr(G). Let P be a Sylow p-subgroup of U and write
N = Ng(P). Then

(a) Agan)YN is irreducible.
(b) Suppose & = € Irr(G) for some linear character p of a subgroup
L < G which contains P. If Ayan)Y = (upan)N then x = ¢.

PROOF. See the proof of Lemma 2.3 of [Isa90]. O

Let G be p-solvable and let P € Syl ,(G). Suppose that Ng(P)/P has
odd order. If x € X,«(G), then by Theorem 2.6 there exist U < G and
a linear Trr(U) with Q(\) € Qpa such that \¢ = x. Write N = Ng(P)
and ¢ = (Ay~r)Y. Then Lemma 2.10 guarantees ¢ € Irr(N). Clearly
¢ € Xpa(N). In order to see that the map Xp«(G) — Xpa(N) given by
x — ¥ is a well-defined bijection we need some preliminary results.
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Let G be p-solvable. We recall how to extend a linear character A from
a Sylow p-subgroup of G to a subgroup M in a maximal way guaranteeing
that an extension of A to M induces an irreducible character of G.

THEOREM 2.11. Let G be a p-solvable group and let P € Syl,(G). Sup-
pose that A € Irr(P) is linear, then there exists a unique subgroup M of
G containing P and mazimal such that A extends to M. Moreover, if
pe Irr(M) extends A and o(y) is a power of p, then u € Irr(G).

PRrOOF. For the first part see Corollary 2.2 of [INO8]. The second part
is Theorem 3.3 of [INOS] O

We will also need the following Lemma.

LEMMA 2.12. Let G be a group and let p be a prime. Let P € Syl,(G)
and assume that P<1 G and G/P has odd order . If \ € Irr(P) is linear and
Q(A) < Qpe, then there exists a unique x € Irr(G) over A with Q(x) < Qpe.

Proor. First note that every ¢ € Irr(G) lying over A has p’-degree.
By Lemma 1.13, let X be the canonical extension of A to T = G A We
have that o(A) = o()). Hence AC € Xpe(G). Now, suppose ¢ € X,a(G)
lies over A. Then ¢ = 7¢ for some 7 € Irr(T|\). Using Theorem 1.12
7 = B for some f € Irr(T/P). Since T/P has odd order, by Theorem
1.19 if B is real then § = 1. Therefore, if § is real, then ¥ = x. Assume
B is not real and let o € Gal(Q(5)/Q) be the complex conjugation. Since
Q(B) = Qpryp; and [T/P| is not divisible by p, we can extend o to an
element of Gal(Qpa(3)/Qpe ), by the natural irrationalities theorem of Galois
theory We have B = % # . Since ¥° = ¢ and A\ = )\, it must be

B")\" B)\ = 6)\ = 7. Using Theorem 1.12 again, ﬂ)\ = ,6’)\ implies
,6’ B, a contradiction. O

We are ready to prove Theorem C, which we restate below.

THEOREM 2.13. Let G be a p-solvable group and let P € Syl (G). Write
N = N¢g(P) and assume that N/P has odd order. Define a map

Q: X,0(G) = Xpa(N)

in the following way: If x € X, (G), choose a pair (U, \) where P < U < G
and \ € Trr(U) linear with Q(\) € Qpa such that \¢ = x, then set Q(x) =
Auan)N. Then 2 is a bijection.

PROOF. Let x € Xpa(G), by Theorem 2.6 we know that there exists a
pair (U,\) where U < G, X is a linear character of U with Q(\) € Qpe
and \¢ = x. As x(1) = |G : U] is a p-number, U contains a Sylow
p-subgroup of G. We may assume P < U maybe replacing (U, \) by a
conjugate pair. By Lemma 2.10(a), we have that ¢ = (A\y~n)Y € Irr(N).
Also (Ay~n)N(1) = |N : U n N| is a p'-number, and Q(p) € Q()\) S Qpe.
Then, we get ¢ € Xp,a(N). In this situation, we will say that ¢ arises from
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X Using Lemma 2.10(b) we know that ¢ cannot arise from any ¢ € Xy (G)
different from x. We have seen that in case {2 is well-defined, it is injective.

In order to prove that 2 defines a bijection, we need to show that € is
well defined and surjective. First, we show that ¢ is the only element that
arises from x. Suppose that (W, v) is another pair such that P < W < G,
v is linear and v“ = y. Then by Theorem 2.6, we have that W = U9 and
v = M\ for some g € G. Thus, P, P9 < W. By Sylow Theory, there exists
t € W such that P = P9%. Also W = U9 and v = \9'. Hence we may
assume g € N. Then, it suffices to show that (A, )Y = (Auan)Y. Write
W= )\?]gmN. For every n € N we have that

> Avan(gzn(gz) ™)

zeN

D Avan(yny ™)
yeN

= (Avan) N (n).

Finally, we prove that € is surjective. Let 6 € Xp,a(N), let A € Irr(P) be
under 0. Then, A is linear and o(A) = |P : ker(\)|. By Theorem 2.11 there
exists M < G containing P maximal such that A extends to M. Further-
more, M = PU where P normalizes U and P n U = ker()A). Then, we can
choose the unique extension v of A with o(v) = o(\). Again using Theorem
2.11, we have that % € Irry (G). We need to show that Q(v) € Qpe. It
suffices to see that Q(\) € Qpe. We distinguish the cases where a = 0 and
a > 0.

Case a = 0. In this case @ is rational. Then both X and A are under 6. By
Clifford’s theorem A = \9 for some g € N, and we see that g normalizes T the
stabilizer of A in N for the two actions commute. Then, A = A = (X)9 = 9",
g> € T. But Nx(T)/T has odd order and thus g € T. Hence ) takes real
values, since A is linear we conclude A is rational.

Case a > 0. We have that Q(\) S Q) where o()) = pb. Suppose

p’>p*andlet 1 # o€ Gal(Q,»/Qpa). Since
_ ‘Gal((@pb/@” _ pb_l(p —1) b—a

Gal(@e/Q -1 "
o has p-power order. Since x° = y, by Clifford’s Theorem, A\ = A9 for
some g € GG that normalizes T, the stabilizer of A in N. We know that the
action by the automorphisms of G and Galois action on Irr(N) commute,
then ¢°(?) € T. Since [Ny (T)/T| is a p-number, it must be that g € T', and
consequently A% = \. Now, we know that (vpr~n)Y € Xpa(N). If we show
that (varnn)"Y = 0 we will be done. This is true since by Lemma 2.12 there
is a unique element of X (NN) over . g

B |U n NJ|
B 1
~|UnN|

|Gal(Qye/Qpe)|
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The bijection 2 given by Theorem 2.13 is completely canonical. In
particular, let a be an automorphism of G that fixes P. Let x € Xp.(G) and
A e Irr(U) such that Q(x) = (A\y~n)Y. Then we have that Q(x®) = Q(x)*
because (A&, v)Y = ((Avan)™)>.

2.4. Certain monomial characters and their subnormal
constituents

As promised in the introduction, we use Isaacs B,-theory of m-separable
groups (see Section 1.4) to strengthen the conclusion of Theorem B. The
main feature of the use of this theory is that in the situation of Theorem B
we can guarantee that such y is not only monomial but also any subnormal
constituent of x is monomial, see Theorem 2.15 below. The results contained
in this section have been published in a joint work of the author with G.
Navarro in [NV15].

We refer the reader to Section 1.4 for the definition and first properties
of the Isaacs B,-characters.

LEMMA 2.14. Suppose that G is a p-solvable group. Let P € Syl,(G),
and assume that Ng(P)/P has odd order. If a € Irr(G) is p'-special and
real, then « is the trivial character.

PRrROOF. We argue by induction on |G|. Let N = O,(G). By Proposition
1.20, we have that N < ker(a). If N > 1, then we apply induction in G/N.
Otherwise, let K = Oy (G). Then K > 1. By Lemma 2.3, there is some
P-invariant 6 € Irr(K) under «, and any two of them are N¢(P)-conjugate
(since a is p’-special it has in particular p’-degree). Since « is real, then 6
is also under «, and therefore there is g € Ng(P) such that § = 9. Now
g? fixes 6, and since Ng(P)/P has odd order, we see that § = 0. Also, the
fact that N (P)/P has odd order implies that that Cx(P) has odd order.
By Lemma 2.5, we have that § = 1x. Thus K < ker(«), and we apply
induction in G/K. O

We are ready to prove the main result of this section.

THEOREM 2.15. Let p be a prime, let G be a p-solvable group, and let
P € Syl,(G). Let x € Irr(G) be such that p does not divide x(1) and such
that Q(x) € Qpe for some a = 0. If [Ng(P)/P| is odd, then x € By(G). In
particular, if N < <G and 0 is an irreducible constituent of xn, then 0 is
monomial.

ProoF. By Theorem 1.27, there exists a subgroup P < W < G and
a p-special linear character A e Irr(W), such that: ¢ = A% e Irr(G) is
a Bp-character, and (W, \) is a nucleus of 1. Also, there is a p’-special
character o € Irr(W) such that y = (Aa)®. By Theorem 1.26, the pair
(W, Aa) is unique up to G-conjugacy. Now, let o € Gal(Q|¢/Qg|,) be the
unique Galois automorphism that complex conjugates the p’-roots of unity
and fixes p-power roots of unity. Since y and X are fixed by o, then we deduce

Universitat de Valencia Carolina Vallejo Rodriguez



2.4. Certain monomial characters and their subnormal
30 constituents
that there is g € G such that (W9, a¥%) = (W, Aa”). Hence o = o by
Proposition 1.23. Since P, P9 < W, then P9% = P for some w € W, and we
may assume that g € Ng(P). Also, a9” = o, and therefore since Ng(P)/P

has odd order, we see that a® = . Now, let H be a p-complement of W.
Then

ag =ag = (a°)g = ay
and we deduce that @ = «, by using Proposition 1.22. Since Ny (P)/P has
odd order, by Lemma (2.1), we have that o = 1y. Thus x = ¢ € B,(G)
and y is monomial. Now, to prove the second part of the theorem, use
that subnormal constituents of B),-characters are Bj,-characters by Theorem
1.24, and the second part of Theorem 2.2 of [CNO8] , that asserts that B)-
characters of p’-degree are monomial. ([

We obtain the following consequence, in which a global invariant of a
finite group is calculated locally.

COROLLARY 2.16. Let p be a prime, let G be a p-solvable group, and
let P € Syl,(G). Assume that Ng(P)/P has odd order. Then the number
of irreducible characters x of G such that x(1) is not divisible by p and
Q(x) € Qg|, is the number of orbits of the natural action of Ng(P) on
p/P.

PROOF. Recall the notation from the previous section. If a is a non-
negative integer we write X,a(G) = {x € Irry(G) | Q(x) S Qpe}. Let
|P| = p®. By Theorem 2.15, we have that Xp,«(G) = By(G) n Irry (G) and
Xpe(N) = Bp(N) nIrry (N). By Theorem 2.2 and Corollary 2.3 of [CNO8],
we have that |X,e(G)| = |Xpe(N)|. We will show that |Xpa(N)| is equal
to the number of orbits under the natural action of Ng(P) on Irr(P/P’).
Let A be a complete set of representatives of the N (P) orbits on P/P’. If
6 € Xpa(G), then by Clifford’s theorem 6 lies over a unique A € A. Hence
| Xpe| < |A|l. Now, suppose that 6,60; € Xpa(N) lie over the same A € A.
Then there exist 1,1 € Irr(Ny|A) such that § = 4"V and 6; = (11)¢. No-
tice that v and 11 have p’-degree by the induction formula. By Theorem
1.13 X extends canonically to Ny and by Theorem 1.12, we have that ¢ = 65\
and 6, = B1\, where 3, 81 € Irr,y (N)/P) and )\ is the canonical extension of
A to Ny. Since Q(6), Q(#1) and Q(\) are contained in Qpa, then also Q(v))
and Q(11) are contained in Q.. Hence 5 and f; are rational valued. Since
by assumption N/P is odd, by Burnside’s theorem 1.19 we have that 8 = ;
and therefore 6 = 6. O

As we have already mentioned, we can shorten the proof of our Theorem
2.2 if we are willing to use Isaacs Br-theory.

THEOREM 2.17. Suppose that G is solvable. Suppose that x € Irr(G) has
odd degree. Suppose that (x(1), fy) = 1. Then x is monomial.

PROOF. Let 7 be the set of primes (possibly empty) dividing f,. Then
X has 7’-degree. By Theorem 1.27, there exist a pair (W,~), where W < G
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and v € Irr(W) is m-special, and a 7'-special character o € Irr(W) such
x = (ay)%. Also, v¢ = v € B,(G) and (W,~) is a nucleus for 1. Also by
Theorem 1.26, the pair (W, ~y«) is unique up to G-conjugacy. Notice that
x(1) = |G : W]a(1)y(1) implies that v(1) = 1 and W contains a full Sylow
2-subgroup of G.

We have that

Qx) € Qp, € Q-

Since 7 is m-special, Q(y) € Qig|,- Now, let o € Gal(Q|g ,/Q). We may
extend o to some o € Gal(Qq/Qg|,)- Then o fixes x and 7. Thus
(W,va?) = (W,~va)9 for some g € G. In particular, g € Ng(W). By
Proposition 1.23, we have that v = Y and and o = 9. Let 8 = aNe(W),
Now, although  is not necessarily irreducible we have that Q(3) < Q.-
Moreover, since o’ = a9, we have that § is fixed by ¢ and therefore [ is
rational valued (of odd) degree.

Now aNeW) — 5 = 5 = (@)Ne(W), It follows that some irreducible
constituent ¢ of 3 lies over @ and @. Hence a = a9 for some g € Ng(W).
Since Ng(W)o = W, we have that g2 € W, but [Ng(W)/W| odd implies
that g € W. Then « is real, and by Gow’s theorem it is monomial. Hence x
is monomial. O

2.5. Feit’s Conjecture and p’-degree characters

Our aim in this section is to prove Theorem D of the introduction. We need
a little preparation in order to do that. We will use Gajendragadkar special
characters (we refer the reader to Section 1.4). The following result will help
us to control fields of values under certain circumstances.

LEMMA 2.18. Let G be a finite group, let q be a prime and let  be a
primitive q-th root of unity. Suppose that G is q-solvable and x € Irr(G) is
q-special. If x # 1, then ¢ € Q(x).

PROOF. Let ) be a Sylow g-subgroup of G. By Lemma 1.22, we have
that 1 — % is an injection from the set of g-special characters of G into
the set Irr(Q). In particular Q(x) = Q(xg). Of course xg # 1. Thus, we
may assume that G is a ¢g-group. We also may assume that x is faithful
by modding out by ker(x). Choose x € Z(G) of order q. We have that
Xy = X(1)A, where A € Irr((z)) is faithful. Hence A(z') = ¢ for some
integer i. In particular ¢ € Q(x). O

The following elementary observation is stated as a Lemma for the
reader’s convenience.

LEMMA 2.19. Suppose that X is a linear character of a finite group, and
let P € Syl,(G). Let Ng(P) € H < G and let v = Ayg. Then o()\) = o(v).

PRrOOF. If A = 14, then there is nothing to prove. We may assume A
is non-principal and hence G’ < G. We have that P € PG’ < G. By the
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Frattini argument, we have that G = G'Ng(P) = G'H. Since G’ < ker()\)
and ker(v) = ker(\) n H, the result follows. O

The proof of Theorem D requires the use of a magical character; the
canonical character associated to a character five defined by Isaacs in [Isa73].
We summarize the properties of ¢ below.

Let L € K< G with L < G and K/L abelian. Let 6 € Irr(K) and
@ € Irr(A1). Suppose that @ is the unique irreducible constituent of ¢ (in
this case we say that ¢ is fully ramified with respect to K /L or equivalently
that 6 is fully ramified with respect to K/L) and ¢ is G-invariant. Then
we say that (G, K, L,0, ) is a character five.

THEOREM 2.20. Let (G,K,L,0,p) be a character five. Suppose that
K/L is a g-group for some odd prime q. Then there exist a character ¢ of
G with K < ker(v) and a subgroup U < G such that

(o) UK =G and U n K = L;

(b) ¥(g) # 0 for every g € G, ¥(1)? = |K : L| and the determinantal
order of ¥ is a power of q;

(c) if K € W < G, then the equation &y = Yw&o for & € Trr(W10)
and &y € Irr (W nU|p) defines a one-to-one correspondence between
these two sets; and

(d) if K € W < G, then & € Irr(W|0) and & € Irt(W nUlp) correspond
in the sense of (c) if and only if €5 = Py &, where i denotes the
complex conjugate of 1.

(e) If K/L is elementary abelian, then Q) < Q.

PROOF. For parts (a), (b) and (c) see Theorem 3.1 of [Nav02]. Part
(d) follows from Corollary 9.2 of [Isa73] (since the complement U provided
by [Nav02] is ”"good” not only for G/L but also for every W /L where
K < W < G). For part (e), by Theorem 9.1 of [Isa73] and the discussion at
the end of the page 619 of [Isa73], the values of the character 1) are Q-linear
combinations of products of values of the bilinear multiplicative symplectic
form «, »,: K x K — C* associated to ¢ (defined at the beginning of
Section 2 of [Isa73]). The values of «, », are values of linear characters of
cyclic subgroups of K/L. Since K/L is g-elementary abelian, we do obtain
that Q(y) < F. O

We can prove Theorem D, which we restate here.

THEOREM 2.21. Let p be a prime and let G be a finite solvable group.
Let x € Irr(G) of degree not divisible by p, and let P € Syl,(G). If x(1) is
odd, then there exists g € Ng(P)/P’ such that o(g) = fy. In particular, the
Feit number f, divides |Ng(P) : P'|.

PrROOF. By the Amit-Chillag theorem [AC86], we may assume that p
divides |G|. We proceed by induction on |G]|.

Let N< G. If 0 € Irr(N) is P-invariant and lies under y, then we may
assume that 6 is G-invariant. Let 1) € Irr(Gy|0) be the Clifford correspondent
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of x. By the character formula for induction, Q(x) € Q(¢) and x(1) = |G :
Gg|t(1). Thus the character ¢ satisfies the hypotheses of the theorem in
Gg and f, divides fy. If Gy < G, then by induction there exists some
g € Ng,(P)/P' < Ng(P)/P' (notice that the P-invariance of  implies
P < Gy) such that o(g) = f,. Hence, some power of g has order f, and we
may assume Gy = G.

We claim that we may assume that x is primitive. Otherwise, suppose
that x is induced from v € Irr(H) for some H < G. In particular, p does
not divide |G : H| and so H contains some Sylow p-subgroup of G, which
we may assume is P. Again by the character formula for induction, the
degree 9(1) is an odd p’-number and f, divides f,;. By induction there is
g€ Ng(P)/P' < Ng(P)/P' such that o(g) = fy. Thus some power of g has
order fy, as claimed.

By Theorem 2.6 of [Isa81] the primitive character y factorizes as a

product
X = H Xq>
q

where the x, are g-special characters of G for distinct primes ¢g. Let o €

Gal(Q)/Q(x))- Then
ng = qu-

By using the uniqueness of the product of special characters, see Proposition
1.23, we conclude that xg = x4 for every ¢g. Hence f,, divides f, for
every ¢, and since the fy ’s are coprime also | | q Jx, divides f,. Notice that
Qx) € Qxq | 9) < Ql—[q Jx, DY elementary Galois theory. This implies the

equality f, = ]_[q Ixa-

Now, consider K = OP"?(G) < G. Notice that PK = O?(G)< G. By
the Frattini argument G = PKNg(P) = KNg(P). If K =1, then P< G
and we are done in this case. We may assume that K > 1. Let K/L be
a chief factor of G. Then K/L is an abelian p’-group. If H = Ng(P)L,
then G = KH and K n H = L, by a standard group theoretical argument.
Furthermore, all the complements of K in G are G-conjugate to H. Finally,
notice that Cgr(P) = 1 using that H n K = L.

We claim that for every g, there exists some g-special x; € Irr(H) such
that fx = fy, and X; (1) is an odd p’-number.

If ¢ € {2,p}, then A\ = x4 is linear (because x has odd p’-degree). Let
A* = Ag. Then \* is g-special (since A is linear and g¢-special, this is
straightforward from the definition) and fy+ = f) by Lemma 2.19.

Let ¢ # p be an odd prime and write n = x,. We work to find some
n* € Irr(H) of odd p’-degree with f,« = f;. By Lemma 2.3, let 6 € Irr(K) be
some P-invariant constituent of nx and let ¢ € Irr(L) be some P-invariant
constituent of 7. By the second paragraph of the proof, we know that both
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f and ¢ are G-invariant and hence ¢ lies under §. By Theorem 6.18 of
[Isa76] one of the following holds:

]
(a) O = Dt_, ¢i, where the ¢; € Trr(L) are distinct and ¢ = |K : L|,
(b) 0 € Irr(L), or

(c) 01, = ep, where ¢ € Irr(L) and €? = |K : L.

Notice that the situation described in (a) cannot occur here, because ¢
is G-invariant.

In the case described in (b), we have ¢ = 01, € Irr(L). Then restriction
defines a bijection between the set of irreducible characters of G lying over
6 and the set of irreducible characters of H lying over ¢ (by Corollary
(4.2) of [Isa86]). Write £ = ngy. By Theorem A of [Isa86], we know
that & is g-special. We claim that Q(n) = Q(&). Clearly, Q(&) < Q(n).
If 0 € Gal(Q(n)/Q(&)), then notice that ¢ is o-invariant because &7, is a
multiple of . Now, ¢ is P-invariant, and because Cg/,(P) = 1, there is
a unique P-invariant character over ¢ (by Problem 13.10 of [Isa76]). By
uniqueness, we deduce that 67 = 0. Now, 77 lies over § and restricts to
&, so we deduce that n° = n, by the uniqueness in the restriction. Thus

Q(n) = Q(¢). We write n* = ¢.

Finally, we consider the situation described in (c). Since 6, is not ir-
reducible, then |K : L| is not a ¢’-group, by Theorem 1.10. Hence K/L is
g-elementary abelian and e is a power of q. By Theorem 2.20 (and using
that all the complements of K/L in G/L are conjugate), there exists a (not
necessarily irreducible) character 1 of G such that:

(i) ¢ contains K in its kernel, 1(g) # 0 for every g € G, (1) = e and
the determinantal order of 1 is a power of q.
(ii) if K € W < G and & € Irr(W|0), then &wnn = Yw~uéo for a
unique irreducible character & of W n H.
(iii) The values of 9 lie on Q.

In particular, ng = ¥ng, so that ny € Irr(H|p) (where we are viewing 1
as a character of H). We claim that 7y is g-special. First notice that
no(1) = n(1)/e is a power of q. Now, we want to show that whenever S
is a subnormal subgroup of H, the irreducible consituents of (19)s have
determinantal order a power of ¢q. Since (1) is a multiple of ¢, which is
g-special, we only need to control the irreducible constituents of (19)s when
L € S< < H, by using Proposition 1.20. We have that K € SK < < (.
Write

NSk = a1y1 + -+ + arYr,

where the 7; € Irr(SK) are g-special because 7 is g-special and a; € Ny. By
using the property (ii) of ¥, we have that ng = ¥g(n9)s also decomposes as

ns = a1s(1)o + - + arths (o
= wS(al(71)0 + -+ ar(’Yr)O)'
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Since 1 never vanishes on G, we conclude that (n9)s = a1(y1)o+- - -+ar(7r)o-
It suffices to see that o((7;)o) is a power of ¢ for every ~; constituent of ngx.
Just notice that

det((7:)s) = det(¥s(7:)o)
= det(¢s)(7i)°(1)det((%)0)e,

Since o(v), o(7i), 7i(1) and e are powers of ¢, we easily conclude that also
the determinantal order of (v;) is a power of q. This proves that 7y is ¢-
special. We claim that Q(n) = Q(no) so that the two Feit numbers are the
same. Let ¢ be a primitive ¢g-th root of unity and write F' = Q(¢). Then the
values of ¢ lie in F'. We next see that n and 7 are non-principal. This is
obvious because ¢ and ¢ are fully ramified. Suppose that o € Gal(Qq|/F)
stabilizes 17. Then
Yo = ¥ng = Png.

Using that 9 is never zero, we conclude that n = ny. Now, by part (d) of
Theorem 2.20, we have that £ and &y correspond (as in part (c) of Theorem
2.20) if and only if (£9) = ¢. Hence, if o € Gal(Qg|/F) and 1§ = no, then
¥m = ()% = )¢ = yn? (because also Q(v») < F). This implies again
that n° = n. By Galois theory, we have that F(n) = F(ny). By Lemma
2.18, this implies Q(n) = Q(no). We set n* = ng. The claim follows.

Now, we define y* = Hq Xq" which has odd p’-degree. The character
X* is irreducible by Proposition 1.23. Also f,* = ]_[q Xg as in the fourth
paragraph of this proof. Hence

fX* = Hqu* = Hqu = fX'
q q

By the inductive hypothesis, there exists g € Ny (P)/P’ < Ng(P)/P’ such
that o(g) = fy* and we are done. O
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CHAPTER 3

McKay natural correspondences of characters

3.1. Introduction

Let p be a prime. Recall that for a finite group G, we denote by Irry (G)
the set of the irreducible characters x € Irr(G) of G which have degree
Xx(1) not divisible by p. The McKay conjecture, one of the main problems
in the Representation Theory of Finite Groups, asserts that |Irr,(G)| =
[Trry (N (P))|, where P € Syl,(G). It is suspected that in general no choice-
free correspondence can exist between Irr, (G) and Irry (Ng(P)), at least
there does not exist one commuting with Galois action. For instance, if
G = GL2(3), p = 3 and P € Syl,(G), then all the irreducible characters of
N¢(P) are rational-valued, while G has characters of degree 2 which are not
rational-valued.

A key case to consider is when Ng(P) = P. If Ng(P) = P, then
McKay conjecture predicts the existence of a bijection between Irr,y (G) and
Irr(P/P’). We prove that much more is happening for p odd.

THEOREM E. Let G be a group, let p be an odd prime and let P €
Syl,(G). Suppose that P = Ng(P). If x € Irry (G), then

xp=x"+A4A,
where x* € Irr(P) is linear and A is either zero or A is a character whose

irreducible constituents have all degree divisible by p. Furthemore, the map
X — x* is a natural bijection Irry (G) — Irr(P/P’).

Theorem E was proved for p-solvable groups in [Nav07] for any prime p,
although it was suspected long time ago that it should hold in general for odd
primes. For p = 2, Theorem E is not true, the symmetric group &5 provides
a counterexample. However, E. Giannelli [Gial6] found canonical bijections
for p = 2 and &,,. (This bijection cannot be described by restriction unless
n = 2F.) We also mention that in [GKNT16] the authors provide a different
canonical bijection for p = 2 and &,, as well as for GL,(¢) and GU,(q) (for
q odd).

We will also work in greater generality. Instead of assuming that P €
Syl,(G) is self-normalizing, we assume that Ng(P) = Cg(P)P (namely
N¢(P) is p-decomposable). We prove that a bijection as in Theorem E does
exist but at the moment only between characters in the principal blocks
(again for p odd). Recall that a character x € Irr(G) lies in the principal
(p-)block Bo(G) of G if 3 o x(2) # 0, where G is the set of elements of
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G of order not divisible by p. If we further assume that G is p-solvable, then
we can prove the following (with no restriction on p).

THEOREM F. Let G be a finite p-solvable group, and let P € Syl,(G).
Suppose that Ng(P) = PCg(P), and let N = Oy (G). Let Irrp(N) be the
set of P-invariant characters 6 € Irx(N). Then, for every 6 € Irrp(N) and
A € Irr(P/P') linear, there is a canonically defined character

Ax0elrry(G).
Furthermore, the map
Irr(P/P') x Irrp(N) — Irry (G)

given by (X, 0) — X\ * 0 is a bijection. As a consequence, if 0* € Irr(Cy(P))
is the Glauberman correspondent of 6 € Irrp(N) (see Theorem 1.17), then
the map

AX 0% — Ax0

is a natural bijection Irry (Ng(P)) — Iry(G). Also, if 0 = 1x and X €
Irr(P/P"), then X x 0% is the unique linear constituent of (A * 0)n(p)-

This chapter is structured in the following way: We begin by studying
some character correspondences in the groups PSLy(3%") for a > 1 in Section
3.2. There is a good reason for that: these groups appear as the only
non-abelian composition factors of groups with a self-normalzing Sylow p-
subgroup for odd p (see [GMNO4]). In Section 3.3 we prove the following
extension theorem which is key to prove Theorem E.

THEOREM. Let N < G. Let p be an odd prime and let P € Syl,(G).
Assume that Ng(P) = P. If x € Irryy (G) and 0 € Irr(N) lies under x, then
0 extends to Gy.

In Section 3.4 we prove Theorem E and we present an application to char-
acterize groups with self-normalizing Sylow p-subgroups for odd p. In Sec-
tion 3.5, we consider the case where the normalizer of the Sylow p-subgroup
is p-decomposable.

We will start by proving a key group theoretical result, which extends a
classical work of J. Thompson (see Theorem 3.14 of [Isa08]).

THEOREM. Let G be a group, let p be a prime, and let P € Syl,(G).
Suppose that Ng(P) = P x X. If p is odd or G is p-solvable, then X <
O, (G). In particular, if Ng(P) = PCg(P), then Oy (Ng(P)) < Oy (G).

After that we prove there exist character correspondences as in Theorem
E between characters in the principal blocks. In the last section, we prove
Theorem F.

All the results contained in this chapter, unless otherwise stated, appear
in a joint work of the author together with G. Navarro and P. H. Tiep
[INTV14].
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3.2. Character correspondences associated with PSLy(33")

By the main result of [GMNO04], if a group G has a self-normalizing Sylow
p-subgroup for some odd prime p, then either G is solvable or p = 3 and G
has a composition factor of type PSL(33") where a > 1. In the case where
G is not solvable, it is easy to show that all non-abelian composition factors
of G are of type PSL(3%") with a > 1.

LEmMMA 3.1. Let G be a group. Let p be an odd prime. Suppose that
Ng(P) = P for some P € Syl,(G). If K/L is a non-abelian composition
factor of G, then K/L is of type PSLa(3%") with a > 1.

PRroOF. By Corollary 1.2 of [GMNO04], the claim holds when G is sim-
ple. We proceed by induction on |G|. Let N be a minimal normal subgroup
of G. Then 1 < |N| < |G|. Since both K n N and L are normal subgroups
of K, we have that L < (K n N)L < K. However, K/L simple yields
(KNnN)L=Lor (KnN)L=K.

Suppose (K n N)L = L. Then K/L =~ KN/KL is a nonabelian com-
position factor of G/N. Since Ng/n(PN/N) = Ng(P)N/N = PN/N, by
induction hypothesis K /L is of type PSLy(3%") with a > 1.

Suppose that (K n N)L = K. Then K/L =~ (K n N)/(L n N) is a
non-abelian composition factor of Go = PN. Therefore N is a non-abelian
minimal normal subgroup. We can write N = T} x --- x T, where the T;’s
are non-abelian simple groups transitively permuted by G and consequently
all isomorphic. Also, the T;’s are the composition factors of N up to isomor-
phism by the Jordan-Holder Theorem. Thus K/L = T; for some i. Since
Ng,(P) = P, if Go < G, then we are done by induction. We may assume
that G = PN. By the main result of [GMNO4], some composition factor
of G, thus some composition factor T} of N is of type PSLg(3%") with a > 1.
Hence K /L is also of this type and we are done. ]

Due to these facts, the groups of type PSL(33“) with a > 1 play an
important role in the proof of our Theorem E. The description of the be-
havior of the character theory of groups of type PSLa(¢) under the action
of automorphisms was accomplished in Section (15B) of [IMNO7]. In order
to make this chapter as self-contained as possible, this section is devoted to
describe how does the character theory of PSLy(33) behave under the ac-
tion of their field automorphisms using the background of Section 1.5. (We
will use results contained in Section 1.5 without specific reference).

First we need the following result about some special actions of p-groups
on groups of type PSLa(p?").

LEMMA 3.2. Let S = PSLa(q), where ¢ = p*", for some odd prime p
and a = 1. Embed S < Aut(S) = A. Let P < A be a p-subgroup such that
Pn S =Q e Syl(S). Suppose that P acts on S with Cng(q)(P) = 1.
Then p = 3 and P € Syl,(A).
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40 3.2. Character correspondences associated with PSLy(3%")

PROOF. We proceed in a series of steps.

Step 1. We may assume that Q is the Sylow p-subgroup Q1 of S induced
from upper unitriangular matrices.

We have that @ = Q5 for some s € S. Then Q1 = P AS<a P =P
and P; acts on S with CNs(Ql)/Ql(Pl) = (CNS(Q)/Q(P))S_I =1.

Step 2. We describe the Sylow p-subgroups of A and N 4(Q).

Write F' = F,. Let ¢ be the Frobenius automorphism of F. Then, ¢
induces an automorphism of S and {(¢) < A has order f = p?, see Section
1.5.1. By Step 1, the group {¢) normalizes @, and so Q{y) is a subgroup
of A of order p® - q (we are using that (p) n S = 1). Hence Q{p) € Syl,(4),
because |A| = p?q(¢? — 1). Write H = N4(Q). We claim:

(a) Syl,(4) = {(Q{p))* | s € S},

(b) Syl,(H) = {(Qp))" | t € Ns(Q)}-
We first prove (a). Since A/S is abelian, we have that S{p) < A and Q{p)
is a Sylow p-subgroup of S{y). By Frattini’s argument (see 3.2.7 of [KS04]
for instance)

A = S{OINA(QUp)) = SNA(QLp)),

hence the description in (a) follows. To prove (b), we proceed analogously.
Since @ € Syl,(S) and S<1 A, we have that A = SN 4(Q) = SH by Frattini’s
argument. In particular, H/Ng(Q) is abelian. We have that {(¢) normalizes
Ns(Q). Hence Ng(Q){¢)<t H and using Frattini’s argument one more time,
we conclude

H = Ng(Q){¢)Nu(Q{p)) = Ns(Q)N# (Q{p)).

Step 3. We may assume P < Q{p). In particular P = Q{x°) for some
integer e.

Since P < N4(Q) is a p-subgroup, then P < (Q{p))! for some t €
Ns(Q), by Step 2. Let s = t71. We have Q° = Q < P® < Q{p). We may
replace P by P?® because P?® acts on S stabilizing @) and

Cns(@@(P?) = (Cng()(P)” = 1.

Thus, we may assume P < Q{p). Hence P = P n Q{¢) = Q(P n {p)) =
Q{p%), for some integer e.

Final step. We conclude P = Q{¢) is a full Sylow p-subgroup of A.

By Step 3, we know that P = Q{(¢°) for some integer e. Consider ¢
both as a Galois automorphism of F' and as an automorphism of S. Suppose
that ¢ fixes an element a € F*. Let d(a) = diag(a,a ') € Ng(Q). By easy
1 b
0 1

e

matrix computations, for every x = € @ and for every integer k,

we have that

d(a)"Ld(a)™" — ( (1) bpek(al—a_l) ) co.
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This proves that d(a) € Cng(@)/q(P)- By hypothesis Cng(q)/q(P) =1, so
that d(a) € Q. This means that d(a) is the identity of S. Thus a = +1 € F.
Hence, the subfield of F' fixed by ¢° is exactly Fs. Since ¢¢ € Gal(F/Fp),
we conclude that p = 3 and (p¢) = {¢), by Galois Theory. O

Let S = PSLay(q), where ¢ = 33" for some a > 1. We shall also need
the following result about the automorphisms of S that centralize a Sylow
3-subgroup of S.

LEMMA 3.3. Let S = PSLa(q), where ¢ = 3% for some a > 1.Write
A = Aut(S). Let P € Syl3(A). Write @ = P n S € Syl3(S). Suppose that
Y < A is a 3'-subgroup that centralizes Q. Then'Y = 1.

Proor. We may assume that @) is the Sylow 3-subgroup of S induced
from upper unitriangular matrices. Since A = PGLa(q) x {p), where {¢) is
the group of field automorphisms of S with o(¢) = 3%, and Y is a 3’-subgroup
of A, we have that Y < PGLa(g). The result follows since Cpgr,(g)(Q) =

O

Q.

LEMMA 3.4. Let G be a group and let S < G. Suppose that S = PSLa(q),
where ¢ = 3% and a = 1. Write p = 3 and let P be a p-subgroup of G
such that @ = P n S € Syl,(S). Suppose further that P acts on S with
Cns(@)@(P) =1. If a € Irry (S) is P-invariant, then

ag =a* + A,

where o™ is P-invariant and no irreducible constituent of the character A is
P-invariant. Moreover, the map o — o defines a bijection between the set
of irreducible character of S of p’-degree fized by P and the set of irreducible
characters of Q fixzed by P.

Proor. We proceed in a series of steps. Let ' = F,. We write ¢ to
denote the Frobenius automorphism of the field F.

Step 1. We may assume Q is the Sylow p-subgroup Q1 of S induced from
upper unitriangular matrices.

We have that Q° = @1 for some s € S. Then Q1 = P°nS< P% = P; and
P acts on S with CNs(Q1)/Q1 (Pl) = (CNS(Q)/Q(P))S = 1. Also Irrp, (Ql) =

(Irrp(Q))*

Step 2. We may work in Aut(S) and we may assume that P = Q{p),
where we identify ¢ with the field automorphism of S corresponding to ¢ as
in Section 1.5.

Write A = Aut(S). Let v: P — A be the homomorphism defined by
conjugation by P. Write P = v(P) < A. Embed S < Aut(S). Then
@ < P;. Since the actions of P and P, on S are equivalent, we have that
Cns(@)@(P1) = 1. By Lemma 3.2, we have that Py is a Sylow p-subgroup
of A. Since P; < N4(Q), we have that P; = (Q{¢))! for some t € Ng(Q)
(proceed as in Step 2 of the proof of Lemma 3.2). Hence Q < P» = (Pl)t_1 =
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Q{p). We notice that

-1
Cns@)yQ(P2) = (Cng@eP1) =1,

Irre,y (Q) = Irrp, (Q) = Irrp, (@) and Trrgy,y (S) = Irrp(S). This proves the
claim.

Step 3. We describe the set Trr¢,(S).

We have that ¢ = 3 mod 4, for a = 1. The character table of S has been
given in Section 1.5. We keep the notation of Section 1.5 throughout this
proof. Also in Section 1.5, it is is shown that {1g, Sts,np, 70} S Trrey(S).
By Lemma 15.1 of [IMNO7], we have that Trr.\(S) = {1s, Sts, 75,70} 1

The only character of this set with degree divisible by p is the Steinberg
character Stg. Of course (1g)g = 1¢ has the desired form. Hence, in order
to prove the statement, we need to understand how does a € {n(, n{j} restrict
to Q.

Step 4. We compute (n()q and (n3)q-

We denote by Tr the trace map Trpp,: F' — F3 associated to the field
extension F/F3. The trace map is Fz-linear and Tr(b) = b+ bP 4 - - + bP" 1
for every b € F', by Corollary 23.11 of [Isa94]. Fix € a primitive cubic root of
unity. For every b € F, we define a homomorphism A\,: @ — C* as follows:

if ce F, then )\ < (1) i > = 1) We have that

Irr(Q) = {\s | be F}.
The automorphism ¢ acts on Q. Hence ¢ acts on Irr(Q). In fact \] = Ap(b)
for every b € F. By Theorem 1.16, the number of elements of Q) fixed by ¢
is equal to the number of irreducible characters of @) fixed by . Since the
subfield of F' fixed by ¢ is the prime field F3, we have that ¢ fixes exactly
three elements of Q. It is clear that Trr(,,(Q) = {1, A1, A\-1}.

We denote by U the subgroup of F* consisting of the squares of F'*.
The subgroup U has index 2 in F'*. Since —1 is not a square in F', every
b e F* is either in U or there exists an u € U such that b = —u. From the
character table of S we see that

(10)q + (10)q = po — 1,

where pg is the regular character of @ (we recall pg has degree |Q| = ¢ and
pg vanishes on every nontrivial element of ). Thus

pQ =D X =1q + (mh)q + (10)e-
beF

We conclude that (n))q is the sum of (¢ — 1) nontrivial Ay’s and (1)) is
exactly the sum of the (g — 1) nontrivial A,’s that do not appear in (1) o.
The normalizer of @ in S is

NS(Q)={<8 Cﬂ) lce F*be F} = | J <8 091 >Q.

ceF'~
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Let b e F. Write d(c) = diag(c,c™!) € H, where c € F*. It is straightforward
to check that

d(c
A = ) 2y,

Thus the action of Ng(Q) on Irr(Q) decomposes Irr(Q) into three orbits as
follows
Irr(Q) = {lo} v {X | be Ut u{A_ | be U}

Hence, if )y is a consituent of (1()q, then

(10)e = D Aub
uelU
is exactly the sum over all squares of F' if b is a square or the sum over
all the non-squares of F' if b is a non-square. In particular, we have that
Ae is a constituent of ()¢ if and only if A_ is a constituent of (n])q for
e € {—1,1}. This finishes the proof of the statement. O

REMARK 3.5. Under the hypothesis of Lemma 3.2, we have that
II‘I'P(S) = {157 StSa 77/7 ?7”}7

where Stg is the Steinberg character of S and 7’ and n” are the two ir-
reducible cuspidal characters of S of degree %(q — 1), by Lemma 15.1 of
[IMNO7].

3.3. An extension theorem

In this section we prove a non-trivial extension result which is key to proving
Theorem E.

THEOREM 3.6. Let N < G and let p be an odd prime. Let P € Syl (G)
and suppose that Ng(P) = P. Let x € Ity (G). If 6 € Irr(N) lies under x,
then 0 extends to Gy.

The proof of Theorem 3.6 we present here is totally different from the
one we originally gave in [NTV14]. This new shorter and cleaner proof is
based upon the ideas contained in [NT16]. In [NT16] the authors were
interested in the case p = 2, but their argument becomes easier for odd
primes.

We begin with an elementary extension result.

LEMMA 3.7. Let N be a normal p-subgroup of G. Let x € Irryy (G) and
let 6 € Irr(N) be under x. Then 0 extends to Gy.

ProOF. We may assume that 6 is G-invariant since the Clifford corre-
spondent ¢ € Irr(Gylf) of x has p’-degree. Let P € Syl,(G). Then N < P.
Since x has p’-degree, some irreducible consituent yu of xp has p’-degree. In
particular,  is linear and lies over 6, hence uy = 0. If Q € Syl (G) for
some prime g # p, we have that 6 also extends to N@Q by Corollary 6.20 of
[Isa76]. According to Corollary 11.31 of [Isa76] 6 extends to G. O
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44 3.3. An extension theorem

We shall also need an extension result from [NT16], which is not hard
to prove.

LEMMA 3.8. Let N < G. Suppose that N = S1 X -+ x S; is the direct
product of subgroups which are transitively permuted by G by conjugation.
Write S = S1 and view S/Z(S)< A = Aut(S). Let 0 = 01 x .. x 0, € Irr(N)
be G-invariant, where 0; € Irr(S;) and 01 € Irr(S/Z(S)). If 61 extends to
Ap,, then 6 extends to G.

PrOOF. This is Lemma 2.8 of [NT16]. O
We are ready to prove the main result of this section.

PROOF OF THEOREM 3.6. Choose (G, N) a counterexample of minimal
|G| + |N|. We may assume that G = Gy by minimality of (G, N) since the
Clifford correspondent v € Irr(Gplf) of x has p'-degree and |G : Gy| is a
p/-number. Thus Yy = ef for some e > 1.

Suppose M <« G and M < N. Then

t
Xa=f Y7,
i=1
where 7 € Irr(M) and {7*!, ..., 7%t} is a G-orbit. Also

T
XM = efy = ef/ZTnia
i=1
where the sum now is over an N-orbit. Write I = G. Then
|G:I|=t=r=|N:Nnl|

so G = NI. By Lemma 2.3 some irreducible constituent of x,s is P-
invariant, let us say 7, so P < I. Let p € Irt(N n I|7) be the Clif-
ford correspondent of #. Since both 7 and 6 are I-invariant, also p is I-
invariant. Now, let ¢ € Irr(/) be under y and over p. In particular, 1 lies
over 7 and then it must be the Clifford correspondent of x over 7. Hence
Y% = y and ¢ € Irry(I). By minimality of (G, N), the character p ex-
tends to some p € Irr(I). Notice that I = G, so that u© € Irr(G) and
(L) N = (una1)N = pN = 6, a contradiction.

Hence, we may assume that N is a minimal normal subgroup of G. If N
is a p-group, then Lemma 3.7 yields a contradiction. If we suppose that N is
a p’-group, then the hypothesis Ng(P) = P implies Cn(P) = 1 by coprime
action. By the Glauberman correspondence (see Theorem 1.17) 6 = 1y,
which obviously extends to GG, a contradiction. We may hence assume that
N = 851 x .-+ x Sy is the direct product of some simple non-abelian groups
{S1,..., Sk} of order divisible by p which are transitively permuted by G.
Write 6 = 601 x -+ x 0 € Irr(N) with 6; € Irr(S;). Write S = S; and
S; = S% for some x; € G for i = 2,...,k. By Lemma 3.1, S is isomorphic
to PSLy(3%") for some a > 1. View S < A = Aut(S). In Section 1.5.1 we
have seen that |A/S| = 2 - 3% Notice that o(¢;) = 1 because S; has no
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non-principal linear character. If Q/S € Syls(Ap, /S), then 0; extends to @
by Lemma 1.13. If P/S € Syly(Ap,/S) it must be cyclic or trivial, in any
case, 01 extends to P by Theorem 1.14. By Theorem 1.15, we conclude that
01 extends to Ag. By Lemma 3.8, we see that 6 extends to GG, contradicting
the choice of G as a minimal counterexample. O

3.4. The self-normalizing case

In this section we prove Theorem E. We also present a (perhaps surpris-
ing) consequence of Theorem E: a characterization of groups having a self-
normalizing Sylow p-subgroup in terms of the decomposition of a certain
permutation character (for odd primes). We shall need the following result
from [NTTOT7].

LEMMA 3.9. Suppose that a finite p-group P acts on a finite group G,
stabilizing N < G. Suppose that Q/N € Syl (G/N) is P-invariant, and
assume that G/N = Ty/N x --- x T,/N, where the T;’s are permuted by P.
Let Q; = QN T;, and let P; be the stabilizer of T; in P. If Cn)/0(P) =1,
then CNTZ(Q-L)/Q—L (Pz) =1.

PROOF. Apply Lemma (4.1) of [NTTO7] to each of the orbits defined
by Q on {Ty,...,T,}. O

The only way we have found to prove Theorem E is to use a strong
induction over normal subgroups, and Theorem 3.6 is key in this inductive
process. The following result is a relative to normal subgroups version of
Theorem E.

THEOREM 3.10. Let G be a finite group, p an odd prime, P € Syl,(G),
and suppose that P = Ng(P). Let L< G. Let x € Irryy(G). Then

xep = X" + A,
where x* € Irryy (LP) and either A is zero, or A is a character of LP whose
irreducible constituents have all degree divisible by p.

PROOF. Let G be a counterexample with |G| - |G/L| smallest possible.

(a) By Lemma 2.3, let 6 € Irr(L) be P-invariant under x. Let T'= Gy >
LP, and let ¢ € Irr(T'|0) be the Clifford correspondent of x over #. Assume
that T' < G. By the choice of G, we have that

Yrp =9P* + A,

where 1* has p’-degree and the irreducible constituents of A have degree
divisible by p. Let T be a transversal for the double cosets of T and P in
G. We may assume 1 € T Write

G:UTxP

zeT
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Then, by Mackey’s Lemma 1.8, we have that
xep = W) p =vrp+ . (@ )1enrp)™”

1#zeT

Let a € Irrp(L) be an irreducible constituent of ((¢*)rz~rp)*F. Suppose
that o has degree not divisible by p. Hence o, € Irr(L). Thus the irreducible
character ap=~pp lies under ¢*. However (%) = df* for some d > 1, so
we conclude that % = ap. Hence 6% is P-invariant. By Lemma 2.3, we have
that 6*Y = 0 for some y € P and therefore x € T. But this is impossible
since  # 1 lies in T.

We may assume then that 8 is G-invariant. By Theorem 3.6, we have
that 0 has an extension 6 € Irr(G). By Gallagher Theorem 1.12, we have
that x = 30, for some § € Irr(G/L). Now, if L # 1, then the theorem holds
for G/L, whence we have that Bpy is the sum of a p’-degree irreducible
character f* of PL/L (and hence linear) plus some character A of PL/L
such that all of its irreducible constituents have degree divisible by p. Then

xep = (8%)0Lp + AbLp,
and using Gallagher Theorem 1.12, we see that we are done again. Hence
L=1.

(b) Suppose now that K is a minimal normal subgroup of G. Assume
first that K is a p-group. Then |G/K| < |G| = |G/L|, and since KP = P,
then the theorem is proved.

Assume next that K is a p’-group. Since Ng(P) = P, we have that
Ck(P) = 1. Since § € Irr(K) is P-invariant, we necessarily have that
0 = 1k by the Glauberman correspondence (see Theorem 1.17). But in this
case, K < ker(y), and we can work in the group G/K.

Hence, G has no abelian normal subgroup. In particular, F(G) = 1.
We have E = F*(G) = E(G) = Cg(E(G)) (see Theorem 6.5.8 of [KS04]).
Since Cg(E) = Z(FE) < G, it follows that Z(E) = 1 and so E is product of
subnormal nonabelian simple subgroups. By the main result of [GMNO04],
p = 3 and G has a composition factor of type PSLy(3%"). By Lemma 3.1,
E =5 x...x S5, is a direct product of non-abelian simple groups S; =~
PSLs(q;), where ¢; = 33" with a; > 1.

(c) Let @ = P n E € Syl,(E) and write @ = Q1 x ... x Q, with
Qi € Syl,(S;). Since P is self-normalizing in E'P, by part (ii) of Lemma
2.1 of [NTTO7], we have that Cn(q)/(P) = 1. This in turn implies,
by Lemma 3.9, that CNSi(Qi)/Qi(Pi) =1 for P, = Ps,. By Lemma 3.2, it
follows that P; must induce the full subgroup Cse; of field automorphisms of
S;. By Remark 3.5, we see that the P;-invariant irreducible characters of .S;
are o; = lg;, the Steinberg character Stg, of degree g; and the two cuspidal
characters 7} and 7/’ of degree &(q;—1). Furthermore for each o € {cv;, 0, n'},
P; fixes a unique irreducible constituent of «,, appearing with multiplicity
one, by Lemma 3.4. We denote by «* this constituent, so that the map *
defines a bijection from the Pj-invariant irreducible characters of p’-degree
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of S; onto the P;-invariant irreducible characters of Q;, again this is Lemma
3.4.

Since the theorem holds for (G, E), xgp = x*+ A, where x* € Irry (EP)
and all irreducible constituents of A have degree divisible by p. In particular,
0 = (x*)g is irreducible. Write

=01 x---x0,

with 6; € Irr, (S;). Since 6 is P-invariant, it follows that 6; is Pj-invariant
of p’-degree, and so 6; € {a;,n},n!}. As mentioned above,

(0:)q, = 07 + di,

where 0 € Irr(Q;) is Pi-invariant, and 6; is a sum of non-Pj-invariant irre-
ducible characters of @);. Setting

0 =067 % x6,

we see that each irreducible constituent of g — 6 is non-P-invariant and so
must lie under an irreducible character of P of degree divisible by p. But
p does not divides x*(1). Hence (x*)p contains a linear constituent which
must be unique and lies above 0. Denote this constituent by 6*. We have
shown that every irreducible constituent of (x*)p — 6* is of degree divisible
by p, whereas 6*(1) = 1.

(d) It remains to show that every irreducible constituent of Ap has
degree divisible by p. Assume the contrary: Ap contains a linear constituent
A, and write

AQ = A1 X - X Ay

with \; € Irr(Q;). Let v € Irr(EP) be an irreducible constituent of A that
contains A upon restriction to P. Also, let

B=p01x-xpByelr(F)

be lying under v and above A\g. Since EF'<tG, we have that 3 is G-conjugate
to 8. Note that the §;’s are P;-invariant of degree not divisible by p, thus
Bi € {ai,mi,n!}. As shown in (c), the restriction (53;)¢g, contains a unique
P;-invariant irreducible constituent 5, of multiplicity one. Denoting

B =pf % x B,

we see that no irreducible constituent of Bg — B can be invariant under P.
But A\ lies under 3 and is P-invariant. Hence \g = B and \; = BF. Now
we consider two cases.

Case 1: (B is not P-invariant. In this case, there is some g € P such
that 59 # . Then (9 lies above (Ag)Y = Ao and under . Writing 9 =
By x ... x Bl with g} € {a;,n},n!'} for 9 is G-conjugate to 6 and so the f;
are P-invariant. Arguing as above, we see that 5 = \; = (8/)*. By Lemma
3.4, the map o — a* is a bijection. It follows that 8; = 5} and so 8 = 89, a
contradiction.
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Case 2: [ is P-invariant. Then, by Theorem 3.6, S extends to B €
Irr(EP). Since v lies above 3 and p divides (1), we have that v = Bu,
where p € Irr(P/Q) is considered as a character of EP/E and p divides
wu(1). Certainly, pA is irreducible over P and non-linear. On the other hand,
as shown above, every irreducible constituent of

(v — uN)q = nobq — neB = (1) - (8o — B)
is non-P-invariant and so must lie under an irreducible character of P of
degree divisible by p. Thus the degree of every irreducible constituent of

vp — pA is divisible by p. Consequently, A cannot be a constituent of vp, a
contradiction. O

Theorem E is now a corollary of Theorem 3.10.

COROLLARY 3.11. Let G be a finite group, let p be an odd prime and let
P € Syl,(G). Suppose that P = Ng(P). If x € Irry (G), then

xp=x"+4,

where x* € Irr(P) is linear and A is either zero or A is a character whose
irrreducible constituents have all degree divisible by p. Furthemore, the map
X — x* is a natural bijection Irry (G) — Irr(P/P’).

ProOF. The first part follows from considering L = 1 in Theorem 3.10.
Let A € Irr(P/P’). Then

)\G =ai1x1+ -+ apXn,

where the a;’s are natural numbers and x; € Irr(G). Since A%(1) = |G : P,
some x; must have degree not divisible by p. So x; € Irr,y(G). By Theorem
3.10, (xi)p = (xi)* + A, where (x;)* is linear and no irreducible constituent
of A is linear. However, \ is a linear constituent of (x;)p, and so (x;)* = A.
Thus, * is surjective. By the main theorem of [GMNO04] and Theorem A
of [IMNO7], we have that |Irr, (G)| = [Irr(P/P’)|. Hence, the natural map
* defines a bijection. O

We finish this section with an application of Theorem E. We obtain
the following characterization of groups having a self-normalizing Sylow p-
subgroup, for an odd prime p.

COROLLARY 3.12. Let G be a finite group, let p be odd, and let P €
Syl,(G). Then Ng(P) = P if and only if

(1p)% =1¢ +E,

where = is either zero or a character whose irreducible constituents all have
degree divisible by p.

PRrROOF. One implication follows from Corollary 3.11. Assume now that
(1p)¢ =1g +E,
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where = is either zero or a character whose irreducible constituents all have
degree divisible by p, but N = Ng(P) > P. Then there exists a non-
principal character v € Irr(N/P), which can be viewed as a character of
N. Since v has p/-degree (because N/P is a p/-group), it follows that &
possesses an irreducible constituent x € Irry (G). Now, x lies over v # 1y
and therefore y # 1 lies over 1p, a contradiction. U

It is remarkable that Corollary 3.12 gives the exact opposite of a result
by G. Malle and G. Navarro in [MIN12]: a finite group G has a normal
Sylow p-subgroup if and only if all irreducible constituents of (1p)* have
degree not divisible by p.

The conclusion of corollary 3.12 is false for p = 2, as shown by G = G5:
in this case (1p) contains the trivial character of G' and an irreducible
character of degree 5.

3.5. The p-decomposable Sylow normalizer case

Let N be a group and let p be a prime. We say that NV is p-decomposable
if N = P x X, where P € Syl,(N). Suppose that the group G has a p-
decomposable Sylow p-normalizer for an odd prime p (by Schur-Zassenhaus’
theorem [Isa08, Thm. 3.5] this is equivalent to Ng(P) = Cg(P)P for
P € Syl,(G)). Then we can prove the following.

THEOREM 3.13. Let G be a finite group, let p be an odd prime, and let
P € Syl,(G). Suppose that Ng(P) = PCg(P). If x € Irry (G) lies in the
principal block, then
XNg(P) = X"+ A,
where x* € Irr(Ng(P)) is linear in the principal block, and A is either zero
or A is a character whose irreducible constituents all have degree divisible
by p. Furthermore, the map x — x* is a bijection

lrryy (Bo(G)) — Irry (Bo(Na(P))),
where Irryy (Bo(G)) is the set of irreducible characters in the principal block

of G of degree not divisible by p.

Theorem 3.13 is the main result of this section. We begin by proving
Theorem 3.14 below. Theorem 3.14 extends a classical result by J. Thomp-
son (see Theorem 3.14 of [Isa08]) and it will be key for us later in this
section.

THEOREM 3.14. Let G be a group, let p be a prime, and let P € Sylp(G).
Suppose that Ng(P) = P x X. If p is odd or G is p-solvable, then X <
Oy (G). In particular, if p is odd or G is p-solvable and also Ng(P) =
PCg(P), then Oy (Ng(P)) < Oy (G).

PROOF. We argue by induction on |G|. If L< G, then

N,.(PL/L) = Ng(P)L/L = PL/L x XL/L.
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Hence, if L > 1, then we have that XL/L < O, (G/L). In particular, we
may assume that O, (G) = 1. Now, suppose that N = O,(G) > 1. Then
XN/N < Oy (G/N) implies that X < O,y (G) = M. Since [X,P] = 1,
then [X, N] = 1. By Schur-Zassenhaus theorem [Isa08, Thm. 3.5], N has
a complement in H in M, similarly Z(N) has a complement K in Cps(N)
which must be contained in some conjugate HY of H. Since K <« HY it
follows that K < M, so K < O, (M). However, using that O, (G) = 1, we
have that Cp/(N) = Z(N) x Oy (M) = Z(N), and we conclude that X =1,
in this case. Hence, we may assume that G is not p-solvable, and that p is
odd.

Now, let N be a minimal normal subgroup of G. By [GMNO04], we
have that N = S1 x --- x S, where {S1,...,S;} are transitively permuted
by G and S; = S = PSL2(3%). Now PA N = (P n S1) x --- x (P n S).
Fix some index i. Since [P, X] = 1, then [Q;, X] = 1, where 1 < Q; =
P n S; € Syl3(S;). Now, if € X, then we have that (5;)* = S; for some j.
However Q7 < SY nS; = Sj n S;, so we conclude that X < N¢g(5;) for all
i with [X,Q;] = 1. Let Y; = XCg(S;)/Ca(Si), which is a 3'-subgroup of
Aut(S;) centralizing the Sylow 3-subgroup @; of S;. By Lemma 1.5, Y; =1,
whence X < Cg(S;) for all i. Thus X < Cg(N) for every minimal normal
subgroup. Since F(G) = 1, then F*(G) = E(G) = E. Since Z(FE) = 1, then
E is semisimple and Cg(F) = 1 by Theorems 9.7 and 9.8 of [Isa08]. Now E
is a direct product of non-abelian simple groups K; and the normal closure
of K; is a minimal normal subgroup of G (by Lemma 9.17 of [Isa08], for
instance), and we conclude that X < Cg(E) = 1, as desired.

Finally, since Cg(P) = Z(P) x Oy (Ng(P)) (by the Schur-Zassenhaus
theorem [Isa08, Thm. 3.5)), it follows that if Ng(P) = PCg(P), then

Ng(P) = P x Oy (Ng(P)),
and we apply the first part of the theorem. O

Note that the conclusion of Theorem 3.14 is not true for p = 2: If
G = Eg(11) and P € Syly(G), then Ng(P) = P x C5, cf. [KMO03, Theorem
6(c)].

Let G be a group and let p be a prime. We denote by G° the set of
p-regular elements of G (those elements whose order is not divisible by p).
For the purpose of this exposition, we define the irreducible characters in
the principal (p)-block of G as the set of x € Irr(G) satisfying

Z x(z) # 0.

zeGO
We write Irr(By(G)) to denote the set of the irreducible characters of G that
lie in the principal block of G. (See Theorem 3.19 of [Nav98]).

THEOREM 3.15. Let N = Oy (G). Suppose that x € Irr(G) lies in the
principal block of G, then N < ker(x) and the corresponding Y € Irr(G/N)
lies in the principal block of G/N.
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PROOF. We notice that € G is p-regular if and only if Nz € G/N is
p-regular. Hence, we can write

G"=Nziu...u Nz

as a disjoint union (the p-regular classes of G in N correspond to the class
of N1in G/N). Let X be a representation afffording y. We can extend X by
linearity to a representation CG — Mat(n, C) which we denote again by X.
We also denote by x the trace CG — C of this representation. Notice that

X(deg agg) = X4ec agx(g) for every 3 s aqg € CG. If X < G, then we
write X = erX x € CG. By hypothesis, we have that X(GO) # 0. Hence,
the matrix X(GY) = X(N)X(w1)+- - -+ X(N)X(2¢) is non-zero. In particular,
X(N) # 0. Notice that for every g e G

X(N)X(g) = X(Ng) = X(gN) = X(9)X(N),
N

so that X(IV) is scalar. We conclude that the trace of X(NN) is non-zero, this
is, 0 # >, v X(n) = |[N|[xn,1n]. Consequently N < ker(). The following
observation

> x(@) = N[ D) x(z)) = Z (Nzj) = [N| >, X(=)
=1 o

€GO z€(G/N)°
proves the second statement of the theorem. O

The proof of the following lemma is a straightforward consequence of
Theorem 3.15.

LEMMA 3.16. Suppose that N is a normal subgroup of H, with N <
Oy (H). Suppose that H = NU for some U < H. Then restriction de-
fines a bijection between the characters in the principal block of H and the
characters in the principal block of U.

As we prove below, in the case where Ng(P) = P, every character of
p'-degree of G lies in the principal block.

LEmMMA 3.17. Let G be a group and let p be a prime. Suppose that
Ng(P) = P where P € Syl,(G). Let x € Irr(G). Then

3 (@)= x(1) mod p

€GO
In particular, if x € Irr(G) has p'-degree, then x lies in the principal block
By(G) of G.

PROOF. Let P act on G° by conjugation. The set of fixed points under
this action is G° n Cg(P) = 1 by the assumption Ng(P) = P. Since the
orbits corresponding to non-trivial elements of G° have length divisible by
p we have that

2 x(z) = x(1) mod p.

€GO
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52 3.6. The p-solvable case

The second statement follows from the definition of Irr(By(G)). O

We can finally prove Theorem 3.13. The key to do that is to reduce the
proof to the self-normalizing case and then apply Theorem E. This reduction
is possible fundamentally thanks to Theorem 3.14.

ProOOF OF THEOREM 3.13. Let G be a counterexample to the first part
of the theorem with |G| as small as possible. Let N = O,(G). Using
Theorem 3.14 we can write Ng(P) = Px X, where X < N. Write G = G/N
and use the bar convention. Hence P = PN/N € Syl (G) and Ng(P) =
P x X = P, by elementary group theory. By Lemma 3.15, N < ker(y). If
N > 1, then considering x as a character of G, by inductive hypothesis we
have that

XNg(P) = Xp = X"+ A,

where the character x* is an irreducible character of p’-degree lying in the
principal block of P = PN/N and A is either zero or a character of PN/N
such that every irreducible constituent of A has degree divisible by p. Now,
Lemma 3.16 applies and we are done in this case. Hence, we may assume
N = 1. In particular, Ng(P) = P and the first part of the statement follows
from Theorem 3.10.

Now, we prove that our map x — x* is a bijection. By Theorem 3.14
we have that O, (Ng(P)) < Oy (G) and by Theorem 3.15 we have that
O, (G) is contained in the kernel of every x € Irr(By(G)). Modding out by
O, (G), we may assume that O, (G) = 1 and so Ng(P) = P. By Lemma
3.17 every irreducible character of p’-degree of G lies in Irr(By(G)). We have
that Irry (Bo(G)) = Irryy (G) and Irry (Bo(P)) = Irry (P). By Lemma 3.1 all
the non-abelian composition factors of G' are of type PSLy(3%") with a > 1.
We know by Theorem A of [IMINO07] that the McKay conjecture holds for
G. Hence Ity (G)| = |Irry (P)] = |Irr(P/P’)|. Now, if A € Irr(P) is linear,
then some irreducible constituent x of \¢ has p/-degree. Now, yp contains
A and by the first part of the proof it must be x* = A. Our map y — x™ is
surjective, and therefore injective. O

It is entirely possible that, under the hypotheses of Theorem 3.13, a
natural correspondence exists between all the characters in Irry (G) and
Irryy (Ng(P)) (not only the characters in the principal blocks). We have
been able to find it for p-solvable groups, see coming Section 3.6.

3.6. The p-solvable case

We finish this chapter by proving Theorem F. Our correspondence in Theo-
rem F extends the Glauberman correspondence (see Theorem 1.17) and also
the correspondence in Theorem 3.13. We shall use B -theory, for which we
refer the reader to Section 1.4.
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3. McKay natural correspondences of characters 53

LEMMA 3.18. Suppose that L < G, P € Syl (G) and Ng/(PL/L) =
PL/L. Assume that G/L is p-solvable. Let 6 € Irr(L) be P-invariant and
p'-special. Then there exists a unique 6 € Irr(G|6) such that 0 is p'-special.

PROOF. We argue by induction on |G : L|. Let K /L be a chief factor of
G, and notice that G/K has self-normalizing Sylow p-subgroups, by elemen-
tary group theory. Assume first that K /L is a p-group, and let n € Irr(K10)
be the unique p’-special character lying over 6, by using part (b) of Propo-
sition 1.21. By uniqueness, 7 is P-invariant, and by induction, there is a
unique p’-special character 7 € Irr(G) that lies over 7 (and therefore over 8).
Now, if « is any other p’-special character of G lying over 6 and 1 € Irr(K)
lies under v and over #, we have that 1 is p’-special by part (a) of Proposi-
tion 1.20, and therefore 1) = 1, by uniqueness. But in this case, v = 7, by
using the inductive hypothesis.

Suppose finally that K/L is a p’-group. Then Cg/r(PL/L) = 1 us-
ing that PL/L is self-normalizing and coprime action. Hence, by Problem
(13.10) of [Isa76], there exists a unique P-invariant 7 € Irr(K16). Also, 7
is p/-special by part (a) of Proposition 1.21. Since |G : K| < |G : LJ|, by
induction there exists a unique p’-special character 7 of G lying over 7 (and
therefore over 6). Suppose now that v € Irr(G) is any other p'-special char-
acter lying over . By Lemma 2.3, let ¢ € Irr(K) be P-invariant under ~,
and, by Theorem (13.27) of [Isa76], let p € Irr(L) be P-invariant under ¢.
Then p and 6 are P-invariant lying under -, so p = 6 by Lemma 2.3. Then
¢ = 7 by the uniqueness of 7, and hence v = 7 by induction. [l

We translate the statement of Theorem 1.26 for p-solvable groups.

REMARK 3.19. Let G be a p-solvable group and let P € Syl,(G). For
x € Irr(G), the following are equivalent:

(a) x is a satellite of some ) € By(G) of p'-degree.

(b) There exists a linear character A\ of P and a p’-special character
a € Irr(W), where W is the maximal subgroup of G' to which A
extends, such that y = (aS\)G, where )\ is the unique extension of A
to W with p-power order.

PROOF. Assume that y is a satellite of 1) € B,(G) of degree not divisible
by p. Then there exists a nucleus (W,~) for ¢ and a p’-special character
o € Trr(W) such that y = (ay)®. Notice that x(1) = |G : W]a(1)y(1) is
a p-number. Hence, we have that v(1) = 1 and W contain a full Sylow
p-subgroup of G. We may assume P < W, by conjugating the pairs (W, ~)
and (W, a) with an element of G. Let A = vp € Irr(P). Then + is the
unique extension of A to W with p-power order. The fact that v € Irr(G)
guarantees that W is maximal with the property that A extends to W.

To prove the converse, just notice that (\)¢ € B,(G) by Theorem 2.2 of
[INO1]. O
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54 3.6. The p-solvable case

Recall that whenever a group A acts on the irreducible characters Irr(G)
of a group G, we write Irr4(G) to denote the set of fixed characters of G
under the action of A. We can prove Theorem F, which we restate here.

THEOREM 3.20. Let G be a p-solvable group, and let P € Syl,(G).
Suppose that Ng(P) = PCqg(P), and let L = Oy (G). Then for every
0 € Irrp(L) and X € Irr(P/P') linear, there is a canonically defined

Ax0 e Irry (G).
Furthermore, the map
Irr(P/P") x Irrp(L) — Irry (G)
given by (X, 0) — X\ x 0 is a bijection. As a consequence, if 0* € Irr(Cp(P))
is the Glauberman correspondent of 6 € Irrp(L) (see Theorem 1.17), then
the map
AX0F > Ax0

is a natural bijection Irry (Ng(P)) — Irry (G). Also, if 0 = 11, and X €
Irr(P/P'), then X\ x 0* is the unique linear constituent of (A * 0)N (p)-

PROOF. By using Theorem 3.14, write Ng(P) = P x X, where X =
CL(P). Let A € Irr(P) be linear and let # € Irrp(L). Since P n L = 1,
we trivially have that A\ extends to PL. By Theorem 2.11, there exists a
maximal subgroup P < W < G such that A\ extends to W. Hence PL < W.
Now, by elementary character theory, let Ae Irr(W) be the unique linear
character of p-power order that extends A. Since Ny, (PL/L) = PL/L, by

Lemma 3.18, there exists a unique p/-special § € Irr(W) lying over 6. By

Theorem 2.2 of [IN01], the pair (W, }) is a nucleus for (A\)¢ € Irr(G). Thus,
by Theorem 1.26 we have that

Ax 0= (0N e Irr(G)..

Notice that A * # has p’-degree, because 0 has p/-degree and |G : W] is not
divisible by p. (We notice for the record that (A » @)y contains X, and
therefore, when restricted to L, we have that (A x 0) lies over . It is not in
general true that A x 6 lies over A, on the other hand.)

We have now defined a map

Irr(P/P') x Irrp(L) — Irry (G)

given by (A, 0) — A x 6.

Next we show that our map is surjective. Let x € Irry (G). By Theorem
1.27 (see also Remark 3.19), we have that there exist a linear character
§ € Irr(P) and a p'-special character « € Irr(U), where U is the maximal
subgroup of G to which § extends, such that

X = (00),
where the order of § is a p-power and 5 extends 4. Now, «j contains a
(unique) P-invariant character p € Irrp(L) by Lemma 2.3, and it follows
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that « is the unique p’-special character of U lying over p by Lemma 3.18.
It follows then that y =  * 4, and therefore, that our map is surjective.
Recall that the Glauberman correspondence provides a natural bijection

Irrp(L) — Irr(CL(P)) .

Since the McKay conjecture is true for p-solvable groups (see for instance
[IMNOT7]) we have that

[ty (@) = Iy (NG(P))| = [ler(P/P')|[Iex(C(P))| = [lrx(P/P')|[lrxp (L))
It then follows that our map is bijective.

In the case where 6 = 1y, for every A € Irr(P/P’), we have that A x 6 =

(A€, where A is a p-special extension of X to a subgroup W < G with the
property that A does not extend to any subgroup of G properly containing

W. Let T be a set of representatives of the double cosets of Ng(P) and W
in G with 1 € T. By Mackey Lemma 1.8, we have that

(S‘G)Ng(P) =Ax1+ Z ((S‘t)NG(P)th)NG(P)'

1#teT
By the first part of the proof ((;\t)NG(p)ﬁWt)NG(P) € Irr(Ng(P)), and so
A x 1 is the unique linear constituent of (A 0)n(p)- O
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CHAPTER 4

Preliminaries on modular character theory of
finite groups

The first part of this chapter is the modular version of Chapter 1. Our aim
is to collect the basic results on (p-)Brauer characters that will be used later
in this work, namely in Chapter 5. However, since the results contained
in Chapter 5 are of a more technical nature (than the rest of results of
this work), in the second part of this chapter we shall develop some new
techniques on Brauer characters.

In Section 4.1, we introduce Brauer characters and we focus on properties
that Brauer characters share with ordinary characters. In Section 4.2, we
study a modular version of the notion of central isomorphism of character
triples firstly defined in [NS14] and later developed in [Spa16]. In Section
4.3, we introduce the concept of fake Galois action on the set of Brauer
irreducible characters IBr(IN) of a group N. This latter definition will help
us to avoid some difficulties in Chapter 5 originated from the fact that, in
general, the Galois group Gal(Q|x|/Q) does not act on IBr(V). (See Section
5.4 for the motivation of the definition of fake Galois action.)

4.1. Brauer characters (as characters)

We fix a prime p and a maximal ideal M in the ring R of algebraic integers
with p e M. We let F' = R/M and write *: R — F' to denote the natural
ring homomorphism. This homomorphism can be extended to S = {r/s | r €

R, s e R\M} by
(r/s)" =r*(s*)7",

for every r € R and s € R\M. Let U < R be the multiplicative group
of roots of unity of order not divisible by p, so that U = {¢ € C | ¢&¥ =
1 for some integer k not divisible by p}.

LEMMA 4.1. The restriction of * to U defines an isomorphism U — F*
of multiplicative groups. Also F' is an algebraically closed field of character-
1stic p.

ProoOF. This is Lemma 2.1 of [Nav98]. O

Let g € G. We say that x is p-regular if p does not divide o(g). We
recall that GV denotes the subset of p-regular elements of G. Suppose that
X: G — GL,(F) is an F-representation of the group G. If g € G, then
by Lemma 4.1, the eigenvalues of the matrix X(g) are &, ...,& € F* for
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58 4.1. Brauer characters (as characters)

uniquely determined &1, ...,&, € U (because F is algebraically closed). We
define p: G — C by ¢(9) = & + -+ + &,. Then we say that ¢ is the
Brauer character afforded by X. (Brauer characters are also called mod-
ular characters.) The degree of ¢ is ¢(1), which is the degree of any
F-representation affording . Notice that similar F-representations afford
the same Brauer characters and Brauer characters are constant on conjugacy
classes.

We say that ¢ is irreducible if an F-representation X of G affording
is irreducible. We denote by IBr(G) the set of irreducible Brauer characters
of G. Unlike ordinary characters, the degrees of the irreducible Brauer
characters do not divide, in general, the order of the group (PSLa(7) for
p = 7 has an irreducible Brauer character of degree 5).

We define the field of values Q(p) of ¢ € IBr(G) as Q(p(g) | g € G°).
Notice that Q(p) = Qe < Qa-

Write cf(GY) to denote the C-vector space of class functions on G°
(functions §: GO — C constant on conjugacy classes of G°). Of course the
dimension of cf(GP) is equal to the number of conjugacy classes of p-regular
elements of G. Brauer characters are class functions on G°.

If H < G and ¢ is a Brauer character of (G, then we denote by ¢y the
restriction of ¢ to H°. The map ¢ is a Brauer character of H.

As happens with ordinary characters, Brauer characters are nonnegative
integer linear combination of irreducible Brauer characters.

THEOREM 4.2. Let G be a group. Then IBr(G) is a basis of cf(G°).
Moreover, 1 € cf(G°) is a Brauer character of G if and only if

w = 2 AP,

pelBr(G)
where a, € N.

PRrROOF. See Corollary 2.10 and Theorem 2.3 of [Nav98|. O

The nonnegative integer a,, in the decomposition of ¢ in Theorem 4.2 is
called the multiplicity of ¢ in ¢. If a, # 0, then we call ¢ a constituent
of 1.

By Theorem 4.2, the number |IBr(G)| equals the number of conjugacy
classes of p-regular elements of G. Also, a Brauer character ¢ is irreducible
if and only if ¢ cannot be written as o + 8 for Brauer characters o and .

As a consequence of Theorem 4.2, if ¢ € IBr(G), then any two irreducible
representations affording ¢ are similar. Hence, ¢ uniquely determines an F-
representation of G up to similarity.

If x € Irr(G), we denote by x° the restriction of y to G°. By Corollary
2.9 of [Nav98], X" is a Brauer character of G. Hence

XO = Z dxap@a
¢€IBr(G)
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4. Preliminaries on modular character theory of finite groups 59

for suitable nonnegative integers d,,. The nonnegative integers d,, in the
above decomposition are called the decomposition numbers of .

The study of Brauer characters is more interesting when p divides |G]|
because of the following.

THEOREM 4.3. Let G be a group. If p does not divide |G|, then IBr(G) =
Irr(G).

PROOF. This is Theorem 2.12 of [Nav98]. O

As in the ordinary case, if ¢ and 6 are Brauer characters of GG, then the
product @ defined by

v0(9) = »(9)0(9)
for every g € G¥ is a Brauer character of G (see Theorem 2.23 of [Nav98]).

Let ¢ € IBr(G) and let n = ¢(1). Since ¢ uniquely determines an irre-
ducible F-representation X up to similarity, then ker(X) is uniquely deter-
mined by ¢. We can define the kernel of ¢ as ker(p) = {g€ G | X(g9) = I, }.
As in the ordinary case, if N <« GG, one can identify the irreducible Brauer
characters of G containing N in their kernel and the irreducible Brauer char-
acters of the quotient group G/N. Usually we identify these sets and we
think of IBr(G/N) as a subset of IBr(G).

We recall that O,(G) is the maximal normal p-subgroup of G.

LEMMA 4.4. Let G be a group. If ¢ € IBr(G), then O,(G) < ker(p). In
particular, we can identify IBr(G/O,(G)) with IBr(G).

PROOF. See Lemma 2.32 of [Nav98]. O

Let ¢ € IBr(G). The fact that ¢ uniquely determines up to similarity
an F-representation X of G allows us to define the determinantal order o(yp)
of ¢ as in the ordinary case. The determinant det(X): G — F* of X is
a homomorphism. We write o(¢) to denote the smallest positive integer k
such that det(X)* = 1.

As for ordinary characters, every isomorphism of groups a: G — H
defines a bijection between IBr(G) and IBr(H), by defining for ¢ € IBr(G)
the map p® given by ¢%(g%) = ¢(g) for every g € G°. In particular, if
N < G, then G acts on IBr(/V) via the action of conjugation of G on N.

Induction and restriction are essential features also in modular character
theory. We have already noticed that the restriction of a Brauer character
to a subgroup is again a Brauer character. Let H < G and let € cf(H).
We define for every = € G, the function

1 : _
0(w) = 7 3, Blowg ™)

geG

where 0(y) = 0(y) if y € H® and 0 otherwise. Then 6% € cf(G). In fact, we
have the following.
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THEOREM 4.5. Let H < G and let ¢ be a Brauer character of H. Then

©% is a Brauer character of G.

PROOF. This is Theorem 8.2 of [Nav98]. O

As for ordinary characters, if H < G and 0 € IBr(H), we write IBr(G|0) =
{¢ € IBr(G) | ¢ is a constituent of A%} (this set is non-empty by Corollary
8.3 of [Nav98]). If ¢ € IBr(G|f) we will say that ¢ lies over # or that 6
lies under ¢. If ¢ € IBr(G), then we write IBr(¢p) to denote the set of
irreducible Brauer characters which are constituents of the Brauer character
YH-

The main difference between ordinary and modular characters with re-
spect to the induction-restriction process is that in the modular case we do
not have Frobenius reciprocity. For H < G, this means that if § € IBr(H)
and ¢ € IBr(G), then the multiplicity of ¢ in # is not necessarily equal to
the multiplicity of 6 in ¢gr. In fact, it can happen that ¢ is a constituent of
0% but 6 is not a constituent of ¢g and viceversa (see the discussion after
Corollary 8.3 of [Nav98| for these extreme examples).

Despite this fact, restriction-induction techniques with respect to normal
subgroups work exactly as well as for ordinary characters.

THEOREM 4.6. Let N< G. If 0 € IBr(N) and ¢ € IBr(G), then ¢ is a
constituent of 0C iff 0 is a constituent of ¢n. In this case,

¢
pN=¢ Z 0",
i=1
for some e = 1, where x1 =1 and 0™, ...,0% are the distinct G-conjugates
of 0.
ProOF. This is Corollary 8.7 of [Nav98]. O

Let N< G. If § € IBr(N), then we write Gy = {g € G | #9 = 0} to denote
the inertia group of ¢ in G. For H < GG, we say that 0 is H-invariant if
H < Gy.

THEOREM 4.7 (Clifford correspondence). Let N <1 G and let 6 € IBr(G).
Then the map 1 — ¢ is a bijection from Irr(Gyld) onto IBr(G|6).
PRrROOF. This is Theorem 8.9 of [Nav98]. O

In view of Theorem 4.6 and Theorem 4.7, we see that there is a Clif-
ford theory for modular characters. Also, Gallagher’s Theorem works for
modular characters.

THEOREM 4.8. Let N<1 G and let ¢ € IBr(G). If piy = 6 € IBr(N), then
the characters B for p € IBr(G/N) are irreducible, distinct for distinct (3
and they are all the irreducible constituents of 6.

PRrROOF. See Corollary 8.10 of [Nav98]. O
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Next, we collect some extendibility criteria. If H < G and 0 € IBr(H),
then we say that 6 extends if there is ¢ € IBr(G) such that g = 6.

THEOREM 4.9 (Green). Let N < G and let § € IBr(N). If G/N is a
p-group, then there exists a unique ¢ € IBr(G|0). Furthermore, oy is the
sum of the distinct G-conjugates of 0. In particular, if 0 is G-invariant then

oN =0,
PROOF. See Theorem 8.11 of [Nav98]. O

The following criteria are modular analogues of well-known results on
ordinary characters.

THEOREM 4.10. Let N < G. Suppose that G/N is cyclic. If § € IBr(N)
is G-invariant, then 0 extends to G.

PROOF. See Theorem 8.12 of [Nav98]. O

THEOREM 4.11. Let N < G and let § € IBr(N) be G-invariant. If 0
extends to Q for every Q/N € Syl (G/N) and for every prime q # p, then 0
extends to G.

PROOF. See Theorem 8.29 of [Nav98]. O

THEOREM 4.12. Let N < G and let 0 € IBr(N) be G-invariant. If one
of the following holds:

(a) (IN],|G : N|) =1, or

(b) (o(8)8(1),1G : N|) = 1,
then 6 extends to G.

PROOF. See Theorem 8.13 and Theorem 8.23 of [Nav98|. O

Notice that part (a) does not follow from part (b) since, as we said, the
degrees of irreducible Brauer characters do not divide in general the order
of the group.

4.2. Isomorphisms of modular character triples

In this section we start by introducing the theory of projective representa-
tions we will later need. We will follow Chapter 8 of [Nav98] since we are
interested in the modular case, but this theory works exactly the same both
in the ordinary and the modular case (a reference for the ordinary case is
Chapter 11 of [Isa76]). After that, we will introduce the notion of centrally
isomorphic modular character triples, which is a modular analogue of the
notion of centrally isomorphic character triples introduced in [NS14] for
ordinary character triples. (Hence the proofs of most of the results concern-
ing the construction of centrally isomorphic modular character triples will
follow from arguments contained in [NS14] and [Sp&16].)

If N< G and 0 € IBr(NN) is G-invariant, then the triple (G, N, 0) is called
a modular character triple. Every modular character triple (G, N, #) has
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62 4.2. Isomorphisms of modular character triples

associated an (F-)projective representation P (up to similarity and up to
product by some function p: G — F*) satisfying certain properties. (See
Theorem 4.13 and Remark 4.15 below.)

A projective representation P of G is a map P: G — GL, (F) satis-
fying that for every g,¢' € G

P(9)P(g') = alg,9))P(99"),
where a(g,g’) € F*. We say that n is the degree of P. This definition
yields a function a: G x G — F*, which is the factor set (see page 164 of
[Nav98|) associated to P.
The notions of similarity and irreducibility of projective representations
are analogous to those on representations.

THEOREM 4.13. Let (G, N,0) be a modular character triple. Let X be
an F-representation affording the Brauer character 6. Then, there exists a
projective representation P of G, such that Py = X and the factor set o
associated to P satisfies

a(g,n) =1=a(n,g),
for every g € G and n € N. Moreover, if Q is another such projective

representation, then there exists a map p: G — F* with p(1) = 1 which is
constant on N-cosets in G and such that Q@ = uP.

PROOF. See Theorem 8.14 of [Nav98]. O

The factor set « associated to P in Theorem 4.13 can be seen as a map
defined on G/N x G/N (see the remarks after Theorem 8.14 of [Nav98)).

DEFINITION 4.14. Let (G, N, ) be a modular character triple. We say
that a projective representation P of GG is associated with 6 if:

(i) Pn is a representation affording 6, and
(ii) the factor set v of P satisfies

a(g,n) =1=a(n,g)
for every g € G and n e N.
Notice that if (G, N, #) is a modular character triple and P is a projective

representation of G associated to 6, then condition (ii) in Definition 4.14
implies that for every g € G and ne€ N

P(gn) = P(g)P(n) and P(ng)=P(n)P(g).

REMARK 4.15. Let (G, N, 0) be a modular character triple. By Theorem
4.13, projective representations of G associated with 6 do always exist. In
fact, it is easy to prove that if P and Q are two projective representations
of G associated with 6, then there exists a map p: G — F* with pu(1) =1
which is constant on cosets of N and such that Q is similar to uP. Let «
be the factor set of P. Then the factor set 5 of Q is given by

B@gq:mwmw
’ 1(99')
Universitat de Valencia Carolina Vallejo Rodriguez

a(g,9)




4. Preliminaries on modular character theory of finite groups 63

for every g,¢' € G. (This latter fact follows from straightforward calcula-
tions.)

We can study the Clifford theory of a character triple (G, N,6) via
projective representations associated to 6 and projective representations of
G/N. We will view the projective representations of G/N as projective
representations Q of G satisfying Q(gn) = Q(g) for every g € G and n € N.

Let P be a projective representation associated with 6 with factor set
a (recall we can consider o as a function defined on G/N x G/N). Let
N < J < G and let v denote the restriction of the factor set a~! to J/N x
J/N. By Theorem 8.16 and Theorem 8.18 of [Nav98|, if Projz(J/N,~)
is a set of representatives of the similarity classes of irreducible projective
F-representations of J/N with factor set -y, then

Repp(J,0) = {Q®Ps | Q € Projp(J/N,7)}

is a set of representatives of similarity classes of representations affording a
Brauer character in IBr(.J|6).

DEFINITION 4.16. Let (G, N, 0) be a modular character triple. We de-
note by Br(G|0) the set of Brauer characters x of G such that yy is a mul-
tiple of . Hence this is the set of nonnegative integer linear combinations
of IBr(G|6). Let (I', M, ) be another modular character triple and suppose
that 7: G/N — I'/M is an isomorphism of groups. For every N < J < G,
write J7/N = 7(J/N) and suppose that there exists a map o;: Br(J|0) —
Br(J7|p) such that oy yields a bijection IBr(J|¢) — IBr(J7|p). Suppose
further that for every N < K < J < G and for every x,¢ € Br(J|0) the
following hold:

(a) os(x +) =0s(x) + o).
(b) ox(xk) =0s(X)K-
(c) ok (xB) = ok (x)B", for every § € IBr(J/N).

Then we say that (o,7): (G,N,0) — (I, M, ¢) is an isomorphism of mod-
ular character triples.

To define an isomorphism (o, 7) of modular character triples it is enough
to give for N < J < G bijections

oy: IBr(J|6) — IBr(J7|p),

extend these maps using (a) and check that conditions (b) and (c) hold for
every x, ¢ € IBr(J|0).

We strengthen Definition 4.16. Let N < J < G. For ¢ € IBr(J|) and
g =gN € G/N, we define ¢9 € IBr(J9|0) by

Y9 (29) = 1(x) for every x € J.
Note that this is well-defined. We say that a modular character triple iso-
morphism (o, 7): (G,N,0) — (I, M, ) is strong if
(05 ()™ = 00 (W),
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for all g € G/N, all groups J with N < J < G and all ¢ € IBr(.J]0).

From now on, we will work with strong isomorphisms of character triples.
Isomorphisms of modular character triples define an equivalence relation on
modular character triples.

We collect below some examples of (strong) modular character triple
isomorphisms.

LEMMA 4.17. Let (G, N, 0) be a modular character triple.

(a) If «: G — H is an isomorphism of groups, then (G, N, 0) is strongly
isomorphic to (H, M, ) where M = a(N) and ¢ € IBr(M) is the
character defined by ¢(a(n)) = 0(n) for every n e NY.

(b) If M < G and M < ker(0), then (G, N,0) and (G/M,N/M,0) are
strongly isomorphic, where (nM) = (n) for every n e NY.

(c) Suppose that pv: G — H is an epimorphism and that K = ker(u) <
ker(#). Then (G,N,0) and (H, M, ¢) are strongly isomorphic, where
M = p(N) and ¢ € Irr(M) is the unique character of M with
©(u(n)) = 0(n) for every n e NO.

(d) Suppose that there exists some n € IBr(G) such that nn8 = ¢ €
IBr(N). Then (G,N,0) and (G, N, p) are strongly isomorphic.

PROOF. Parts (a) and (b) are particular cases of part (c). To prove
(¢) mimic the proof of Lemma 11.26 of [Isa76]. It is easy to check that
the isomorphism obtained this way is strong. Part (d) is Theorem 8.26 of
[Nav98]. As before, it is straightforward to check that the isomorphism
given by this proof is strong. U

The following result explains how to construct (strong) isomorphisms of
modular character triples via projective representations.

THEOREM 4.18. Let (G, N, 0) and (H, M, 6") be modular character triples
satisfying the following assumptions:
(i) G=NH and M = N n H,
(i1) there exist projective representations P and P’ of G and H associ-
ated to 0 and @', respectively, whose factor sets o and o coincide
via the natural isomorphism 7: G/N — H/M.
For N < J < G, write v = (O[_I)J/NXJ/N. If ¢ € IBr(J|0) is afforded
by Q® Py, where Q € Projp(J/N,~), then let o5(¢) be the Brauer char-
acter afforded by the irreducible representation Q &® P(’ImH. Then the map
oy: IBr(J|0) — IBr(J n H|0') is a bijection. These bijections oy together
with T give a strong isomorphism

(0,7): (G,N,0) — (H, M, 0"
of modular character triples.

PROOF. See the proof of Theorem 3.2 of [NS14]. The fact that (o, 7)
is strong follows from straightforward calculations. O
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In the situation of Theorem 4.18, we say that (o, 7) is an isomorphism
of modular character triples given by P and P’

We are finally ready to define when two modular character triples are
centrally isomorphic.

DEFINITION 4.19. Let (G, N,0) and (H,M,6") be modular character
triples satisfying the following conditions:
(i) G=NH, M =N ~ H and Cg(N) < H.
(ii) There exist a projective representation P of G associated to 6 with
factor set o and a projective representation P’ of H associated to
0" with factor set o’ such that
(ii.1) o|gxg = ¢/, and
(ii.2) for every ¢ € Cg(N) the scalar matrices P(c) and P’(c) are
associated with the same scalar (notice that P(c) and P’(c)
are scalar by Schur’s Lemma [Isa76, Lem. 1.5]).

Let (o,7) be the isomorphism of character triples given by P and P’ as in
Theorem 4.18. Then we call (0,7) a central isomorphism of modular
character triples, and we write

(G,N,0) >p,. (H,M,0).

By the proof of Lemma 3.3 of [NS14], condition (ii.2) in Definition 4.19
is equivalent to

IBr(vc, (n)) = IBr(os(¥)c,v)),

for every ¢ € IBr(J|f) and N < J < G. Definition 4.19 is a modular
analogue of the relation ~. defined in [NS14]. In particular, the fact that
> Br,c defines an order relation on the set of modular character triples and
is thereby transitive follows from the proof of Lemma 3.8 of [NS14].

REMARK 4.20. Suppose that (G, N,0) >p,. (H,M,0"). Then Z(N) <
M. The condition (ii.2) in Definition 4.19 implies that 6 and 6’ lie over the
same \ € IBr(Z(N)).

We are interested in studying how to construct new centrally isomorphic
modular character triples from given ones. In order to do that, we shall
frequently use the following.

LEMMA 4.21. Let (G, N,0) and (H,M,0") be modular character triples
with
(G,N,0) >p,. (H,M,0).

(a) If P is any projective representation of G associated to 6 with factor
set o, then there exists a projective representation P’ of H associ-
ated to 0 with factor set o' such that

(a.1) a|lpgxmg = o, and
(a.2) for every ¢ € Cg(N) the scalar matrices P(c) and P'(c) are
associated with the same scalar.
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(b) If P' is any projective representation of H associated to 0" with
factor set o/, then there exists a projective representation P of G
associated to 0 with factor set o such that
(b.1) a|gxg =/, and
(b.2) for every ¢ € Cg(N) the scalar matrices P(c) and P’'(c) are

associated with the same scalar.

PRrROOF. We first prove part (a). Let Q and Q' be projective repre-
sentations as in Definition 4.19 giving (G, N,0) >pg,. (H,M,0"). In the
situation of (a), by Remark 4.15, there exists a map u: G — F* and a
matrix M € GLg(1)(F') such that P = M~'uQM. Let P! = nQ'. Then P’ is
a projective representation of H associated to 6’ whose factor set certainly
satisfies (a.2). By the second part of Remark 4.15, the factor set of P’ also
satisfies (a.l).

The proof of part (b) is analogous. O

The following nearly trivial observation on centrally isomorphic modular
character triples will be useful later.

LEMMA 4.22. Suppose that (G,N,0) >p,. (H,M,0"). Let T' with N <
G<T and xeT. Then (G*,N*,0%) >p,. (H*, M*,(¢')").

PROOF. According to Definition 4.19 one can obtain projective represen-
tations giving (G*, N*,0%) >p, . (H*, M*,(¢')"), by using the isomorphism
z: G — G” given by g — ¢%, from those projective representations giving

(G,N,0) >pr. (H,M,0"). O

We analyze the behavior of centrally isomorphic modular character triples
with respect to certain quotients.

LEMMA 4.23. Suppose that (G, N,0) >p,. (H,M,0"). Lete: G — Gy be
an epimorphism. Write Ny = €(N), Hy = e(H) and M; = e(M). Suppose
that Z = ker(e) < ker(0) nker(0') and e(Cg(N)/Z) = Cg,(N1). Then

(G1,Nu1,601) >pyrc (Hi, My, 67),

where 01 € IBr(Ny) is such that = 61 o € and 0} € IBr(M;) is such that
0 =0 oe.

PROOF. See the proof of Corollary 4.5 of [NS14]. (Note that there the
stronger assumption Z < Z(G) in [NS14] is only used for the block-theoretic
statements that are not relevant in our context.) (]

Let G; be finite groups for i = 1,2. Of course (G1 x G2)? = GY x
GY. Recall that IBr(Gy x Ga) = {61 x 02 | 0; € IBr(G;)}. (See Theorem
8.21 of [Nav98].) The following lemma tells us how to construct centrally
isomorphic modular character triples using direct and semi-direct products.

If G is a group and m is an integer, then we denote by G™ the external
direct product of m copies of G. The group &,, acts naturally on G™ by

(gla s 7gm)0' = (.gcr*l(l)v s 7gafl(m))'
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THEOREM 4.24. Suppose that (G, N, 0;) >py. (H,M,0;), forl <i<m.
Let @ =6y x -+ x O, e Irr(N™), and §' = 0} x --- x 0/, € Irr(H™). Suppose
that A < &,,, stabilizes 0 and 0'. Then

(G™x A N™,0) >pr. (H™ x A,M™,0).

PROOF. If 0 € &, then 07 = 0,-1(1) X +++ X O,-1(), (evaluate 67 on
elements of the form (1,...,n,...,1) for n € N). Therefore, o fixes 6 if and
only if 0,(;) = 0; for every i € {1,...,m}.

We may certainly assume that N # 1. Notice that (n,1,...,1)7 =
(n,1,...,1) for 1 # n € N if and only if o(1) = 1. Using this for every
i€ {l,...,m}, we check that Cgma(N™) = Cq(N)™ < H™.

Let V; = F%( for each i € {1,...,m}. Write V = Vi ®---®V,. Notice
that if o € A, then V; = V, ;) for every i € {1,...,m}. Let 0 € A. We define a
linear map 6: V — V by 6(v1 ®- - -Quy,) = UJ_1(1)®' * @Ug1(m) forv; € V;,
and extending linearly to all tensors. This defines a group homomorphism
A — GL(V). Let R(0) € GL,(F') be the matrix associated to &, so that

R(0) (M1 ® -+ @ My)R(0) ™" = My(1) @+ ® My
for matrices M; € GLg,(1)(F).
By hypothesis, we have projective representations P; and P] associated
with 6; and 6, giving (G, N, 6;) > gy (H, M, ;). Next, we define a projective
representation P of G x A associated with 6. Set

P((gla s agm)o-) = (731(91) ®--® Pm(gm)) R(U)7
for g; € G and o € A. It is easy to check that the factor set « of P satisfies

a((gla'-'7gm)o-7(gia"'vgm Hal glago—z
for gi,g; € G and 0,7 € A, where «; is the factor set of P; for each
i € {1,...,m}. Analogously, we construct a projective representation P’
of H™ x A associated with #'. Let o] be the factor set of P for each
i€ {1,...,m}. By construction, the factor set o’ of P’ satisfies

o ((hy. .. hw)o, (B, ...k Ha (his Py,

for h;,h}, € H and 0,7 € A. Since o; and o agree on H x H, we have that
a and o satisfy Definition 4.19(ii.1). Recall that Cgmya(N™) = Cg(N)™
hence P and P’ trivially satisfy Definition 4.19(ii.2). O

Let G = G1 be a group, and let o;: G — G; be a group isomorphism
for each i € {1,...,m}, with a1 = idg. Let G = G1 x -+ x Gp,. Then the
symmetric group &,, acts on G in the following way:

(x(fla oo )x%nl)a = ((1,071(1))041’ SR (xafl(m))am)‘
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COROLLARY 4.25. With the previous notation, for each i € {1,...,m},
assume that (G;, Ny, 6;) >pr. (H;, M;,0}), where H; = H%, N; = N% and
M; = M, for some subgroups N, M and H of G. Write H = HyX--xHp,
N = Ny X+ X Ny, and M = My % -+ x My,. Write 0 = 6 x -+ X Oy,
and 0" = 07 x --- x 0,,. Suppose (&) = (Sm)gz. Then

(é X (Gm)é,N, é) > Br.c (FI A (6m)9~aM7é/)

PROOF. Define a: G™ x (&,,); — G % (6,,); by a((g1,---,gm)o) =

(g2,...,9%m)o. Then « is an isomorphism. Write 3 = a™1, 8 = ()%,
0" = (¢")°. By Theorem 4.24 we have that

(Gm X (Gm)g,Nm,H) >Br,.c (Hm X (Gm)g,Mm,el).

Let P and P’ be projective representations giving the above central isomor-
phism. Then it is easy to check that P® and (P’)* give the desired central
isomorphism of modular character triples. O

The following key result is deeper than the others mentioned in this
section so far. It is basically a modular version of Theorem 5.3 of [Spa16]
without taking into account p-blocks. The proof we present is the modular
version of the one given in [NS16].

THEOREM 4.26. Let (G, N,0) >p,. (H,M,8"). Suppose that N < G and
G/CG(N) is equal to G/Cq(N) as a subgroup of Aut(N). Let H < G such
that H > C(N), and H/Cs(N) and H/Cg(N) are equal as subgroups of
Aut(N). Then

(G,N,0) >p. (H,M,0).

PROOF. By assumption we have that H = {x € G | for some h € H, n* =
n' for every n e N}.

We start by proving that G = NH. Let z € G. Then there exists some
g € G such that m* = m9 for every m € N. Since g = hn for some h € H
and n € N, we conclude zn~! € H. Therefore G = NH. Now, we prove that
NAH=M=N nH. The inclusion N n H € N n H is obvious. Assume
now that m € N n H. Hence there is some h € H such that n™ = n" for
everyn € N. Hencemh ™' € Cg(N) < H. Thusne Handne NnH = M.
Therefore N n H < M.

The map 7: G/Cg(N) — G/CG(N) given by 7(zCg(N)) = yCpx(N)
if and only if x and y induce the same conjugation automorphism of NV is
a group isomorphism sending NCg(N)/Cg(N) onto NCx(N)/Ca(N). In
fact, 7(nCq(N)) = nCx(N).

Notice that 6 is G-invariant. This is derived from the fact that 6 is G-
invariant since every element of G acts on IV as an element of G. Similarly
0" is H-invariant.
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By assumption (G, N,0) >p,. (H,M,§"), so there exist projective rep-
resentations P of G associated with 6 with factor set o and P’ of H asso-
ciated with 6" with factor set o such that o/(hy, ha) = a(hi, he) for every
hi,ha € H. Also, there is amap v: Cg(N) — F* such that P(c) = v(c)lp)
and P'(c) = v(c)Iy () for every c € Cg(N). Notice that if A € IBr(Z(N))
lies under 6 and ', then vy affords . Also v(cz) = v(c)v(z) for every
ce Cg(N) and z € Z(N).

In order to construct projective representations P of G associated to
0 and P’ of H associated to ¢’ , we need some ingredients: appropriate
transversals T and T of the NCg(N)-cosets in N and the NCg4(N)-cosets
in G, and a function i: C4(N) — F* playing the role of v for P and P’.

Let T < H be a complete set of representatives of cosets of NCg(N)
in G with 1 € T (we can choose such T because of G = NH). Hence every
g € G can be written as ten for some t € T, ¢ € Cg(N) and n € N. Notice
that ten = tycing if and only if there is some z € Z(N) such that ¢ = ¢y,
c = c1z, and n = z~'ny. By elementary group theory, observe that T is also
a complete set of representatives of cosets of MCq(N) in H.

Since I:I/CG(N) and H/Cg(N) are equal as subgroups of Aut(N), for
every t € T we can choose f € H such that m! = m! for every m € N. Also
we can set 1 = 1. By definition, we have that 7(tCg(N)) = tC4(N). Using
that 7 is a group isomorphism, we have that T = {t | t € T} is a complete
set of representatives of right cosets of NCx (V) in G. Also since T is a
complete set of representatives of cosets of MCg(N) in H, we have that T
is a complete set of representatives of cosets of MCx(N) in H.

Let 7: C»(N) — F* be any function such that 7(cz) = 7(c)v(z) for ev-
ery ce Cxs(N) and z € Z(N). (For instance, write Cs(N) = U;Zl z;Z(N),
and define v(x;z) = v(z).)

We define functions

ﬁi é - GLg(l) (F) and 75/2 I:I - GLgl(l)(F)
by
P(inc) = P)P(n)o(c) and P'(ime) = P'(t)P'(m)i(c),
where t e T, ne N, ce Cs(N) and m e M.

Notice that if tnc = tinici, thent = t1, ¢ = 1z and n = 2~ 'n, for some

z € Z(N), by a previous argument. Then

P(nicr) = P(n)i(er) = P(n)v(2)i(z"te) = P(n)i(c) = P(ne),

using our deﬁAning property for 0. Hence P is Well—deﬁngd. Similarly, one
proves that P’ is a well-defined function. Notice that P(n) = P(n) and
P'(m) = P'(m) for every n€ N and m € M.

We want to show that P and P’ define projective representations of G
and H, associated with # and €', respectively, with factor sets & and &’
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coinciding on H x H, and such that for z € Cx(N) they are associated
with the same scalar. The latter part is obvious by the definition of P
and P’. Let 8 be the factor set associated with P or with P’. We recall
that B(h,n) = 1 = (n,h) for every h € H and n € N and, in particular,
B(h,hInh) =1

Let € G and let n € N. We prove that 75(:Un
x = tmc, where me N and c € C4(N). Then an = ¢

P(xzn) = P(E(mn)e) = P(t)P(mn)o(c) = Pt)P(m)i(c)P(n) = P(z)P(n).

Next, we prove that P(nz) = P(n)P(z). By the comment in the previous
paragraph about the factor set of P, we have that P(n)P(t) = P(t)P(t 'nt).
Then

P(nz) = P(nime)

) = P(z)P(n). Write
(mn)c and

P(tt nime) = P(t)P(E tnt)P(m)d(c)
PPt nt)P(m)i(c) = P(n)P(t)P(m)i(c)

P(n)P(x).

Next we show that P is a projective representation of G. Suppose that
t1,t2,t3 € T, c1,c2,c3 € C4(N), and n1,ng,n3 € N are such that

(tinic1)(fangcs) = t3nges.
Notice that
T(tinitonaCa(N)) = fimitanaCy(N) = t3n3Ch(N) = 7(tsn3Cq(N)) .
Thus t1niteng = tsnse, for some ¢ € Cg(N). Then

P(trinicr)P(fanacs) = P(ting)d(c1)P(tang)(ca)

= P(tintanz)a(ty, t2)0(c1)D(c2)

P(tsnsc)a(ty, t2)0(c1)i(c2)

P(tsns)P(c)a(ts, ¢) " alty, t2)D(c1)i(c2)

= P(tznz)v(ca)u(c)alts, ) alty, t2)D(c1)D(ca)(c3) ™

This implies that Pisa projective representation of G with factor set
a(tinicr, tanocs) = plc)alts, c) ta(ty, ta)D(cr)D(ca)D(e3) Y,

where ¢ is any element of Cg(N) satisfying the equation t1nitong = tsnsc.

The same argument, substituting elements in N by elements in M, shows
that P’ is a projective representation of H with factor set

& (fymacr, tamacy) = p(c)alts, ¢) = o/ (tr, ta)D (1) (c)(e) !,
where ¢ € Cg(N) satisfies tymitamge = tsmsge. It is now clear that both
factor sets coincide on H x H. This finishes the proof. O

Next, we discuss the Brauer characters of a central product of groups
and their relation with centrally isomorphic modular character triples.
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LEMMA 4.27. Let N < G and T; with N < T; < G be such that G/N =
Ti/N x --- x Tp/N. Suppose that [T;,T;] = 1 for every i # j. Given
0 € IBr(N) and ¢; € IBr(T;|0), there is a unique x = 1 - ... ¢ € IBr(G|0)
such that xT, is a multiple of p;. Moreover, the map

IBr(73110) x --- x IBr(T|0) — IBr(G|0)

(01, k) = Q1 ok
1 a natural bijection.

ProOF. This is a natural adaptation of Lemma 5.1 of [IMNO7] to
Brauer characters. g

In the situation described in Lemma 4.27, if ¢; € IBr(71|0),... 0% €
IBr(7%|0), we refer to ¢q - ... - ¢ € IBr(G|6) as the dot product of ¢, ...
Pk

LEMMA 4.28. Let N< H < G. Suppose that (H,N,0) >p,. (K, M,0).
Let Z < G be an abelian group such that Z < Cg(N) and Z "N = Z ~n M.
Then

(HZ,NZ,0-v) >pre (KZ,MZ,0 - v)
for every v € IBryg(Z|\) where A € IBr(0z~nr).

PROOF. See the proof of Proposition 3.9(b) of [NS14] together with
Theorem 4.26. O

The following method for constructing projective representations from
representations given in [NS14] will be useful later in this work. More
precisely, it will be useful to control the values of certain projective repre-
sentations in Section 4.3 (see the proof of Lemma 4.34).

We recall that if e: G — G is an epimorphism with ker(e) = Z, then a
Z-section rep: G — G of € is a map such that eorep = idg and rep(l) = 1.

THEOREM 4.29. Let (G, N, 6) be a modular character triple. There exists

a finite group G, an epzmorphzsm e: G — G with cyclic kernel Z < Z(G’)
and a Z-section rep: G — G satisfying:

(a) N= Ny xZ=¢€YN), Ny = N via § = €|y, and Ny < G. The
action ofé on N coincides with the action of G on N wvia €.

(b) The character 6, = 6° ' € IBr(Ny) extends to G. The Z-section
rep: G — G satisfies rep(n) € Ny, rep(ng) = rep(n)rep(g) and
rep(gn) = rep(g)rep(n) for everyn e N and g € G.

(¢) (Cg(N)) = Ca(N).

In particular, if D is a representation of G such that D|n, affords 61, then
the map P defined for every g € G by

P(g) = D(rep(g))

is a projective representation of G associated to 0.

PROOF. See the proof of Theorem 4.1 of [NS14]. O
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4.3. Fake Galois action on Brauer characters

Perhaps, the most important application of Isaacs’ Br-theory (see Section
1.4) relies on the fact that B,/-characters constitute a canonical lift of Brauer
characters of p-solvable groups.

THEOREM 4.30 (Isaacs). Let G be a p-solvable group. Then, restriction
to p-elements yields a bijection from By (G) onto IBr(G). In particular, the
Galois group Gal(Q)g|/Q) acts on IBr(G).

PRrROOF. For the first part see Corollary 10.3 of [Isa84]. Then the latter
statement follows directly from Theorem 1.25. (]

However, in general, Gal(Q¢/Q) does not act on IBr(G). The group
G = SLo(7) and the prime p = 7 exemplify this, as pointed out to us by
P. H. Tiep. Let o € Gal(Q|5)/Qqy,,) be the automorphism sending a 16-th
root of unity ¢ to £3. By using GAP, we see that if ¢ € Irr(G) has degree 6,
then ¢? is not irreducible.

Let NV be a group and let m be a positive integer. If 6 is a class function
of N (or of N9), then (™) (n) = §(n™) is a class function of N (respectively
of N%). If (|[N|,m) = 1 and 6 € Irr(N), then (™) = 67 for a certain o €
Gal(Q|y)/Q) and so 6(™) e Trr(N). It is no longer true that #™ e IBr(N)
if we consider 6 € IBr(N). (We refer to the above example for m = 211.)

The aim of the final part of this works is to reduce Conjecture 5.1 to a
problem on quasi-simple groups. In order to do that, we will need that for
every quasi-simple group X, for every integer m with (|X|,m) = 1 and for
every ¢ € IBr(X), there exists some ¢’ € IBr(X) that in some sense behaves
like (™). This is what we call a fake m-th Galois conjugate of ¢. Let us
state this definition clearly. The results of this section are part of an original
joint work with B. Spath [SV16].

Let V = {{ € C | o(§) = n for some natural n} < C*. Recall that U is
the subgroup of p’-roots of unity of C. Hence U < V. For a fixed positive
integer m, let m be the set of primes dividing m. Define ¢,,: V — V by

om(§) = &7 = &€,

for every root of unity £ € V, where £; and &,/ are respectively the m-part
and the 7/-part of £&. Notice that o, is an automorphism of V and restriction
of g, to elements of U defines an automorphism of U which we denote again
by om. Let wy,: F* — F* be the group homomorphism that o, induces
via *: U — F*. We denote by (“™ the image of ( € F* under w,.

Moreover, for any positive integer n, by elementary Galois Theory, we
have that o, defines a Galois automorphism of @Q,, (which we denote again
by o, € Gal(Q,/Q)) that sends every n-th root of unity £ € Q, to £7m.

DEFINITION 4.31. Let (G, N,p) and (G, N,¢') be modular character
triples and let m be a positive integer coprime to |[N|. We write

(G,N, )™ ~ (G,N,¢),
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if there exist projective representations P and P’ of G associated to ¢ and
¢’ such that:

(i) for every x,y € G the factor sets a and o of P and P’ satisfy

a(z,y)m = o(z,y),
and
(ii) for every c € Cg(N) the scalar matrices P(c) and P’(c) are associ-
ated with scalars ¢ and (“™.
In the above situation we may say that ¢’ is a fake m-th Galois conjugate
of ¢ with respect to N < G and that the triples (G, N, ¢) and (G, N, ¢') are
fake m-th Galois conjugate.

REMARK 4.32. Let (G, N, ) be a modular character triple, and let m
be a positive integer coprime to |N]|.
(a) If ¢ is linear, then 7™ = ™ € IBr(V).
(b) In general " = (™) is an integer linear combination of IBr(IV).
(c) Let ¢’ € IBr(NV) and A € IBr(¢|z(n)). Then (N, N, ©)™ ~ (N,N,¢)
if and only if IBr(¢|z(ny) = {A™}.

PRrOOF. For part (a), notice that Q(¢) S Q|n|, then 7™ (n) = p(n)7™ =
©(n)™ for every n € N by the definition of o,,. Of course, ¢ € IBr(N),
in this case. For part (b), let n € N°. Since Oy = A1+ -+ + A, where
A; € IBr({n)) are linear, we have that

So(n)am = Al(n)am ot At(ﬂ)am
= /\1(nm) 4+t )\t(nm)

- pn™) = "),

The class function ¢(™ is an integer linear combination of IBr(N) by Prob-
lem 2.11 of [Nav98]. Part (c) follows from the definition of fake m-th Galois
conjugate modular character triples. [l

We shall give an alternative reformulation of Definition 4.31 in Lemma
4.35. This new way of defining fake Galois conjugate modular character
triples will make it easier to work with them later on. We first need to show
that for a modular character triple (G, N, ¢) there always exists a projective
representation associated to ¢ with particular properties.

LEMMA 4.33. Let N < G and x € IBr(G) with xy € IBr(N). Then
Ca(N)" < ker(x).

PROOF. Let D be a representation affording x and ¢ € Cg(N). Then
D(c) commutes with the irreducible representation Dy. By Schur’s Lemma
[Isa76, Lem. 1.5], this implies that D(c) = A(c)I is a scalar matrix. The
map A: Cg(N) — F* given by D(c) = A(c)] is a homomorphism. Hence
Cq(N)/ker()) is an abelian p’-group. This proves the statement. O
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LEMMA 4.34. Let (G, N, ) be a modular character triple, m an integer
coprime to |[N| and (F*),, the subgroup in F* of elements of order coprime
to m. Then, there exists a projective representation P of G associated to
with factor set a such that:

(i) a(g,qg') € (F*)y for every g,q' € G, and
(ii) for every c € Cq(N), P(c) is the scalar matriz associated to some

fE (Fx)m/.

PROOF. Let p be the set of primes dividing m different from p, so that
p ¢ p. (Then p = 7 — {p} with the notation of this section.)

Suppose that ¢ extends to some y € IBr(G). We claim that there exists
an extension 1 of ¢ to G such that every p-element of Cg(V) lies in ker(z)).

By Lemma 4.33, we may assume that Cg(N) = 1. Hence Cg(N)
is abelian and the Hall p-subgroup C' of Cg(N) satisfies C' < G. Then
NnC =1and NC =@ N x C. We want to prove that there exists an
extension of ¢ to G containing C in its kernel. It suffices to prove that the
character @ € IBr(NC/C) given by ¢ (more precisely @p(ncC) = ¢(n) for
every n € N and c € C) extends to G/C.

Let g be any prime. If ¢ € pand Q/N € Syl (G/N), then ¢ € IBr(NC/C)
extends to QC/C because of (¢, |[NC : C|) = 1 by Theorem 4.12. If g ¢ p and
Q/N € Syl (G/N) we have that @ nC = 1. Since C'< G, then xq € IBr(Q)
defines an irreducible Brauer character of QC/C = @) which extends 3. By
Theorem 4.11, this implies that @ extends to G/C, and the claim follows.

Now, by Theorem 4.29, there exists a central extension e: G- GofG
with finite cyclic kernel Z and a Z-section rep: G — G of € such that:

(a) N = Ny x Z = ¢ 1(N), the groups Ny and N are isomorphic via
0 = €|y, and Ny < G. Moreover, the action of G on N coincides
with the action of G on N via e.

(b) ¢ = ¢* ' € IBr(IV1) extends to G. The Z-section rep: G —
satisfies rep(n) € Ny, rep(ng) = rep(n)rep(g) and rep(g)rep(n)
rep(gn) for every ne N and g € G.

~

(c) €(Cg(N)) = Ca(N).
According to (b) the character ¢; extends to G. By the first part of the

~

(BT

proof applied to G, there is an extension x; € IBr(G) such that every p-

element of CG(N ) lies in ker(x1). Let D be a representation affording y;
and let P: G — GLy(1)(F) be defined by

P(g) = D(rep(g)) for every g € G.
For every g,g € G we obtain
P(9)P(g") = D(z4,4)P(99"),

where 2, € Z < Z(G) is given by rep(g)rep(¢’) = z, rep(gg’). Since
D(z4,4) is a scalar matrix, P is a projective representation of G' associated

Universitat de Valencia Carolina Vallejo Rodriguez



4. Preliminaries on modular character theory of finite groups 75

to ¢ with factor set a: G x G — F* defined by a(g,¢')I = D(zg,4) for
every g,g' € G. Since D(c) = I, (1) for every p-element ¢ € Cx(N), it is
straightforward to check that P satisfies the required properties. O

As a consequence of Lemma 4.34, we can reformulate Definition 4.31 in
the following (easier to handle) way.

LEMMA 4.35. Let (G, N, ) and (G, N, ") be modular character triples,
and let m be coprime to |[N|. Then the following are equivalent:

(b) there exist projective representations P and P’ of G associated to ¢
and ¢’ satisfying the properties (i) and (i) in 4.3/ and such that
(b.1) the factor sets a and o/ of P and P satisfy

ag, 9 )™ = d'(g,9") for every g,¢' € G,

and
(b.2) for every c € Cg(N), the scalar matrices P(c) and P'(c) are
associated with scalars ¢ and (™ respectively.

PROOF. We first prove that (a) implies (b). Since (G, N, )™ ~ (G, N, ¢')
there exist projective representations @ and Q' of G associated to ¢ and ¢’
having the properties listed in Definition 4.31. Let P be a projective repre-
sentation of G associated to ¢ with the properties described in Lemma 4.34.
By Remark 4.15, there exists a map p: G — F* such that P is similar to
1Q. Also p is constant on N-cosets in G and p(1) = 1. Let p/: G — F* be
given by u/(g) = p(g)“™ for every g € G. Since ' is constant on N-cosets
in G and /(1) = 1, then it is straightforward to check that P’ = p/Q’ is a
projective representation of G associated to ¢’.

In order to verify that P and P’ satisfy the condition in (b.1) let g, ¢’ € G.
According to Definition 4.31, the factor sets 8 and 3’ of Q and Q' satisfy
B(g,g" )™ = 5'(g9,¢"). By Remark 4.15, the factor sets o and o’ of P and
P’ satisfy

/ / / /
alg.g') = Wﬁ(g,g’) and o(g,9') = Wﬁ’(%g’)-
This implies that a(g,¢")“™ = &/(g,¢’). By the choice of P, we have that
a(g,g’) is a root of unity in F* of order coprime to m, hence o'(g,¢') =
alg, g )™ = a(g,g’)™ also is. This proves that P and P’ satisfy the condi-
tion (b.1).

In order to verify that P and P’ satisfy the condition in (b.2) let ¢ €
Cqg(NV) and ¢ € F* be the scalar associated to Q(c). According to Definition
4.31, ¢“m is the scalar associated to Q'(c) . By definition P(c) and P’(c) are
scalar matrices associated with (u(c) and (Cu(c))“™ respectively. By the
choice of P, we have that (u(c) is a root of unity of F'* of order coprime to
m. Hence ((pu(c))“™ = (Cu(c))™ € F* has also order coprime to m. This
proves that P and P’ satisfy the condition (b.2).
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Moreover we see that P’ is a projective representation having the prop-
erties mentioned in 4.34.

To prove the converse, just notice that the projective representations P
and P’ in (b) have the properties described in Lemma 4.34 and recall that
Wy, acts on roots of unity of F'* of order coprime to m by raising them to
their m-th power. It is then immediate that P and P’ give (G, N, )™ ~
(G,N,0). O

The following is an easy consequence of Lemma 4.35.

COROLLARY 4.36. Let (G, N, ) be a modular character triple. Let m be
a positive integer coprime to |N| and let oy, be defined as in the beginning
of this section. If ¢ is linear, then (G, N, )™ ~ (G, N, ™).

Proor. By Remark 4.32, we know that ¢°m = ¢™. Let P be a pro-
jective representation of G associated to ¢ as in Lemma 4.34. Then, it
is straightforward to check that P™ is a projective representation of G
associated to ¢"™ (as in Lemma 4.34). By Lemma 4.35, we have that
(G,N, )™ ~ (G, N, ™). O

We have defined the notion of fake m-th Galois conjugate character
triples. We conclude this section by introducing fake m-th Galois actions
and verifying their existence on p-solvable groups.

DEFINITION 4.37. Let N< G. Let . < IBr(IN) be a G-invariant subset.
Let m be an integer coprime to |N|. We say that there exists a fake m-th
Galois action on . with respect to G if there exists a G-equivariant
bijection

fm: S >
such that
(Ges N, @)™ x (G, N, fin(p)) for every p e ..

Let N be a p-solvable group. Then the Galois group Gal(Qy|/Q) acts
on IBr(NN), by Theorem 4.30. In this case, we show that there exists a fake
m-th Galois action on IBr(/N) for any integer m coprime to |N| and with
respect to any G with N <1 G. We first need to control the values of certain
projective (ordinary) representations.

We recall that the theory of projective representations associated to a
character triple over C is very similar to the theory of projective represen-
tations associated to character triples over F'. In particular, Theorem 8.12
and Lemma 8.27 of [Nav98] work for C instead of F.

Recall we have chosen an ideal M < R with pR € M and F = R/ M.

LEMMA 4.38. Let N< G and 0 € Irr(N). Assume that 0 is G-invariant
and 0° € IBr(N). Write L = Qg and Sp = {r/s | r € RnL,s € RnL\M}.
There exists a projective representation of G associated to 0 with matriz
entries in S,
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PROOF. We notice that by Brauer’s Theorem [Isa76, Thm. 10.3], L
is a splitting field for G. By Problem 2.12 of [Nav98], let ) be an Sp-
representation of N affording #. We check that there exists a projective
representation of G associated to 6 extending ) with entries in Sy. For
every g € G/N, the representation ) extends to a representation )7 of
(N, g) as in Theorem 8.12 of [Nav98], where g € G with gN = g. Define
D(g) = Dglg) for every g € G. Then D is a projective representation of G
extending 2), by Lemma 8.27 of [Nav98|. Hence, it suffices to control the
matrix entries of the representations 2)g. In other words, we only need to
check the case where 6 extends to G.

Let x € Irr(G) be an extension of #. Let X be a representation affording
X with entries in Sz, (again such X does exist by Problem 2.12 of [Nav98]).
We have that Xy affords 6. Hence, there is some T' € GL, (L) such that
Xy = T7YT. Write T = (t;;), where t;; € L. By Lemma 2.5 of [Nav98],
since all ¢;; are algebraic over Q, there exists 8 € L such that all §¢;; € R but
not all Bt;; € M. Since Xy = (BT)"!Y(BT), we may assume that t;; € R
and T* # 0 (replacing T' by BT). By assumption, the F-representations
(Xn)* and P* are irreducible. Moreover T*(Xy)* = 9*T™*. By Schur’s
Lemma [Isa76, Lem. 1.5], this implies 7% € GL,(F). In particular, we
have that det(7*) = det(7)* # 0 and so det(T") ¢ M. Thus T € GL,(SL)
and the representation TXT~! with entries in S, extends 2. ]

THEOREM 4.39. Let N be a p-solvable group and let m be a positive
integer coprime to |N|. If N < G, then there exists a fake m-th Galois
action on IBr(N) with respect to G.

PROOF. By Theorem 4.30, we have that B, (NN) provides a canonical
lift of IBr(N). Moreover, Aut(N) and Gal(Q)n|/Q) act on the set By (N)
by Theorem 1.25. Thus, the bijection By (N) — IBr(N) given by 6 —
0° commutes with the action of Aut(N). Consider o, as defined at the
beginning of this section, before Definition 4.31. Let ¢ € IBr(/N) and 6 €
B, (N) with ¢ = 6°. Since 67 € B,(N), we have that ¢ = (§7m)° €
IBr(N). Hence the map f,,: IBr(N) — IBr(N) defined by ¢ — ¢ is an
Aut(N)-equivariant bijection.

Let ¢ € IBr(N). We want to prove that (G, N, )™ ~ (G, N, ¢m).
We may assume that G = G,. Let 0 € By (N) be the canonical lift of .
Then 6 is G-invariant and §°™ is the canonical lift of ™. Write L = Qg
By Lemma 4.38, there exists a projective representation D of G associated
to 6 with matrix entries in S, = {r/s | r €e Rn L,s € Rn L\M}. In
particular, the map D" is a well-defined projective representation of G
associated to 8° with matrix entries in Sr. It is straightforward to check
that the F-projective representations P = D* and P’ = (D™)* associated
to ¢ and 7™ satisfy the required properties of Definition 4.31. ([l
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CHAPTER 5

Coprime action and Brauer characters

5.1. Introduction

Let A and G be finite groups. Assume that A acts coprimely on G (recall
that this means that A acts by automorphism on G and (|A],|G]) = 1).
Then there exists a canonical bijection

T(a,a): Irra(G) — Irr(Cg(A)),

between the set Irr 4 (G) of irreducible characters fixed under the action of A
and the irreducible characters of the group Cg(A) of fixed points under the
action of A. This bijection is known as the Glauberman-Isaacs correspon-
dence. (We refer the reader to the discussion preceding Theorem 1.17 and
to Theorem 1.17 itself.) The bare fact that these two sets have the same
cardinality is highly non-trivial and has already important consequences.
For instance, it proves that the actions of A on the irreducible characters of
G and on the conjugacy classes of G are permutation isomorphic.

Let us fix a prime p. Recall that g € G is p-regular if p does not divide
0(g). In this chapter we consider the same question on p-Brauer characters
and p-regular conjugacy classes.

CONJECTURE 5.1. Let A and G be finite groups. Let p be a prime.
Suppose that A acts coprimely on G. Then the actions of A on the irreducible
Brauer characters of G and on the conjugacy classes of p-regular elements
of G are permutation isomorphic.

Conjecture 5.1 is an open problem posed by G. Navarro in [Nav94].
By Corollary 13.10 and Lemma 13.23 of [Isa76], it is easy to prove that
Conjecture 5.1 is equivalent to the following.

CONJECTURE 5.2. Let A and G be finite groups. Let p be a prime.
Suppose that A acts coprimely on G. Then the number of A-invariant irre-

ducible Brauer characters of G is equal to the number of irreducible Brauer
characters of Cg(A).

There is some evidence of the validity of Conjecture 5.2. First, it holds
whenever G is p-solvable by work of K. Uno [Uno83] (fundamentally based
on the fact that there exist canonical lifts of the irreducible Brauer char-
acters). The fact that Conjecture 5.2 holds whenever A is a cyclic group,
and hence also Conjecture 5.1, is a well-known consequence of the so-called
Brauer’s argument on the character table (see Lemma 1.16; the argument
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is the same in both the ordinary and the modular cases). In particular,
this implies that Conjecture 5.1 holds whenever G is a quasi-simple group,
using the classification of the finite simple groups (see Theorem 5.17). It
has also been proven in [NST16] that A fixes a unique irreducible Brauer
character of G if and only if C;(A) is a p-group, proving Conjecture 5.2 in
this case. However, if G is not p-solvable (and therefore A is solvable) no
other progress has been made.

Our aim in this chapter is to reduce Conjecture 5.2 to a problem on finite
simple groups (in the same spirit as for the McKay conjecture [IMNOT7]).
We can prove the following, which is the main result of this chapter.

THEOREM G. Let G and A be finite groups. Suppose that A acts co-
primely on G. Suppose that all finite non-abelian simple groups (of order
divisible by p) involved in G satisfy the inductive Brauer Glauberman con-
dition. Then the number of irreducible p-Brauer characters of G fized by A
is the number of irreducible p-Brauer characters of Ca(A).

Consequently, the actions of A on the irreducible p-Brauer characters
and on the conjugacy classes of p-reqular elements of G are permutation
1somorphic.

Hence, we prove that if every non-abelian simple group satisfies the in-
ductive Brauer-Glauberman condition, then Conjectures 5.1 and 5.2 hold.
We do not define this inductive condition right now, but we feel it is worth
mentioning that there is a surprising difference between this inductive con-
dition and other inductive conditions coming from global/local conjectures
(for instance the inductive McKay condition in [IMINO7]). This difference
is derived from the fact that the Galois group does not act on irreducible
Brauer characters together with the fact that Galois action plays an im-
portant role in the description of the Glauberman correspondent in a key
situation. We will require the existence of fake Galois actions in our induc-
tive condition. See Definition 5.24 for further details.

The content of this chapter is arduous. We think that it is fair to say
that our reduction of Conjecture 5.2 is at least as hard as the reduction of
the McKay conjecture. Although both reductions bear similarities, there
are also differences, as we said. It does not seem possible to conduct both
reductions at the same time. Our reduction here is used in the forthcoming
paper [NST16] in which more evidence for the truth of Conjectures 5.1 and
5.2 is given.

This chapter is structured in the following way: In Section 5.2 we re-
call some well-known results on character counts above Glauberman-Isaacs
correspondents. In Section 5.3 we study a particular case of the Glauber-
man correspondence. This particular example motivates the definition of
fake Galois conjugate modular character triples in Section 4.3. We also ex-
plain how to construct centrally isomorphic modular character triples from
fake Galois conjugate ones. In Section 5.4 we study coprime actions on
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direct products of quasi-simple groups. In Section 5.5 we define the in-
ductive Brauer-Glauberman condition on finite simple groups. Then, we as-
sume that a finite non-abelian simple group S satisfies the inductive Brauer-
Glauberman condition and we study consequences for the character theory
of central extensions of direct products S x --- x § of S. This section is
of a highly technical nature and the results contained in it are key in the
inductive process used to prove Theorem G. In Section 5.6, making use
of everything proved in preceding sections, we can prove Theorem G. We
conclude by studying some natural questions related to Conjecture 5.2 in
Section 5.7.

All the results of this chapter are part of an original work of the author
together with B. Spéath [SV16].

5.2. Review on character counts above Glauberman-Isaacs
correspondents

The main goal of this section is to count Brauer characters lying above
characters of normal p’-subgroups and their Glauberman correspondents.
We shall use the following.

LEMMA 5.3. Assume that a group A acts on a group G. Let K < G
be A-invariant. Assume that (|G : K|,|A|) = 1 and Cg/x(A) = G/K. If
n € IBra(K), then every x € IBr(G|n) is A-invariant.

PRrROOF. The proof follows from the same arguments as the in proof of
Lemma 2.5 of [Wol78a]. O

Suppose that K <« G and 7 is an irreducible G-invariant character of
K. 1If n is an ordinary character, then |Irr(G|n)| can be determined by
a purely group theoretical method due to P. X. Gallagher. There is an
analogous result for Brauer characters. If 7 is a Brauer character we say that
Kge (G/K) (or g) is n-good if every extension ¢ € IBr({K, g)) of n is U-
invariant where U/K = Cg/i(Kg). Notice that n always extends to (K, g)
since (K, g)/K is cyclic (by Theorem 4.10). Also, U acts on IBr({K, g)|n)
since (K,g) < U. Tt is clear that if Kg € (G/K)? is n-good, then every
G-conjugate of K¢ also is, so we can talk about p-regular n-good classes of
G/K.

THEOREM 5.4. Suppose that K< G and that n € IBr(K) is G-invariant.
Then, [IBr(G|n)| is equal to the number of p-reqular n-good classes of G/K.
PROOF. See Theorem 6.2 of [Isa76]. O
The following is basically a particular case of Theorem 2.12 of [Wol79].

THEOREM 5.5. Let A act coprimely on G. Suppose that K < G is A-
invariant and G = KC, where C = Cg(A). Then n € Irry(K) extends
to Gy iff ' € Irr(K n C) extends to Cyy, where nf € Irr(Cg(A)) is the
Glauberman-Isaacs correspondent of 7).
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ProOF. Notice that G;, nC' = C,y by Lemma 2.5(b) of [Wol79]. Hence,
we may assume that n and 7’ are C-invariant.

Suppose that n extends to some x € Irr(G). By [Wol78a, Lem. 2.5] we
see that x € Irr4(G). Since [G, A] < K, by [Wol79, Thm. 2.12]

n' = mk,a (1) = 7(k,a (XK) = (T(G,2)(X)) KnC-

Hence (¢, 4)(x) is an extension of 7. Analogously we see that 7 extends to
G, if n extends to C. O

We need similar results for Brauer characters. We state the following
easy observation as a lemma for the reader’s convenience.

LEMMA 5.6. Let K <G, 0 € Irr(K) be G-invariant and suppose that K
is a p'-group. Then 6 extends to an ordinary character of G if and only if 6
extends to a Brauer character of G.

PROOF. Let x € Irr(G) be an extension of # to G. Then x° is a Brauer
character of G extending 6 since K < G°. In particular, x° € IBr(G).
Suppose that ¢ € IBr(G) extends 6. Let QQ/N be a Sylow g-subgroup of
G/N for some prime q. If ¢ # p, then ¢ is an ordinary character extending
0. If ¢ = p, then 0 extends to @) by Theorem 1.13. Hence 6 extends to G by
Theorem 1.15. (]

THEOREM 5.7. Suppose that A acts coprimely on G. Let K <1 G be an
A-invariant p'-group. Suppose that G = KC, where C = Cg(A). Let n €
Irr o (K) be G-invariant and write ' € Irr(K n C) to denote its Glauberman-
Isaacs correspondent. Then

[IBr(G|n)| = [[Br(Cln)|.

Proor. By Theorem 5.4 it suffices to show that for every ¢ € C, the
element cK is n-good if and only if the element ¢cK n C is 1’-good. By
Theorem 4.7 of [IN96], it suffices to show that for every U with K <U < G
and abelian U/K, n extends to U as a Brauer character if and only if 7’
extends to U n C as a Brauer character. We apply Theorem 5.5 and Lemma
5.6 in U. Then we are done. O

COROLLARY 5.8. Suppose that A acts coprimely on G. Let K < G be
an A-invariant p'-group. Suppose that G = KC, where C = Cg(A). Let
N < G be contained in K n C and let 6 € Irt(N). Then

IIBr4(G|0)| = [IBr(C|9)].

PROOF. Let B be a set of representatives of the C-orbits of Irr4(K|6)
and B' = {7k 4)(n) | n € B}. Then B’ < Irr(K n C|¢) by [Wol79, Lem. 2.4]
and B’ is a set of representatives of the C-orbits of Irr(K nC|6). By Corollary
5.2 of [Wol78a], we deduce that the bijection T(K,A) is C-equivariant. Hence
B’ is a set of representatives of the C-orbits of Irr(K n C|6).
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Every element of IBra(G|0) lies over a unique element of B and also
every element of IBr(C|f) lies over a unique element of B’. Thus

[IBra(G|6)| = Y, [1Bra(Gln)| and [IBr(C|6)] = Y [IBr(Clm(x 4)()]-
nelB neB
By Lemma 5.3, for every n € B we have that |IBra(G|n)| = |IBr(G|n)|.
Hence, it suffices to show that [IBr(G[n)| = [IBr(C|mx ay(n))| for every
n € B. By the Clifford correspondence on Brauer characters, we may assume
that n € B is G-invariant. Now, the result follows from Theorem 5.7. ]

5.3. More on fake Galois conjugates

We begin this section with the description of the Glauberman correspon-
dence in a very specific situation. This example shows that the Glauberman
correspondence is related to a certain Galois action on ordinary characters.

Let G be a group and let A < &,,. Recall G™ denotes the external
direct product of m copies of G. Write G = G™. Then A acts on G by
(g1,--- ,gm)‘f1 = (Ga(1)s - - - »9a(m)) for gi € G and a € A. If A is transitive,
then

Cy(A) ={(g,....9) G | ge G}.
The group C(A) is isomorphic to G. An irreducible A-invariant character
x of G has the form
x=0x---x86

for some 6 € Irr(G). If (|A|,|G|) = 1, then the Glauberman correspondent

of an A-invariant character y = 6 x --- x 8 of GG is some Galois conjugate of
¢ viewed as a character of Cz(A). (See Proposition 5.10 below.)

NOTATION 5.9. Let m be a positive integer. Recall the definition of
om from Section 4.3: let m be the set of primes dividing m, then for every
positive integer n we define o, € Gal(Q,,/Q) to be the automorphism fixing
m-roots of unity and raising to the m-th power 7’-roots of unity. For a group
G, we denote here by G the external direct product G™ of m copies of G.
Let A™: G — G be the injective morphism defined by g — (g,...,g) for
every g € G. Then A™ defines natural bijections Irr(G) — Irr(A™G) and
IBr(G) — IBr(A™G), where A™G = A™(G). We also write A™0 = A™(0).
If from the context m is clear, we omit the superscript m and write A, AG
and A# instead of A™, A™G and A™0.

PROPOSITION 5.10. Let m be a positive integer. Assume that a solvable
subgroup A < &, is transitive. Let G be a finite group with (|A],|G|) =
1. Let G be the direct product of m copies of G. Let 0 € Irr(G) and let

x=60x---x0¢€ IrrA(é). Then, the Glauberman correspondent of x is
the character X' = AQ™, where 6§°™ is the image of 0 under the Galois

automorphism oy,.
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PrOOF. This is essentially the content of Exercise 13.11 of [Isa76]. To
do the case where A is cyclic of prime order, use Exercise 4.7 of [Isa76].
The general case, follows by induction on |A|. O

It is clear that the Clifford theory over two ordinary irreducible Galois
conjugate characters is related.

PROPOSITION 5.11. Let N < G and 6 € Irr(N). Let m be a positive
integer coprime to |N|. Let 8’ = 0°™. Then:
(a) Gg = Gg/.
(b) Assume G = Gy. There exist P and P’ projective representations
of G associated to 0 and 6’ such that:
(b.1) the factor sets a and o' of P and P’ satisfy

a(g,9")7™ = (9,9")

for every g,¢9' € G, and
(b.2) for every ¢ € Cg(N) the scalar matrices P(c) and P'(c) are
associated with & and £7™ for some root of unity £ € Q|-

PROOF. By Theorem 4.29 and [Isa76, Thm. 10.3], there exists a pro-
jective representation P of G associated to 6 whose entries are in Qp for
some k = 1. Choose P’ = P?m. The result follows from straightforward
calculations. O

It is worth comparing Proposition 5.11 with Definition 4.31. If (G, N, ¢)
and (G, N,¢’) are fake m-th Galois conjugate modular character triples,
then the Clifford theory over ¢ and ¢’ is related in the same way as the
Clifford theory over two o,,-conjugate ordinary character triples.

We recall below the definition of fake Galois conjugate characters in the
alternative version provided by Lemma 4.35.

DEFINITION 5.12. Let (G, N, ) and (G, N,¢') be modular character
triples, and let m be a positive integer coprime to |N|. Then we say that ¢
and ¢ are fake m-th Galois conjugate with respect to N < G, and we write
(G,N, )™ ~ (G, N,¢), if there exist projective representations P and P’
of G associated to ¢ and ¢’ with factor sets o and o’ such that

(i) a(g,q9),a'(g,9") € F* have order coprime to m and
a(g,g)" =a'(g,9)
for every g,¢' € G, and

(ii) for every ¢ € Cg(N), the scalar matrices P(c) and P’(c) are associ-
ated with elements (,(’ € F* of order coprime to m and (™ = (’.

The notion of fake Galois conjugate (modular) character triples is im-
portant in our later application, since it allows us to construct centrally
isomorphic character triples from Galois conjugate character triples (see
Theorem 5.14 below).
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NoOTATION 5.13. Let m be a positive integer. For groups H < G we
continue writing H™ to denote the external direct product of m copies of

H. Recall that AH < G™. For groups K, H < G with K < Ng(H), we
denote by Ay K the group H"AK < G™.

Recall the description of the Brauer characters of a central product of
groups in Lemma 4.27.

THEOREM 5.14. Let (G, N, ¢) and (G, N, ¢ ") be modular character triples.

~

Let Z = Z(N). Write Z = Z™, N = N™, G = AZG and N = AZN Let
v elBr(ey), 3=¢@x--x¢@elBr(N), D =vx-xv e lIBr(Z) and
> = Ay’ - v eIBr(N). Then the following are equivalent:

(a) (G.N.9)™ ~ (G, N, ), _
(b) (N (G><16 ), N D) >BTC(G>4(‘5m,N D).
PRrooF. Notice that

N(G x &) = (NG) x &y,

Also Nn(Gx6,,) = N is the central product of Z and AN. Hence, the char-

acters in IBr(N) are dot products of characters in IBr(Z) and characters in
IBr(AN) that lie over the same A € IBr(AZ) (see Theorem 4.27). Note that
@ = Ay - is well-defined and lies in IBr(N) since IBr(Paz) = IBr((A¢')az)

Now, we prove that (a) implies (b). Let Q and Q' be projective repre-
sentations of G giving

(G.N, )™ ~ (G,N,¢)

as in Definition 5.12. . -
We construct projective representations Py and P} of NG and G associ-

ated to ¢ and @ respectively. Note that NG = ANG. Tt is straightforward
to show that the map Po: NG — GLq)m (F) given by

PO((nlv cee 7nm)Ag) = Q(nlg) K - ® Q(nmg)

for every (ni,...,nm) € N and g € G, defines a projective representation
associated to @. The factor set o of Py satisfies

ao(RAg, W Ag) = B(g, g )" for every 7,7’ € N and g, ¢’ € G,
where 3 denotes the factorv set of Q. Let 7 be an F-representation of A
affording 7. The map Py: G — GLg(1)(F) given by
Ph(ZAg) = 7(2)Q'(g) for every Z€ Z and g € G
is a projective representation associated to ¢. The factor set o, of P}, satisfies
ag(2Ag,2'Ag') = B'(g.9") = B9, 9)" = a0(FAg,Z'Ay')

for every g,¢ € G and z,2 € Z, where 8 denotes the factor set of Q.
(Recall that 8'(g,g’) = B(g,¢")™ since Q and Q' satisfy Definition 5.12(b.1)).
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In the next step we extend Py to a projective representations P of
(NG) x &,,. Note that S,, has a natural action on the tensor space
() F#() by permuting the tensors. This induces a representation R: &,, —
GLy1ym (F). The map P: ANG x &, — GLy1ym (F) given by

P(z0) = Po(z)R(0) for every z € NG and o € Gy,

is a projective representation of NG x &,, = N(CVJ X &,,). Note that Png,,
is a representation, as defined in [Hup98, Thm. 25.6]. It is easy to check,
using the definition of R, that the factor set a of P satisfies

a(fAgo, W Ag'c’) = ag(ilg, ' Ag)
for every g,¢' € G, n,n’ € N and 0,0’ € G,,.

In the next step we extend P/ to a projective representation P’ of G % G
Note that [AG,&,,] = 1. Hence U and 7 are &,,-invariant and the map
PG x G, — GLy/(1)(F) defined by P'(920) = Py(g)7(2) for every g €
é, e Zando € S,, is a projective representation whose factor set o’
satisfies

o(go,g'0’) = aplg,9)
for every g,¢' € G and 0,0’ € &,y,. In particular, we see that the projective

representations P and P’ that we have constructed satisfy the property
described in Definition 4.19(ii.1).

In the last step we compare P(x) and P'(z) for 2 € C ¢, (V). We
have that N _ 5
C(NG)XG,H(N) = AzCq(N) < G x &,y

Then z = ZAc for some % € Z and ¢ € Cg(N). Recall that by Definition
5.12(b.2), Q(c) and Q'(c) are scalar matrices associated with some ¢ and (™.
Thus P(ZAc) and P’(ZAc) are scalar matrices associated with 7(2)¢™, by
the definition of P and P’. This implies that P and P’ satisfy the property
in Definition 4.19(ii.2).

This proves (a) implies (b), since we have already seen that the group
theory conditions of Definition 4.19 are satisfied.

We only sketch the steps to prove that (b) implies (a). We start by
choosing a projective representation Q of G associated to ¢ as in Lemma
4.34. Then one can construct a projective representation P of (]V CVJ) x G,
associated to @ as in the first part of the proof. Let P’ be the projective
representation of G x &,, associated to % given by Lemma 4.21(a). Then
P’|ac defines via the natural isomorphism AG — G a projective represen-
tation @ of G associated to ¢, because P’'|an affords Ag’. It is easy to
check that Q and Q' give (G, N, )™ ~ (G, N,¢') using Lemma 4.35. [

COROLLARY 5.15. Assume the notation and the situation of Theorem
5.14. Let H< G with H < Cg(N) and write G1 = AzgG. Then

(N(él X 6m),ﬁ,@) >Br,c (él A Gm,]\\/f,(\ﬁ)
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PROOF.VNote that Zvél = ANHNG and 6’1 = EHZG are Well—dveﬁned.
The group AygG % &,, induces on N the same automorphisms as AyG x
G- Hence, the statement follows from Theorem 5.14 after applying Theo-
rem 4.26. U

Also as a consequence of Theorem 5.14, we obtain the analogue of Theo-
rem 4.26 for fake Galois conjugate modular character triples: (G, N, @)™ ~
(G, N, ') is a property that only depends on the characters ¢ and ¢’ as well
as the automorphisms induced by G on N.

COROLLARY 5.16. Let (G,N,¢) and (G,N,¢') be modular character
triples. Suppose that for a positive integer m coprime to |N|,

(G, N, )™ ~ (G,N,¢).

Let G be a group such that N < G and G1/Cg,(N) is equal to G/Cg(N)
as a subgroup of Aut(N). Then

(Gl) N7 w)(m) x (G17 Nv 90,)

Proor. This follows from combining Theorem 5.14 and Theorem 4.26.
O

5.4. Coprime action on simple groups and their direct products

In this section we study the situation where a group A acts coprimely on
the direct product of isomorphic non-abelian simple groups (as well as on
the direct product of their universal covering groups). If a group A acts on
a set A, then we write Ay, to denote the stabilizer of Ag € A in A, so that

Ap, = fae A | A& = Ag).

We begin by studying coprime actions on finite simple non-abelian groups.
Let S be a non-abelian simple group and let X be its universal covering group
(unique up to isomorphism). We identify Aut(S) and Aut(X) as in [Asc00,
Ex. 6, Chapt. 11].

THEOREM 5.17. Let S be a simple non-abelian group. Let B act on S
faithfully with (|S],|B|) = 1. Then B is cyclic, Nayysy(B) = Cau(s)(B)
and

(5.1) Z(Cx(B)) = Cx(B) n Z(X),

where X is the universal covering group of S and B acts on X wvia the
canonical identification Aut(S) = Aut(X).

PRrROOF. We identify B with the corresponding subgroup of Aut(S). We
may assume B # 1, otherwise the result is trivial. According to the classi-
fication of finite simple groups the group .S has to be a simple group of Lie
type and B is Aut(S)-conjugate to some group of field automorphisms of .S,
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see for example Section 2 of [MINS15]. In particular, B is cyclic. The struc-
ture of Aut(S) is described in Theorem 2.5.12 of [GLS03]. Straightforward
computations with Aut(S) prove that Nayu(s)(B) = Caut(s)(B)-

Let X be the universal covering group of S. In order to prove that
Z(Cx(B)) = Cx(B) n Z(X) we may assume that B # 1. By the first
paragraph of this proof S is a simple group of Lie type. Arguing as in the
beginning of Section 2 of [MINS15] we see that the Schur multiplier of S is
generic or S = 2By(8) and B is a cyclic group of order 3.

Let us consider first the case where S = ZBy(8) and that B is a cyclic
group of order 3. Then X = 22.2B5(8) and Cx(B) = 2By(2). The group
2B5(2) is a Frobenius group of order 5 - 4 and has trivial centre. It follows
that Z(X) n Cx(B) is also trivial.

Hence we can assume that X = X¥, for some simply-connected simple
algebraic group X and some Steinberg endomorphism F': X — X. We can
assume that B is generated by some automorphism that is induced by some
Steinberg endomorphism Fp: X — X. Without loss of generality we can
assume that some power of Fy coincides with F. From Theorem 24.15 of
[MT11] we deduce that

Z(Cx(B)) = Z(X™) = Z(X)"™(2(X)")"
= (Z(XF))" = Z(X) n Cx(B).
This is exactly Equation 5.1 U

NoTATION 5.18. Let S be a non-abelian finite simple group. Let X be
the universal covering group of S. Let r be a positive integer. Recall from
previous sections that X" denotes the external direct product of r copies of
X. We write X = X". Note that X is also the internal direct product of
X1,...,X,, where the group X; is defined by

X,=1x---xXx---x1

with an X at the i-th position, for each i € {1,...,r}.
Recall we identify Aut(S) and Aut(X). Also Aut(X)? &, acts on X via

(@1, m) 0T = (2,m10)) ™ (To-1() ™),
for every x; € X, a; € Aut(X) and o € &,. It is easy to show that this
defines an isomorphism between Aut(X)! &, and Aut(X). Hence we can
identify Aut(S)!6, and Aut(X).
Finally, for each ¢ = 1,...,r, the natural isomorphism pr;: X; — X
induces the epimorphism
pr;: Aut(X)x, — Aut(X) given by a — pr; ' oalx, o pr;,

where o denotes the usual composition of maps.

Suppose A < Aut(X) with (| X[, |A|) = 1. Let I' < Aut(X) be such that

I'< CAut()?)(A)' Suppose further that I'A acts transitively on {X1,..., X, }.
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Our objective is to control the structure of the groups A and ['A. We need
two preliminary results.

LEMMA 5.19. Assume the notation in Notation 5.18. Write B; = pr;(Ax,)
for each i€ {1,...,r}.
(a) The groups B; are cyclic.
(b) IfT A acts transitively on {X1, ..., X,}, then B; and By are Aut(X)-
conjugate and the A-orbits on the set {X1,...,X,} all have the same
length.

PrOOF. Notice that B; acts on X with (|X|,|B;|) = 1. By Theorem
5.17, we have that B; is cyclic. This proves part (a).

Now, since T'A acts transitively on {X7,..., X, }, there is some «; € rA
such that X1 = X;. It is easy to check that B; = pr(Ayx,) = pr((4x,)*) =
Blﬁi, where 3; € Aut(X) is given by B; o pr; = pr; oa; | x,.

Furthermore I" permutes transitively the A-orbits on {X1,. .., X,}. Hence

these A-orbits all have the same length. This concludes the proof of part
(b). O

According to the classification of finite simple groups Schreier’s con-
jecture holds, i.e., the outer automorphisms group Out(S) of every simple
non-abelian group S is solvable. In particular, if X is the universal covering
group of the non-abelian simple group S and 7 is the set of primes dividing
| X|, then Aut(X) is m-separable, and hence there are Hall 7'-subgroups in
Aut(X).

Using this fact one can determine a convenient group containing A.

PROPOSITION 5.20. Assume the notation in Noiation 5.18. Write B; =
pr;(Ax,) for each i € {1,...,r}. Suppose that TA acts transitively on
{X1,...,X,}. Let 7 be the set of prime divisors of |X|. Let H be a Hall 7'-
subgroup of Aut(X). Then A is Aut(X)"-conjugate to a subgroup of H1S,.
Also, B; = By foralli=1,... r.

PRrROOF. By the discussion preceding the statement of this proposition
Aut(X) is m-separable. Hence Aut(X)"A is also m-separable. Let K =
Aut(X)"A n &,. Notice that K is a n’-subgroup of &,. Moreover, H" x &,
is a Hall ’-subgroup of Aut(X)"A. Since A is a 7’-subgroup of Aut(X)"A,
there exist a € A and « € Aut(X)", such that

A = A< H xK < H6,.

For the latter part we may assume A < H (! &,. Now, By,B; < H are
Aut(X)-conjugate by Lemma 5.19(b). In particular |B;| = |By|. Since H is
cyclic, by Theorem 5.17, this implies B; = Bj. O

The next two propositions describe the structure of A and I'A in the
case where A acts transitively on {X1,..., X, }.
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PROPOSITION 5.21. Assume the notation in Notation 5.18. Suppose that
A< H!6,. Write B="pr(Ax,). Then A is H"-conjugate to a subgroup of
B 6G,.

PROOF. It is enough to prove the statement in the case where A acts
transitively on {X1,---, X,} by working on A-orbits.

If A < H!6, acts transitively on {Xi,...,X,}, then for every i €
{1,...,r}, there exist a; € A such that

Xt =X;
and h; € H such that for every x € X
(z,1,..., )% =(1,...,2", ... 1) e X;.
Let h = (1g,hy ", ... hY) € H'. We claim that A" < B1&,. First notice

» o

that pry ((4A")x,) = ﬁl((A})l(l)) = B. Now, write @; = h™la;h € A" < H1 6,
for each i € {1,...,7}. Then

(z,1,...,1)% =(1,...,2,...,1) € X;
for every x € X.

Let y € A", Theny = (y1,...,y:)p € H1&,. Letie {1,...,r}. Write
j = p~ (i), so that
XY = X,.

Since o

(,1...,)%%% = (2%, 1...,1) € Xy,
for every x € X, we have that aiya;1 e (A")x,. Consequently y; € B. This
argument applies for every i € {1,...,r}, hence the claim follows. O

Recall the notation from the previous section: For H, K < G, we denote
by H™ the direct product of m copies of H and we write AK < G™ for
the diagonally embedded group K. We denote by A K < G™ the product
of H™ and AK, whenever K < Ng(H). If we want to emphasize that
EHK = H™AK is constructed in G™ we write A’H”K

PROPOSITION 5.22. Assume the notation in Proposition 5.20. Let B =
By and let T' = Cpyyx)(B). Suppose that A < B1 &, and that A acts
transitively on {X1,...,X,}. Then

A< (ApTD) x &,.

PROOF. Let ce I'. Then ¢ = (cy,...,cr)p with ¢; € Aut(X) and p € S,.
Let a € Ax,. Then a = (by,...,b,)o with b; € B and o € &,. The equation
ac = ca implies that

b1 = Cl_lbp—l(l)cl € B.
This holds for every a € Ax,. Hence ¢1 € Npy(x)(B). By Theorem 5.17, we
have that Nay(x)(B) = Caut(x)(B) = I'. Proceeding like this for elements

a € Ax,, we conclude ¢; € T for every i € {1,...,r}. Hence r<me,.
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Now, for a € A with a = (b1,...,b,)0 € B1 6, and ¢ € [ with ¢ =
(c1y...,¢)p e D16, the equation ac = ca implies that

bicgfl (@) = Cibpfl(i) .

Hence 00_1(1)6;1 € B for every i € {1,...,r}. Since A acts transitively on
{X1,...,X,}, we have that

cje;t € B,
for every j € {1,...,r}. This proves that (ci,...,¢,) € B"Al' = ApT. This
proves that I' < (Apl') x &,. O

We finally consider the case where I'A acts transitively on {X1,..., X,}.

PROPOSITION 5.23. Assume the notation in Proposition 5.20. Let B =
By and let T = Cpye(x)(B). Suppose that A < B1S, and that T'A acts tran-
sitively on {X1,...,X,}. Let m be the length of an A-orbit in {X1,...,X,}.
Then for some T € &, we have that
AT < (B16,)"™ and (TA)T < (AZT) x 6,16~

ProoF. By Proposition 5.22 the statement holds when m = r.

Let d = r/m. We may assume that the A-orbits on {X7,...,X,} are
exactly {X1,..., X}, s {X(@=1)m+1,---» Xam} after conjugating I'A by
some 7 € &,.. (Notice that A™ and Ir satisfy the same hypotheses as A and

~

I'.) This proves the first statement.

Let a = (by,...,b)oe A" < (B16y,) and ¢ = (cq,...,¢)pe 7. Note
that o € (&,,)%, hence we can write ¢ = oy - - - 04 where 0; € &,,, permutes
the set {({ — 1)m + 1,...,lm}. The equation ac = ca implies that

bicg—l(i) = Cibp—l(i) and of =o.
Notice that o” = o implies that for every [ € {1,...,d}, we have that o = o},
for a unique k € {1,...,d}. Proceeding as in the first paragraph of the proof

of Proposition 5.22 we can prove that ¢; € I'. Also, arguing as in the second
paragraph of the proof of Proposition 5.22 we see that

caq(i)ci_l eB

for every i € {1,...,7}. We can proceed like this for every a € A. Since A is
transitive on each {(l — 1)m + 1,...,Im} we conclude that
cjcl_1 eB

for every j € {(I — 1)m + 1,...,lm} and for every [ € {1,...,d}. Hence
(c1,...,¢) € (B™AD) = (AT,

Finally, since 0 = o for every ¢ coming from an element a € A, we
conclude that p permutes the set {{(Il — 1)m + 1,...,ilm} | |l = 1,...,d}

and also permutes the elements of the set {(Il — 1)m + 1,...,Ilm} for each
Il =1,...,d. Hence p € 6,,16,;. We conclude that ¢ = (c1,...,¢.)p €
((ABT) x G,,) 1 6. O
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5.5. The inductive Brauer-Glauberman condition

We begin this section by defining the inductive Brauer-Glauberman condi-
tion (see Definition 5.24 below). After that, we study consequences of the
validity of the inductive Brauer-Glauberman condition for a simple non-
abelian group S. The main result of this section is Theorem 5.27.

DEFINITION 5.24. Let S be a non-abelian simple group and let X be
the universal covering group of S. We say that S satisfies the inductive
Brauer-Glauberman condition for the prime p if for every B < Aut(X)
with (] X, |B|) = 1 the following conditions are satisfied:

(i) For Z =Z(X), T = CAut(X)(B), Co = Cx(B) and C = CyZ, there
exists a I'-equivariant bijection

Qp: IBrg(X) — IBrg(C),
such that for every 6 € IBrp(X)
(X X Fg,X, 0) >Br,c (C X FQ,C, QB(G))

(ii) For every positive integer m with (| X|,m) = 1, there exists a fake
m-th Galois action on IBr(Cp) with respect to Cp x I

We can simplify a bit the verification of Definition 5.24 for all non-abelian
simple groups. First we only need to consider B up to Aut(X)-conjugation.
Moreover condition (ii) is true for every B if (ii) is true for B = 1. Part of
these simplifications is possible thanks to the fact that fake Galois actions
do exist in p-solvable groups.

REMARK 5.25. Let S be a non-abelian simple group and X the universal
covering group of S.

(a) The group S satisfies the inductive Brauer-Glauberman condition,
if conditions (i) and (ii) in Definition 5.24 hold for some complete
set of representatives of classes of Aut(X)-conjugate subgroups B
of Aut(X) with (|X|,|B|) = 1.

(b) Let B < Aut(X) with (|X|,|B|) = 1 and |B| # 1 and assume that
Cx (B) is quasi-simple. Then condition (ii) in Definition 5.24 holds
for X and B, if for every integer m with (|X|,m) = 1 there exists a
fake m-th Galois action on IBr(X;) with respect to X; »x Aut(Xy),
where X7 is the universal covering group of the unique non-abelian
composition factor of Cx(B).

(¢) Let B < Aut(X) with (| X|,|B]) = 1 and |B| # 1 and assume that
Cx(B) is not quasi-simple. Then condition (ii) in Definition 5.24
holds for X and B.

PRrROOF. For the proof of (a) we suppose that (i) and (ii) from Definition
5.24 are satisfied for the universal covering group X of some simple non-
abelian group and for some B < Aut(X) with (|X]|,|B|) = 1. Assume the
notation Definition 5.24(i) with respect to B. Let a € Aut(X). Define
Qpa(x®) = Qp(x)* for every x € IBrg(X). Then Qpa is a I'*-equivariant
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bijection from IBrpa(X) onto IBrg(C®). By Lemma 4.22 we have that
condition (i) in Definition 5.24 is satisfied for Qpa. Let m be an integer
with (|X],m) = 1. Let fy,: IBr(Cy) — IBr(Cp) give the fake m-th Galois
action on IBr(Cy) with respect to Cy x T, as in Definition 4.37. Define
11 (%) = fm(p)® for every ¢ € IBr(Cp). It is easy to prove an analogue of
Lemma 4.22 for m-th Galois conjugate modular character triples via Lemma
4.35. This implies that f], gives a fake m-th Galois action on IBr(C§) with
respect to C§ x I'“.

Now we prove parts (b) and (c). Let X be the universal covering group
of some non-abelian simple group S. Let B < Aut(X) with (|B|, |X]) = 1.
If B # 1, then the group S is a simple group of Lie type and B is Aut(X)-
conjugate to some subgroup of the field automorphisms of X, see for example
Section 2 of [MINS15]. By part (a) we may assume that B consists of field
automorphisms. By Theorem 2.2.7 of [GLS03], the group Cx(B) is either
quasi-simple, solvable or Cx(B) € {B2(2), G2(2),2F4(2),2 Ga(3)}.

Suppose that Cx (B) is not quasi-simple. Write Cy = Cx(B). If Cy €
{B2(2),G2(2),2F4(2),2 G2(3)}, then Out(Cp) is cyclic and Z(Cp) is trivial.
Hence, it is easy to show that the identity yields a fake m-th Galois action
on IBr(Cy) with respect to Cy x Aut(Cy), for every positive integer m with
(|X],m) = 1. If Cy is a solvable group, then Theorem 4.39 guarantees that
for every m with (|X|,m) = 1, there exists a fake m-th Galois action on
IBr(Cy) with respect to any G in which Cp is normal. This proves part (c).

In all other cases Cx(B) is quasi-simple and there exists some non-
abelian simple group S; such that Cx(B) is a central quotient of the univer-
sal covering group X of S1. By assumption for every m with (| X1|,m) = 1,
there exists a fake m-th Galois action on IBr(X;) with respect to X; x
Aut(X7). Since Cpye(x)(B) < Aut(Xp) this gives the required fake m-th
Galois action on IBr(Cx(B)) according to an analogue of Lemma 4.23 for
fake Galois conjugate modular character triples. We use that if m is such
that (|Cx(B)|,m) = 1, then also (|Xi|,m) = 1 by [Asc00, 33.12]. This
proves (b). O

NOTATION 5.26. Let S be a non-abelian simple group and X its universal
covering. We write Z = Z(X). If B < Aut(X), then we write Cy = Cx(B),
C = CoZ and I' = Cyyy(x)(B). Recall Notation 5.13, and for a positive
integer r, write X = X7, 7 = z", C =C". Let A: X — X be the map
defined as in Notation 5.9. We also write C' = AzCy. For each i€ {1,...,7}
let X; and pr; be defined as in Notation 5.18.

Our aim in this section is to prove the following result and study some
consequences of it.

THEOREM 5.27. Let S be a non-abelian simple group satisfying the induc-
tive Brauer-Glauberman condition for the prime p. Let X be the universal
covering group of S, r a positive integer and A < Aut(X) with (|A],|X]) = 1.
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Write T' = CAut()?)(A)' Suppose that LA acts transitively on the factors
{X1,...,X,} of X. Then there exists a I'-equivariant bijection

~

Qg 4 Bra(X) — IBra(Cg(4)2),

~

such that for every x € IBra(X) and x' = Qf( (x)

(5.2) (X % Ty, X, X) >Bre (Cx(

REMARK 5.28. The above result illustrates why we need to require the
existence of fake Galois actions in Definition 5.24. Let X be the univer-
sal covering group of a simple non-abelian group S. Let r be a positive
integer. Let A < &, act on X by transitively permuting {X1,..., X}
Then C3(A4) = AX < X. Let y = ¢ x --- x ¢ € IBra(X). In par-
ticular Theorem 5.27 requires the existence of x’ € IBr(AX) such that
(X, X,X) >Bre (AX,AX, x'). If we write ¥’ = Ay’ for ¢’ € IBr(X), then
¢ must lie above A", where \ € IBr(¢z(x)). If one analyzes a little more
this example (namely the factor sets condition in this example), then it is
easy to see that ¢’ needs to be a fake r-th Galois conjugate of (.

~

We continue identifying Aut(X) = Aut(X)? &, as in Notation 5.18. For
A < Aut(X), write B = pry(Ax,) < Aut(X).

We prove Theorem 5.27 in a series of steps. We first prove a particular
case and after that we use this particular case to prove the general statement.

Now, we concentrate on proving Theorem 5.27 in the case where A acts
transitively on {X7,...,X,} and A < B1S,. Among other things, we want
to define a bijection

Qg 4 IBra(X) — IBra(Cg(A)Z)
such that corresponding characters give centrally isomorphic character triples.
We first determine the group C¢ (A)E and some character sets with which
we will work.
Recall Notation 5.26. If B < Aut(X), then Cp = Cpyy(x)(B), C = CoZ

and C' = AC.

LEMMA 5.29. If A acts transitively on {Xi,...,X,} and A < B1 6,
then

(b) IBra(X) =146 x---x60|60elBrg(X)},

(¢) IBra(Z) ={v x --- x v |velBrg(Z)},

(d) IBrB((NZ') ={¢-v|¢elBr(Cy) and v € IBrg(2)},

(e) IBra(C) = {(¢ x -+ x¢)-(vx- - xv)| e IBr(Cy andv €
IBrp(Z)}, N

(f) IBra(C) = {(Ap) - p | ¢ € IBr(Cy) and € IBra(Z)}.
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ProoF. The equalities C(A) = ACy = C (B 6,) easily follow from

Lemma 2.2 of [IN96]. Then C' = AzC, = CX(A)Z, as wanted. The rest
easily follow from the definitions (use Lemma 4.27 for parts (d), (e) and
(£))- 0

In the following proposition, we introduce a key bijection fr: IBr A(CN‘) —
IBra(C) that will help us to define the map €

PROPOSITION 5.30. In the situation of Theorem 5. 27, suppose that A
acts transitively on {X1,...,X,} and A< B16,. LetT' = Al and Y =

C x (f x &,). Then there exz'sts a AT'-equivariant bijection
Jr: 1Bra(C) — IBra(0)
such that for every 1/1 € IBrs(C ) and 1/1 fr(zp) we have
(CY3,C\ ) >pre (V,C,00).

ProOF. Write Zy = Z(Cy), Zy = Zj and Co = Cy. Note that the
assumption that A acts transmvely on {X1,...,X,} with (| X],]4]|) =
implies (r,|X|) = 1. Since S satisfies the inductive Brauer-Glauberman
condition, there exists a fake Galois r-th action on IBr(Cy) with respect to
Cy x I'. Let f,. give a fake r-th Galois action as in Definition 4.37.

Let @Z € IBr A(C’) Recall C' = OpZ is the central product of Co and Z.
By Theorem 5.17, Co n Z = Zp. By Lemma 5. 29(f), we have that w p-v
for some @ = ¢ x -+ x ¢ € IBrg(Cp) and ¥ = v x --- x v € IBra(Z) where
¢ and v lie over the same A € IBr(Zy). We define

(@) = Afr(p) -

By Lemma 5.29, we have that fr is a bijection. Note that fr is AI'-
equlvarlant as fr is [-equivariant. In particular, for ¢ = fr(¢) we have
that Y~ =Y.

Let ¢ = fr(p) and write Yy = Cy x I'y,. Since f, yields a fake r-th
Galois action on IBr(Cp) with respect to Yy, we have that

(5.3) (Yo, Co, )" ~ (Yo, Co, ).

Let Co = EZOC’O. Write A = A x --- x A € IBr(Z), where IBr(vz,) =
{\} =1IBr(vz,), and ¢ = A¢’ - X € IBr(Cp). Write also Yy = Az,pYp. Since
ZyB < Cy,(Cy), by Corollary 5.15 we have that Equation (5.3) yields

(5.4) (Co(Yo % 6,),Co, @) >pBre (Yo x &, Co, @).

We have that C' = ZCj. Then Equation (5.4) together with Lemma 4.28
imply
(é}\;&a 517 1;) >Br,c (}\;1;’ é’ 12)/) O
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PROPOSITION 5.31. If A acts transitively on {X1,...,X,} and A < B
S,., then Theorem 5.27 holds.

PROOF. Let (2p be the map given by Definition 5.24(i). For 6 € IBrp (X),
we write 8’ = Qp(#). We define a map Q = Q 4 by

Q: IBrA(X)—>IBrB(CV‘)
05 x 0> fu(@ x - x0)

where fr is given by Proposition 5.30. By Lemma 5.29, this map is well-

defined. In fact, since fr is bijective, then Q is also bijective (see Lemma
5.29(f)).

Recall ' = C
Proposition 5.22

Aut()?)(A)' Write T = EBF x &, = AT'(B16&,). By

F<TA<TY.

In order to prove that Q is f—equivariant we show that € is actually Y-
equivariant. In view of the description of IBra(X) and IBr(C) given in
Lemma 5.29, it follows that B &, acts trivially on these sets. Hence our
bijection Qis Bl G,-equivariant. By definition, Q25 is ['-equivariant and by
Proposition 5.30, jN}, is ATl'-equivariant. Hence Q is also AT-equivariant (so
T-equivariant).

It remains to prove that for every x € IBr A()N( ) we have that
(X % T, X, %0) >Bre (Cx Ty, C,2(x).
Let y € IBra(X) and 6 € IBrg(X) with x = 6 x --- x f. By Definition
5.24(i), we have that 6 and ' = Qp(0) satisty
(X x Ty, X,0) >pr. (CxTy,C,0).

Let ) = 0 x --- x ¢ € IBr(C). The equation above together with Corollary
4.25 imply that

(X % (0926,), X,X) >pre (Cx (T926,),C, ).
Using T <I'! 6, and T, <T'91 &, we deduce that

(5.5) (X % Ty, X, X) >Bre (C x Ty, C, ).
Let Y = C' x T and 1; = fr({/;) Then @Z = Q(X) By Proposition 5.30 we
know that
(3.6 ) > e (V.81
Because of C' x T, = 5’12; and C' x T 3= }v/dv}, the equation above is exactly

(5.6) (C 2y, Coh) >pre (C 1 Yy, C0D).
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Since >p, . is transitive, Equations (5.5) and (5.6) imply that
(X % Ty, X, X) >re (C 215, C, ).
Since f‘x <Ty=7;and ¥ = Q(x) this proves the statement. O

REMARK 5.32. Assume the situation described in Proposition 5.31 as
well as the notation of Theorem 5.27. The proof of Proposition 5.31 actually
shows that the conclusions of Theorem 5.27 also hold with T = A BI'xG, 2
I in place of I.

Our next step is to prove Theorem 5.27 in the case where A no longer acts
transitively on {Xi,...,X,} but the structure of A is somehow controlled,
namely A < (B16,)"/™ for some divisor m of r.

PROPOSITION 5.33. Let m be the length of some A-orbit on {X1, ..., X,}.
IfT A acts transitively on {X1,...,X,} and A < (B1&,,)"/™, then Theorem
5.27 holds.

PrOOF. Let A = {Xi,...,X,} and Ay,...,As be the A-orbits on A.
Notice that I' permutes the A-orbits transitively so that d = r/m. The
assumption A < (B2 6m)% implies that A; = {X(;_1)ms1,---, Xjm} for
every 1 < j < d. By Proposition 5.23 we have that

AC, 1) (A) = AT < T,

where T = (Agf X 6,,) 1 &4 (because in this case we can take 7 = 1 in
Proposition 5.23).

For every j e {1,...,d}, let

Xy, = [[Y and Zy, = [] Z(Y).
YEAj YEAj

Clearly A acts on Xj, with (JA[,|Xa,]) = 1. Let T; be the projection of
Staby (Xa,) into Aut(Xy;). Then, it is easy to show that T; is isomorphic

to A’EF X S,,. By Lemma 5.31 (and using Remark 5.32), there is a Yi-
equivariant bijection

Qapa: IBra(Xa,) — IBra(Ch,),

where éAj = CXAj (A)Zp,. Furthermore for every yx; € IBra(Xy,) and
X1 = QAl,A(Xl) we have

(57) (XA1 A (TI)XUXAle) >Br,c (éAl A (TI)X175A175€1)'
For j € {2,...,d}, we define Y j-equivariant bijections

Qa0 IBra(Xy,) — IBra(Ch,)
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from QXA17A via the permutation action of &4 on {Xy,,...,Xa,}. For every

Xj € IBra(Xy;) and X; = QAj,A(Xj) we have

(58> (XAj A (Tj)Xj7XAj7Xj) >Br,c (CA]- A (Tj)xj'? CAj?S(/j)
by a transfer of Equation (5.7) via Lemma 4.22.

Note that X = XA, X -+ x Xj, is an internal direct product and
A stabilizes each X, . Hence IBr A()N( ) is in natural correspondence with
IBra(Xy,) x---xIBra(Xa,). Analogously CX(A)Z =C= éAl X e X CV’Ad
is an internal direct product, so that IBra(C(A4)) = IBry(Ch,) X -+ x
IBra(Ch,).

Define (NZ;(,A: IBr4(X) — IBr(C) by

X1 X - X Xd — QAl,A(Xl) X e X ﬁAmA(Xd)'

We see that 3.4 1s a well-defined (T x - - - x Tg)-equivariant bijection. By
definition € 5 4 18 Gg-equivariant, where &, is identified with the subgroup
of T acting on the groups X, by permutation. Hence Q 5 4 18 T-equivariant.

~

It is easy to prove that every character in IBry(X) is (T1 x -+ x Ty)-
conjugate to some x = x1 X --- X x4 where either x; and x; are G4-conjugate
or x; and x; are not Y-conjugate (again Sy is identified with the subgroup
of T acting on the X, groups by permutation). In particular, the stabilizer
T, of x in T satisfies

Ty = ((T)ya X (Ta)xy) @ (Sa)y-

The Equation (5.8) for each j € {1, ..., d} together with Corollary 4.25 imply
that the character x satisfies

()? X TX7XP7X> >B7"7C (é X TX? é? X/)7
where \/ = ﬁ(x) =¥1 X -+ X Yq. Of course, since I' < T, we deduce
(X X fxa)NQX) >B?“,c (é X fxa é, X,)'
By Lemma 4.22 this finishes the proof. O

PrOOF OF THEOREM 5.27 . By Proposition 5.20 there exists some « €
Aut(X)" such that A* < B! &,, where B is the projection of Ax, on

Aut(X). Let m be the length of an A-orbit on {X1,...,X,}. Since I acts
transitively on the A-orbits, d = r/m is the number of A-orbits. Let 7 € &4

be as given in Proposition 5.22. Then A®” < (B16&,,)?% Let SNI)? ar DE
the f‘aT-equivariant bijection given by Proposition 5.33. Define Q 5.4 by
x = Qg 4o (x*7) for every x € IBry(X). It is easy to check that (NZX 4 18

X7Aom'
a I'-equivariant bijection. Use Lemma 4.22 to check the central character
triple isomorphism condition with respect to Q% ,. O

Universitat de Valencia Carolina Vallejo Rodriguez



5. Coprime action and Brauer characters 99

The importance of Theorem 5.27 for us is illustrated in the following
two results, which are consequences of it.

THEOREM 5.34. Suppose that A acts coprimely on a finite group G. Let
K < G be an A-invariant perfect subgroup. Suppose that G = KCg(A).
Write C = Cg(A) and M = K n C. Suppose further that A acts trivially
on N=Z(G) < K, K/N =51 x---x S, 8", where S is a non-abelian
simple group, and C A permutes transitively {S1,...,Sr}. If S satisfies the
inductive Brauer-Glauberman condition, then there exists a C-equivariant
bijection

V: IBra(K) — IBr(M),
such that
(Gxa K, X) > Br.c (va M, X/)

for every x € IBra(K) and x' = Q'(x).

PROOF. Since G = KCg(A), then C4(K) = C4(G) and we may as-
sume that A acts faithfully on K, i.e., A < Aut(K). Let S =S Let X be
the universal covering group of S. Then, X = X" is the universal covering
group of S. Write Z = Z()Z') Since K is a covering of S, there exists an
epimorphism e: X — K with L = ker(e) < Z. In fact, X is the universal
covering of K.

The map € induces an isomorphism Aut(X);, — Aut(K). Hence, the
groups A and C = CCq(K)/Cg(K) can be seen as groups of automorphisms
of X. In fact, under this identification, the group AC < AC Aut( )?)(A) acts

transitively on the factors of X. Since (JA[,|K|) = 1, we have (|4, |X]) = 1
by [Asc00, 33.12]. Write I' = CAut()?)(/U and C = C4(A)Z. By Theorem

5.27, there exists a r -equivariant bijection
Q= Qg ,: BBra(X) — IBra(C)
such that

<

( A fxa)?>X) >Br,c (é A fxa éaQ(X))

for every x € IBry(X). Since C < T', we have that € is C-equivariant and
(5.9) (X x 6)(7)?79() > Bre (C % éx,é,x’)

for every x € IBr(X) and x' = Q(x). By Definition 4.19(ii), we have that

for every x € IBr A(X), the characters x and x' = Q(x) lie over the same
character A € Z. We deduce easily that
Q(IBra(X | 11)) = IBra(C | 1z).
Note that €(C) = e(C3(4)Z) = Cx(A) = M and IBra(M) = IBr(M).
Hence (2 defines, via €, a C-equivariant bijection
Q' IBra(K) — IBr(M).
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Notice that C3 «(X) = Z, e(Z/L) = N = Z(K) = Cp,5(K) and L <
ker(x) n ker(y') for every y € IBry(X/L) and ¥’ = €(x) € IBra(C/L). By
Lemma 4.23, Equation (5.9) implies that

(K x Cy, K,X) >pBre (M xCy, M,X')

for every x € IBry(K) and x’ = Q'(x). Finally, a direct application of
Theorem 4.26 yields

(GxaKa X) >Br,c (nyMa X/)' O

COROLLARY 5.35. Suppose A that acts coprimely on G. Let K< G be A-
invariant. Suppose that G = KCg(A). Write C = Cg(A) and M = KnC.
Suppose further that A acts trivially on N = Z(G) < K, K/N = S; x

- x S, = 8", where S is a non-abelian simple group, and C A permutes
transitively {S1,...,S-}. If S satisfies the inductive Brauer-Glauberman
condition for the prime p, then there exists a bijection

Q' IBra(K) — IBr(M),
such that
(Gxa K7 X) >Br.c (Cxa M7 X/)
for every x € IBry(K) and x' = Q' (x).
PRrROOF. Let K7 = [K,K]. Since K/N is a direct product of simple
non-abelian groups, it follows that K is perfect and K = K1 N. Let Ny =

N n K. Notice that Cg(K7) = Cg(K). Also K is the central product of
Ky and N. Write M1 = M n Kj.

Let Qf: IBra(K;) — IBr(M;p) be the bijection given by Theorem 5.34.
Every x € IBry(K) has the form x - u, where x; € IBra (K1), p € IBr(N)
and both characters lie over the same Brauer character of N7. Define

QV: IBra(K) — IBr(M)
X1 i Qi (xa) - pe

It is clear that Q' is a C-equivariant bijection. Let x = x1 - p € IBry(K).
By Theorem 5.34 we have (Gy,, K1,x1) >Bre (Cyi, M1, (x1)). A direct
application of Lemma 4.28 implies

(GX7K7 X) >Br,c (CX7M7 Q/(X)) O

5.6. A reduction theorem

We are finally ready to prove Theorem G. Since we need to use a strong
inductive argument, we first prove a relative to normal subgroups version of
Theorem G below.

THEOREM 5.36. Let A act coprimely on G. Let N < G be stabilized by
A and write C = Cg(A). Let 6 € IBry(N). Suppose that the non-abelian
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sitmple groups involved in G/N satisfy the inductive Brauer-Glauberman con-
dition. Then

[IBra(G|0)| = [IBr(CN|0)|.
PRrROOF. We proceed by induction on |G : N|.

Step 1. We may assume 0 is G-invariant.
Let T = Gy. Then CN nT = (CN)y. By the Clifford correspondence for
Brauer characters (see Theorem 4.7) we have that

IIBr4(G|6)| = [IBr4(T|0)| and [IBr(CN|6)| = [IBr(CN ~ T|9)].

If T < G, then by induction hypothesis with respect to |T': N| < |G : NJ|,
we have that

IIBr4(T|0)| = |IBr(Cr(A)N|0)| = IB(CN ~ T|0)].

Step 2. We may assume that N < Z(GA) is a p'-group.
By Theorem 8.28 of [Nav98], there exists a strong isomorphism of modular
character triples
(o,7): (GA,N,0) — (I', M, )

such that M < Z(T') is a p/-group. Whenever N < H < GA, we write
H7 to denote the subgroup of I' such that 7(H/N) = H"/M. Then A =~
T(AN/N) = (AN)7 /M, so that (AN)" /M acts on G"/M as A acts on G/N
and (AN)7/M acts trivially on M. Therefore

(CN)"/M = 7(CN/N) = Cgrjn((AN)"/M) = Car ((AN)T) /M.

By Theorem 4.12(a), 6 extends to AN, and hence ¢ extends to (AN)7.
Recall that ¢ is a linear character since M < Z(I'). Let m be the set
of primes dividing |A|. Write ¢ = @ p. Recall that ¢, and ¢, the
m-part and 7’-part of ¢, are powers of ¢. In particular, ¢, extends to
(AN)T. If q ¢ m, then by Theorem 4.12(b) we have that ¢, extends to Q
for every Q/M € Syl (I'/M). Thus ¢, extends to I' by Theorem 4.11. By
parts (d) and (b) of Lemma 4.17, the modular character triple (I', M, ¢) is
strongly isomorphic to (T', M, ¢,/) and we may assume that ¢, is faithful.
Write ¢’ = . We have that |M| = o(¢’) is a #’-number. Hence M
has a complement B in (AN)” by Schur-Zassenhaus’ theorem [Isa08, Thm.
3.5]. Thus B acts coprimely on G” and (CN)"/M = Cg-(B)/M. Since
(GA, N, 0) is strongly isomorphic to (', M, ¢") we have that

[IBra(G|0)| = [Brp(G7|¢")| and [IBr(CNI6)| = [IBr(Ca-(B)|¢)].

Moreover, since G/N =~ G7/M, then the simple groups involved in G”/M
satisfy the inductive Brauer-Glauberman condition for the prime p. Hence,
the claim follows if it follows for G7, M, B and .

Step 8. We may assume G = KC for every A-invariant K with N <
K< G.
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Let N < K< G be A-invariant. We have that C acts on IBr4(K0). Let B be
a complete set of representatives of C-orbits on IBr4(K10). Let K < H < G
and v € IBr4(H|6). By Theorem 4.6, we have that H/K acts transitively on
IBr(¢ k). Also A acts on IBr(¢ ). Since (|A|,|H/K|) = 1, by Glauberman’s
Lemma [Isa76, Lem. 13.8] and [Isa76, Cor. 13.9] there is some A-invariant
character in IBr(¢x) and any two of them are C-conjugate. This proves
that every ¢ € IBr4(H|6) lies over a unique element of B. By the previous
argument for H = G and H = CK we have that

IBra(G|0)] = > [IBra(Gln)| and [Bra(CK|0)| = ) |IBra(CK|n)|.
neB neB

By the inductive hypothesis |IBra(G|n)| = [IBr(CK|n)| for every n € B.
Since A acts coprimely on CK/K and Ceg/x(A) = CK/K, we have that
IBr4(CK|n) = IBr(CK|n) by Lemma 5.3. Hence |IBr(G|6)| = [IBra(CK]|0)|.
If CK < G, then by induction |IBry(CK|6)| = |IBr(C|6)|, and the claim
follows.

Step 4. We may assume O,(G) = 1.
Write O = O,(G). If O > 1, then |G/O : NO/O| < |G : N|. By Lemma 4.4,
O < ker(p) for every ¢ € IBr(G). To prove the claim use that Cg/o(A) =
CO/O by coprime action and the inductive hypothesis.

Step 5. Every chief factor K/N of GA with K < G is a direct product
of isomorphic non-abelian simple groups and N = Z(G).
Let K /N be a chief factor of GA with K < G. We may assume that G = KC
by Step 3 and that K /N is not a p-group by Step 4. If K/N is a p’-group,
then [IBra(G|6)| = [IBr(C|6)| by Corollary 5.8. Hence we can assume that
G A has no abelian chief factor of the form K/N with K < G. In particular
N =Z(G).

Final Step. Let K/N be a chief factor of GA with K < G. By Step 4 we
may assume G = KC'. By Step 5 we have that K/N =~ S} x --- x S, where
the S; are simple non-abelian groups. Notice that C'A permutes transitively
the groups S; in K/N and hence they are all isomorphic. Since S = S is in-
volved in G/N, then S satisfies the inductive Brauer-Glauberman condition.
Write M = C n K. By Corollary 5.35 there is a C-equivariant bijection

Q': IBru(K) — IBr(M),

such that (Gy, K,n) >prc (Cy, M, (n)) for every n € IBra(K). We write
n = Q(n) for every n € IBry(K). Since N < Cg(K), then Q' actually
yields a bijection IBr4(K|0) — IBr(M|0). Let B be a set of representatives
of C-orbits on IBra(K|f). Every element of IBr4(G|0) lies over a unique
element of B as in Step 3. Since ) is C-equivariant, we have that the set
{n’ | n € B} is a complete set of representatives of C-orbits on IBr(M]|0).
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5. Coprime action and Brauer characters 103

Hence

[IBra(G|0)| = ), [1Bra(Gln)| and [IBr(C|0)] = Y [1Br(Cly')|.
neB neB

For every n € B, we have IBr4(G|n) = IBr(G|n) by Lemma 5.3 and
(Gﬂv K7 77) >B7’,C (CT]v Ma 77/)

by Corollary 5.35. In particular, |IBr(Gy|n)| = |[IBr(Cy|n’)| for every n € B.
The result follows then by using Theorem 4.7. O

COROLLARY 5.37. Let A be a group that acts coprimely on a group G.
Suppose that every simple non-abelian group involved in G satisfies the in-
ductive Brauer-Glauberman condition with respect to the prime p. Then the
actions of A on the irreducible Brauer characters of G and on the p-regular
classes of G are permutation isomorphic

ProOOF. For every B < A, Theorem 5.36 with N = 1 and B playing
the role of A guarantees that |IBrg(G)| = |IBr(Cg(B))|. The map K —
K n Cg(B) is a well-defined bijection between the set of B-invariant p-
regular classes of G and the set of p-regular conjugacy classes of Cg(B).
Hence the number of B-invariant irreducible Brauer characters of G equals
the number of B-invariant p-regular conjugacy classes of G. By Lemma
13.23 of [Isa76], this proves the statement. O

5.7. Some examples

In this final section, we try to answer some questions naturally related to
our topic. Recall that if A acts coprimely on G and p is a prime, then we
are studying if

[IBra(G)| = [IBr(C)],

where C' = Cg(A) (with respect to p-Brauer characters). If G is p-solvable,
then we have already mentioned that K. Uno [Uno83| proved the above
equality. In fact, he established a canonical bijection

*: IBra(G) — IBr(Cg(A))
which behaves exactly as the Glauberman correspondence. In particular, if
A is a g-group for some prime ¢ and ¢ € IBry(G), then
po = ep” +qA,

where ¢ does not divide e, and A is zero or a Brauer character of C. It
is natural to ask if the equation above holds without restrictions on the
structure of G. Unfortunately, the next example shows that the answer is
negative.

We let G be the simple group ?Ba(2) of order 26 -5-7-13. It is well
known that G has an automorphism o of order 3. Call A = (o). Then

C = Ca(A) = C5: Cy
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is a Frobenius group of order 22-5. Let us set p = 13. The irreducible charac-

ters of G can be written as {x1, @14, f14, @35, 535, V35, X64> @65, 565, V655 X91 }+
where the subscript in each case denotes the degree of the character. Fur-
thermore, every irreducible character lifts an ordinary p-Brauer character,
except the character of degree 64. We can write

IBI‘(G) = {@17 P2, P3, P4, L5, Y6, L7, 808}7

where 1 = (x1)?, p2 = (a14)°, @3 = (B14)°, @4 = (a35)® = (B35)° = (735)°,
o5 = (635)°, w6 = (Bss)’s o7 = (7165)° s = (x901)°. Also

(X64)0 = 1+ Y2 + P3 + Q4.
We have checked that

IBI‘A(G) = {Soly Y2, L3, P4, 308}

The centralizer C' is a p/-group, and Irr(C) = {1,\,¢,€ 0}, where € is a
linear character of order 4, A = €2 and §(1) = 4. We have computed the
restrictions of the A-invariant Brauer characters to C.

(¢1)c = 1co

v2)c = 26 + 30

903)0 =2+ 360
0)c=2-1co+3\+e+eE+ 76
©wg)c =3 1oo + 4\ + 6e + 6 + 185 .

(

(

(

(
Hence, we see that all the restrictions have a unique irreducible constituent
with multiplicity not divisible by 3, except for ¢4 whose restriction has 4
irreducible constituents with multiplicity not divisible by 3. This fact is not
surprising in this case where C' is a p’-group, since every ¢ € IBr4(G) differ-
ent from ¢4 lifts to a unique x € Irr(G), that is, therefore, A-invariant. Hence
pco = xc has the desired decomposition by Glauberman’s correspondence.
Also, we see that (4 does not lift to an A-invariant ordinary irreducible
character. This raises a natural question on the Glauberman-Isaacs corre-
spondence: if x € Irr4(G) lifts ¢ € IBr(G), is it true that the Glauberman-
Isaacs correspondent x* € Irr(Cg(A)) lifts an irreducible Brauer character
of C(A)? This is the case for p-solvable groups, as shown in [SG94].

We come back to our example. If we were asked to establish a natural
bijection between IBr4(G) and IBr(C'), we would give

1= 1co
P2 — €
p3 — €
P4 >0
pg > AL
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5. Coprime action and Brauer characters 105

As a curiosity, we remark that the fields of values between character corre-
spondents under this bijection are the same.

Q(p2) = Qi) = Q(e)
Q(p3) = Qi) = Q(e)
Qps) = Q = Q(9)
Qps) =Q=Q(N).

It is not totally reasonable to expect that something like this is going to
happen in general, since as we know by now Gal(Q|g|/Q) does not act on
IBr(G). (Moreover, for every ¢ € IBra(G), we see that there exists some
g € C° such that o(g) = fo- In the ordinary case, since the Glauberman-
Isaacs correspondence preserves fields of values, Feit’s conjecture implies
that if x € Irr4(G), then there exists some ¢ € C(A) such that o(c) = fy.)

We come back for a moment to ordinary character theory. Let ¢ be a
prime. It is well-known that the proof of the McKay conjecture in the g-
solvable case heavily depends on the Glauberman correspondence. In fact,
in groups with a normal g-complement, the McKay conjecture is essentially
the Glauberman count. Namely, if G = K x @, where @ € Syl (G), then

N = Ng(Q) = Cx(Q) x @, by elementary group theory. Therefore
Irry (N)| = [Irr(Ck (Q))]|1Q/Q').

Also, every x € Irry (G) restricts to 0 = xx € Irrg(K) (by Theorem 1.10).

Conversely, every 0 € Irrg(Q) extends canonically to 0 € Irry (G) (by Theo-
rem 1.13). Hence, by Gallagher’s theory (see Theorem 1.12, we have that

Irry (G) = {B6 | for 6 erg(K) and S € Irr(Q/Q)},

where we identify the characters of /@’ with the characters of G/KQ') it
follows that

Iy (G)] = |Q : @[Tk (Q)].
Therefore, the McKay conjecture in this case reduces to the Glauberman
count |Irrg(K)| = [Irr(Cg (Q))].

Now, we slightly change the notation that we have used throughout this
chapter. Recall that we have been studying whether or not the equality

[IBrq(K)| = [IBr(Ck(Q))|

holds whenever a group @ acts coprimely on K (with respect to p-Brauer
characters, where p is any prime). Suppose that @ is a g-group and let
G = K x Q. In view of the previous discussion it makes sense to ask if

[IBry (G)] = [1Bry (NG(Q))]

(Notice that this is a version of McKay for (p)-Brauer characters in the
simplest case in which the group has a normal ¢-complement.) The answer
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is negative, as pointed out to us by P. H. Tiep. If K = SL3(32), ¢ = 5,
Q=0C5 G=KxQand p =31, then

[IBry(G)] # [1Bry (NG(Q))|

Since @ is cyclic, in this case, we do have that |[IBrg(K)| = [IBr(Cx(Q))|.
The problem is that degrees of irreducible Brauer characters do not divide
the order of the group. In some sense, this example explains why the McKay
and the coprime counting conjectures, need separate reductions. Although
closely related, there does not seem a simultaneous generalization of both
of them.
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