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Resumen

Uno de los temas más importantes en teoŕıa de grupos finitos es el estudio
de la relación entre los invariantes globales y locales de un grupo. Sea G
un grupo finito y p un primo. Los p-subgrupos de G son los subgrupos
de G cuyo orden es una potencia de p, y los subgrupos locales de G son los
normalizadores propios de p-subgrupos de G. Como paradigma de todo esto,
podemos citar un teorema clásico de Frobenius, que ha inspirado muchos
resultados recientes. Este teorema establece que un grupo G posee un p-
complemento normal si y sólo si cada uno de sus subgrupos locales tiene un
p-complemento normal.

En esta tesis, nuestra atención se centra en el estudio de caracteres de
grupos finitos; tanto ordinarios, aquellos asociados a una representación so-
bre el cuerpo de los números complejos, como modulares, aquellos asociados
a una representación sobre un cuerpo de caracteŕıstica p. Nos interesa espe-
cialmente la relación entre los caracteres de un grupo G y los caracteres de
sus subgrupos locales. La conjetura de McKay es el ejemplo clave del tipo
de problemas en el que estamos interesados. Esta conjetura es un problema
central dentro de toda la teoŕıa de representaciones y de caracteres de gru-
pos finitos. Si G es un grupo finito y p es un primo, la conjetura de McKay
afirma que tanto G como el normalizador de un p-subgrupo de Sylow de G
tienen el mismo número de caracteres irreducibles de grado no divisible por
p. Por tanto, predice la existencia de una biyección entre tales conjuntos de
caracteres. El caṕıtulo 3 de este trabajo trata de un caso particular de esta
conjetura en el que no sólo encontraremos una biyección de tipo McKay,
sino que esta biyección será natural.

Como hemos mencionado, nos interesa relacionar los caracteres de un
grupo G con los caracteres de sus subgrupos locales. La situación es es-
pecialmente atractiva cuando podemos establecer esa relación a través de
correspondencias naturales. Quizá, el ejemplo más representativo sea la
correspondencia de Glauberman. Supongamos que un p-grupo P actúa so-
bre un grupo K cuyo orden no es divisible por p. Entonces existe una
biyección natural ˚ entre los caracteres irreducibles de K que son fijados por
la acción de P , denotamos por IrrP pKq a este conjunto, y los caracteres ir-
reducibles del grupo C “ CKpP q de puntos fijados por la acción. De hecho,
si χ P IrrP pKq, entonces

χC “ eχ˚ ` p∆,
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donde e es un número natural no divisible por p y ∆ es o bien un carácter
de C o bien es cero. Por tanto, χ˚ es la única constituyente del carácter χC
que aparece con multiplicidad no divisible entre p. Vemos que χ determina
canónicamente a χ˚ y lo mismo ocurre en sentido contrario.

La palabra natural ya ha aparecido en varias ocasiones en este resumen.
De hecho, volverá a aparecer en distintas situaciones a lo largo de este tra-
bajo. Por tanto, conviene que aclaremos qué entendemos cuando tildamos
una biyección de natural o canónica. Para ello, usaremos palabras de I.
M. Isaacs. La siguiente cita está extráıda (y traducida) del important́ısimo
art́ıculo de 1973 [Isa73] en el que I. M. Isaacs prueba la conjetura de McKay
en el caso en que el orden de G es impar: !La palabra“natural” quiere decir
que la correspondencia se construye a través de un algoritmo y que el resul-
tado es independiente de cualquier elección tomada al aplicar el algoritmo".

Sea χ un carácter de G. El cuerpo de valores Qpχq de χ es la menor de
las extensiones de cuerpo de Q que contiene todos los valores de χ. Si nos
encontramos en la situación de tener una correspondencia de Glauberman
y los caracteres χ y χ˚ se corresponden, entonces sus cuerpos de valores
coinciden Qpχq “ Qpχ˚q. Esto se debe a que la biyección ˚ conmuta con la
acción de automorfismos de Galois sobre caracteres. En general, esperamos
que las biyecciones naturales no sean meras biyecciones entre conjuntos,
es decir, que tengan propiedades adicionales. Por ejemplo, esperamos que
conmuten con la acción de ciertos automorfismos de Galois y con la acción de
ciertos automorfismos de grupo. En este sentido, las biyecciones naturales
deben proporcionar más información que relacione la estructura global y
local del grupo.

Guión de la tesis

Todos los grupos que consideramos en esta tesis son finitos. Los primeros
tres caṕıtulos de la tesis tratan sobre caracteres ordinarios, mientras que
los dos últimos están dedicados al estudio de caracteres modulares, también
conocidos como caracteres de Brauer. Los resultados originales que contiene
esta tesis aparecen en los siguientes art́ıculos [NV12], [Val14], [NTV14],
[NV15], [SV16] y [Val16].

En el caṕıtulo 1 exponemos la teoŕıa de caracteres ordinaria básica que
vamos a usar a lo largo de la tesis. Nuestra referencia para caracteres or-
dinarios es [Isa76]. También incluimos en este caṕıtulo una pequeña ex-
posición de la teoŕıa de Bπ-characteres de Isaacs que, aunque no es ele-
mental, será usada con bastante frecuencia a lo largo de este trabajo (en los
caṕıtulos 2, 3 y 4). Finalmente, y para la comodidad del lector, presentamos
al final de este primer caṕıtulo resultados bien conocidos sobre los grupos
PSL2pqq, puesto que estos constituyen todo el bagaje sobre grupos simples
que necesitaremos en el caṕıtulo 3.
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En el caṕıtulo 2 empieza nuestro trabajo original. Un carácter lineal λ
de un grupo G no es más que un homomorfismo G Ñ Cˆ. Por tanto, los
caracteres lineales son los más fáciles de comprender. También, un grupo es
abeliano si y sólo si todos sus caracteres son lineales. Un carácter χ de G se
dice monomial si está inducido a partir de algún carácter lineal. Desde esta
perspectiva, los caracteres monomiales también deben ser fáciles de entender.
Sin embargo, los grupos en los que todos los caracteres son monomiales son
muy dif́ıciles de entender. De hecho, varios problemas importantes sobre
ellos siguen abiertos [Nav10]. Además, no existen demasiados resultados
que garanticen que un cierto carácter es monomial. Una excepción es un
bonito resultado de R. Gow [Gow75]: un carácter racional de grado impar
en un grupo resoluble es monomial. Nosotros extendemos este resultado de
Gow en los Teoremas A y B. Estos dos resultados son, por tanto, criterios
para asegurar la monomialidad de un carácter, y tienen que ver con los
cuerpos de valores de los caracteres aśı como con sus grados. Además, la
conclusión del Teorema B nos permite construir una correspondencia natural
de tipo global/local, hecho que mostramos en el Teorema C.

Si usamos la teoŕıa de Bπ-caracteres de Isaacs, la conclusión del Teorema
B puede hacerse más fuerte. Lo bueno es que esta nueva conclusión nos
permite dar una nueva forma de calcular un invariante global de un grupo
de forma local. Este es el contenido de la sección 2.3.

Concluimos el caṕıtulo 2 estudiando una conjetura de Feit [Fei80]. Si χ
es un carácter de un grupo G, escribimos fχ para denotar al menor natural
n de forma que Qpχq Ď Qn (donde Qn es el cuerpo ciclotómico que resulta
de adjuntar a Q una ráız primitiva n-ésima de la unidad).

Conjetura (Feit). Sea G un grupo finito y sea χ un carácter irreducible
(ordinario) de G. Existe un elemento g P G de forma que el orden de g es
exactamente fχ.

Esta conjetura fue probada para grupos resolubles por G. Amit y D.
Chillag en [AC86]. Nosotros probamos una versión global/local del teorema
de Amit y Chillag en nuestro Teorema D. La prueba del Teorema D requiere
el uso de la teoŕıa de caracteres especiales de Gajendragadkar y el uso del
carácter mágico ψ que Isaacs define en su ya mencionado art́ıculo [Isa73].

En el caṕıtulo 3 estudiamos el caso autonormalizante de la conjetura
de McKay. Sea p un primo y sea P un p-subgrupo de Sylow de G. En el
Teorema E probamos que si NGpP q “ P y p es impar, entonces existe una
biyección natural entre los caracteres irreducibles de G de grado no divisible
por p y los caracteres del grupo abeliano P {P 1. Para probar el Teorema E
está hemos necesitado la descripción del comportamiento de los caracteres
de PSL2pqq bajo la acción de automorfismos de cuerpo y un resultado general
de extensión de caracteres que probamos en la sección 3.3. Cabe mencionar
que la conclusión del Teorema E es cierta sin restricciones sobre el primo p
si asumimos que el grupo G es p-resoluble.
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La correspondencia natural dada en el Teorema E está descrita en tér-
minos de la restricción de caracteres de G a P . Como consecuencia de
ello, conmuta con la acción de automorfismos de Galois y con la acción de
cualquier automorfismo de G que estabilice a P . Estas propiedades hacen
que el Teorema E tenga como corolario una caracterización de los grupos
que tienen un p-subgrupo de Sylow autonormalizante para p impar. Discu-
tiremos este corolario en la sección 3.4.

En la sección 3.5 estudiamos una extensión del Teorema E al caso en que
NGpP q “ CGpP qP . En este caso nuestra biyección natural sólo se da entre
caracteres que pertenecen al bloque principal. En el Teorema F probamos
que si NGpP q “ CGpP qP y además G es p-resoluble, entonces existe una
biyección natural de tipo McKay para G (y esta biyección coincide con la
dada por el Teorema E cuando NGpP q “ P ).

El caṕıtulo 4 proporciona al lector la teoŕıa de caracteres modular nece-
saria para desarrollar el caṕıtulo 5. La primera parte contiene resultados
bien conocidos sobre caracteres de Brauer, mientras que, en la segunda parte,
probamos resultados más espećıficos. Procedemos de esta forma ya que la
naturaleza del caṕıtulo 5 es muy técnica.

La sección 4.1 es un compendio de resultados sobradamente conocidos
sobre caracteres de Brauer. Nuestra referencia en este caso es [Nav98].
En la sección 4.2, introducimos la noción de isomorfismo central de ternas
de caracteres modulares (que es análoga a la noción de isomorfismo central
de ternas de caracteres ordinarios definida por G. Navarro y B. Späth en
[NS14]) y estudiamos propiedades de las ternas de caracteres que son cen-
tralmente isomorfas. En la sección 4.3 introducimos el concepto de acción
de Galois pretendida (cuando nos movemos en un terreno muy técnico, la
traducción al castellano no es muy agradable). Estas pretendidas acciones
de Galois servirán para compensar el hecho de que los automorfismos de
Galois no actúan sobre los caracteres irreducibles de Brauer. En el caṕıtulo
5 motivamos esta definición.

En el caṕıtulo 5, estudiamos una versión modular de la igualdad de
cardinales derivada de la correspondencia de Glauberman-Isaacs. Suponga-
mos que un grupo A actúa sobre un grupo G y que, además, p|G|, |A|q “
1. Entonces, por la correspondencia de Glauberman-Isaacs se tiene que el
número de caracteres irreducibles ordinarios de G que son fijados por la
acción de A coincide con el número de caracteres irreducibles ordinarios del
grupo CGpAq de puntos fijados por la acción. K. Uno [Uno83] probó que
lo mismo ocurre para caracteres de Brauer (con respecto al primo p) si el
grupo G es p-resoluble. El siguiente problema aparece en [Nav94].

Conjetura. Supongamos que un grupo A actúa sobre un grupo G y
que, además, p|G|, |A|q “ 1. Sea C “ CGpAq. Denotemos por IBrApGq
al conjunto de caracteres irreducibles de Brauer de G fijados por A y por
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IBrpCq al conjunto de caracteres irreducibles de Brauer de C. Entonces

|IBrApGq| “ |IBrpCq|.

El resultado principal del caṕıtulo 5 es un teorema de reducción para
la conjetura anterior. Dicho de una forma más precisa, en el Teorema G
probamos que si todos los grupos finitos simples satisfacen lo que llamamos
la condición inductiva de Brauer-Glauberman, entonces la conjetura ante-
rior se satisface para grupos cualesquiera G y A. En la última sección de
este trabajo 5.7, pretendemos responder algunas preguntas naturalmente
relacionadas con el tema de este último caṕıtulo, aśı como plantear nuevas
cuestiones.
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Introduction

One of the main topics in the Theory of Finite Groups is the study of the
relationship between the global and the local invariants of a finite group.
Let G be a finite group, and let p be a prime. The p-subgroups of G are
the subgroups of G of order a power of p, and the local subgroups of G are
the proper normalizers of the p-subgroups of G. A paradigmatic example of
this is an old theorem of Frobenius, which has inspired many recent results,
that asserts that a group G has a normal p-complement if and only if every
local subgroup has a normal p-complement.

In this thesis we focus our attention on characters: ordinary characters,
associated with representations over the field of complex numbers, and mod-
ular characters, associated with representations over fields of prime charac-
teristic p. We are particularly interested in the relation between the char-
acters of G and the characters of the local subgroups of G. A fundamental
example of the kind of problems we are interested in is the McKay conjec-
ture, which is nowadays at the center of the Representation and Character
Theory of Finite Groups. If p is a prime and G is a finite group, then the
McKay conjecture asserts that G and the normalizer of a Sylow p-subgroup
of G have the same number of ordinary irreducible characters of degree
not divisible by p (therefore predicting the existence of a bijection between
these two character sets). Chapter 3 of this work concerns a particular case
of this conjecture in which not only can we find a bijection but a natural
correspondence.

As we said, we are interested in relating the characters of G and the
characters of the local subgroups of G. The situation is especially appealing
if we can establish this relation by means of natural correspondences. The
canonical example of the type of character correspondence that interests us
is the Glauberman correspondence. If a p-group P acts on a group K of
order not divisible by p, then there is a natural bijection ˚ between the set
of irreducible ordinary characters of K fixed under the action of P , denoted
IrrP pKq, and the irreducible characters of the subgroup C “ CKpP q of
points fixed under the action. In fact, if χ P IrrP pKq, then the restriction
χC of χ to C can be written as

χC “ eχ˚ ` p∆,
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where p does not divide e, and ∆ is zero or a character of C. Hence we see
that χ canonically determines χ˚ and viceversa.

The word natural has appeared more than once in this introduction and
we will talk again about natural or canonical correspondences throughout
this work. We feel it is worth mentioning what we mean by that. We shall
not give an exact definition of what it is, instead we quote I. M. Isaacs in
his landmark paper [Isa73] (in which he proved the McKay conjecture for
groups of odd order): !The word “natural” is intended to mean that an
algorithm is given for constructing the correspondence and that the result
is independent of any choices made in application of the algorithm".

Let χ be an ordinary character of a group G. The field of values Qpχq
of χ is the smallest field extension of Q containing all the values of χ. In
the Glauberman correspondence situation, if χ and χ˚ are correspondents,
then Qpχq “ Qpχ˚q. This is because ˚ commutes with the action of Galois
automorphisms. In general, we expect natural correspondences of characters
to have more properties than being a mere bijection. For instance, natural
correspondences are expected to commute with certain Galois actions and
with the action of certain group automorphisms, and therefore they should
provide additional information as relating the global and the local structure.
In this sense, the benefits of having natural bijections are multiple.

We come back to the Glauberman correspondence as in the third para-
graph of this introduction. At first sight, it does not seem to go from global
(a finite group G) to local (a local subgroup of G), but this is only superfi-
cial. If a p-group P acts on a group K with p|P |, |K|q “ 1, then we form the
semidirect product G “ K ¸ P and we notice that NGpP q “ C ˆ P , where
C “ CGpP q. By using some elementary character theory, one can show
that the Glauberman correspondence implies that a natural bijection exists
between the set irreducible ordinary characters of G of degree not divisible
by p, and the set of irreducible ordinary characters of NGpP q of degree not
divisible by p. Hence, the McKay conjecture in the case where the group G
has a normal p-complement follows from the Glauberman correspondence.

Outline of the thesis

All the groups we will consider in this work are finite unless otherwise stated.
The first three chapters of this thesis concern ordinary characters and the
last two chapters are devoted to modular characters (which are also known
as Brauer characters). The original results contained in this thesis appear in
[NV12] (joint work with G. Navarro), [Val14], [NTV14] (joint work with
G. Navarro and P. H. Tiep), [NV15] (joint work with G. Navarro), [SV16]
(joint work with B. Späth) and [Val16].

Chapter 1 is an expository chapter containing the background on or-
dinary character theory needed for the rest of the work. Our reference is
[Isa76]. We also include a brief exposition of Isaacs Bπ-theory since this
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deep theory will be used in Chapters 2, 3 and 4 of the present work. Fi-
nally, for the reader’s convenience we present some well-known results about
groups of type PSL2pqq that essentially constitute the background on simple
groups needed in Chapter 3.

In Chapter 2 we start our original work. A linear character λ of a group
G is just an homomorphism GÑ Cˆ. Hence, linear characters are the eas-
iest to understand. A character χ is said to be monomial if there exists a
subgroup U of G and a linear character λ of U such that λ induces χ. Thus,
from this perspective, monomial characters should also be easy to under-
stand. However, groups in which every character is monomial are actually
very hard to understand and still several open problems on them remain
unsolved (see Section 12 of [Nav10]). Also, it is unfortunate that there are
not many conditions known for a character to be monomial. In [Gow75]
R. Gow proved that an odd degree rational-valued irreducible character of
a solvable group is monomial. We extend Gow’s result in Theorems A and
B. Both results are monomiality criteria which deal with fields of values and
degrees of characters. The conclusion of Theorem B allows us to construct
natural correspondences of characters of global/local type in Theorem C.

We actually found that the conclusion of Theorem B could be strength-
ened by using Isaacs Bπ-theory, and this stronger conclusion leads to a new
way of computing a global invariant of a group locally. This is the content
of Section 2.3.

We conclude Chapter 2 by studying a conjecture of Feit [Fei80]. For a
character χ of a group G, we write fχ to denote the smallest integer n such
that Qpχq Ď Qn (where Qn is the cyclotomic field obtained by adjoining a
primitive n-th root of unity to Q).

Conjecture (Feit). Let G be a finite group and let χ be an irreducible
character of G. Then there exists an element g P G whose order is exactly
fχ.

This conjecture is known to hold for solvable groups by work of G. Amit
and D. Chillag [AC86]. We prove a global/local version of Amit-Chillag’s
theorem in Theorem D. The proof of Theorem D requires highly non-trivial
results on solvable groups: properties of Gajendragadkar special characters
and properties of the magical character ψ defined in the above-mentioned
paper of I. M. Isaacs [Isa73].

In Chapter 3 we study the self-normalizing case of the McKay conjec-
ture. Let p be a prime and let P be a Sylow p-subgroup of a group G. If
NGpP q “ P and p is odd, then in Theorem E we prove that there exists
a natural correspondence between the irreducible characters of G of degree
not divisible by p and the irreducible characters of the abelian group P {P 1.
Among other things, the proof of Theorem E requires the description of the
behavior of the character theory of PSL2pqq under the action of field auto-
morphisms (given in Section (15B) of [IMN07]) and a key general extension
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theorem that we prove in Section 3.3. We mention that the conclusion of
Theorem E also holds without any restriction on p if G is assumed to be
p-solvable.

The natural correspondence given by Theorem E can be entirely de-
scribed in terms of the restriction of characters of G to P . Moreover, it
commutes with Galois action and the action of automorphisms of G that
stabilize P . These properties lead to an interesting consequence: a charac-
terization of groups having a self-normalizing Sylow p-subgroup for odd p,
that we discuss in Section 3.4.

In Section 3.5 we study an extension of Theorem E to the case where
NGpP q “ CGpP qP and p is odd, but only between characters in the re-
spective principal blocks. In Theorem F, we prove that if G is p-solvable
and NGpP q “ CGpP qP , then there exists a natural McKay correspondence
(which in the case where NGpP q “ P is the one given by Theorem E).

Chapter 4 provides the modular character-theoretical background for
Chapter 5. The first part provides the basic background on Brauer charac-
ters. Due to the highly technical nature of the results contained in Chapter
5, in the second part of Chapter 4 we prove more specialized results on
Brauer characters.

In Section 4.1 we collect well-known results on Brauer characters. Our
reference is [Nav98]. In Section 4.2 we introduce the notion of central
isomorphism of modular character triples (which is analogous to the notion
of central isomorphism of ordinary character triples defined by G. Navarro
and B. Späth in [NS14]) and we study its properties. In Section 4.3 we
introduce the concepts of fake Galois conjugate (modular) character triples
and fake Galois actions. Fake Galois actions try to remedy the fact that,
in general, the Galois group GalpQ|G|{Qq does not act on the irreducible
Brauer characters of the group G (they will be key in Chapter 5).

In Chapter 5 we study a modular version of the Glauberman-Isaacs
bijection. Let A act on G with p|A|, |G|q “ 1. By the Glauberman-Isaacs
correspondence, the number of irreducible ordinary characters of G fixed
under the action of A equals the number of irreducible ordinary characters
of the subgroup CGpAq of fixed points. By work of K. Uno [Uno83], the
same holds for p-Brauer characters whenever G is a p-solvable group. The
following was asked in [Nav94].

Conjecture. Suppose that a group A acts on G with p|A|, |G|q “ 1.
Write C “ CGpAq. Also write IBrApGq to denote the set of irreducible
Brauer characters of G fixed under the action of A and IBrpCq to denote
the set of irreducible Brauer characters of C. Then

|IBrApGq| “ |IBrpCq|.

The main result of Chapter 5 is a reduction theorem for the above conjec-
ture. More precisely, in Theorem G we prove that if every simple non-abelian
group satisfies what we call the inductive Brauer-Glauberman condition then
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the above conjecture holds for all groups G and A. In the final Section 5.7
we intend to answer (and raise) some questions related to this topic.
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CHAPTER 1

Preliminaries on ordinary character theory of
finite groups

Unless otherwise stated all groups considered are finite.

1.1. Algebras, representations and characters

Let F be a field. Given a group G, the group algebra F rGs of G over F
consists of all the formal sums

ÿ

gPG

agg,

where ag P F for every g P G. The group algebra F rGs is an F -vector space
in the obvious way. The elements of G can be viewed as elements of F rGs
via the identification of g P G with the formal sum

ř

xPG axx where ag “ 1
and ax “ 0 for x ‰ g. In fact, the elements of G form an F -basis of F rGs.
Define the product of two elements of G in F rGs as the product in G and
extends this definition of product to all F rGs by linearity. Then F rGs is an
F -algebra.

An F -representation X of the group G is a homomorphism

X : GÑ GLnpF q,

where GLnpF q denotes the group of invertible matrices of size nˆn over F .
The positive integer n is called the degree of the F -representation X.

Let X be an F -representation of G. We can extend X to the group
algebra F rGs by linearity and we obtain an algebra homomorphism

F rGs Ñ MatnpF q,

where MatnpF q denotes the F -algebra of square matrices of size nˆ n over
F . Conversely, any algebra homomorphism F rGs Ñ MatnpF q yields an
F -representation of G by restriction to elements of G.

Two F -representations X and Y of G are said to be similar if there
exists some M P GLnpF q such that Xpgq “M´1YpgqM for every g P G.

Let X be an F -representation of G. We say that X is reducible if X
is similar to an F -representation Y of G in block upper triangular form

with at least two blocks. Note that Y has the form

ˆ

Y1 Z
0 Y2

˙

and

1



2 1.1. Algebras, representations and characters

(by the product formula for matrices in block form) Y1 and Y2 are F -
representations of G of degree strictly lower than the degree of X. We say
that X is irreducible if X is not reducible.

An F -character of a group G is defined as the trace function χ of an F -
representation X of G (we say that X affords χ). The trace is an invariant
under similarity in MatnpF q, so the following is straightforward from the
definitions.

Lemma 1.1. Let F be a field and let G be a group.

(a) Every F -character of G is constant on conjugacy classes of G.
(b) Similar F -representations afford the same F -character.

Let χ be an F -character of G and let X : G Ñ GLnpF q be an F -
representation affording χ. The number n is called the degree of χ. Notice
that the degree of χ is the degree of any F -representation affording χ. We say
that an F -character χ of G is irreducible if an F -representation affording
χ is irreducible.

If X and Y are two F -representations of G, then

Zpgq “

ˆ

Xpgq 0
0 Ypgq

˙

defines an F -representation of G. Let χ be the F -character afforded by X
and ψ by the F -character afforded by Y. Then, it is obvious that χ ` ψ is
the F -character afforded by Z. Thus, sums of characters are also characters.
Moreover, a character χ is irreducible if χ cannot be written as the sum of
two characters.

From now on, and unless otherwise stated, we fix F “ C. (We refer to
complex characters just as characters or sometimes as ordinary characters.)
We denote by IrrpGq the set of irreducible characters of G. The map sending
every g P G to 1 P Cˆ is a representation of G of degree one. The character
afforded by this representation 1G is the principal character of G. A
linear character λ of G is a character of G of degree equal to 1. In
this case, λ is a homomorphism G Ñ Cˆ. Of course, linear characters are
irreducible.

Theorem 1.2. Let G be a group. The number of irreducible characters
of G is equal to the number of conjugacy classes of G.

Proof. See Corollary 2.7 of [Isa76]. �

We have seen that similar representations afford the same character. In
the complex case, it is remarkable that most of the relevant information
contained in a representation can be recovered from its trace.

Theorem 1.3. Let G be a group, two representations X and Y are sim-
ilar if and only if they afford the same character.

Proof. See Corollary 2.9 of [Isa76]. �
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1. Preliminaries on ordinary character theory of finite groups 3

A class function on a group G is a function ϕ : G Ñ C constant on
conjugacy classes. It follows from Lemma 1.1 that every character is a class
function. We usually denote the set of class functions by cfpGq. The set
cfpGq has a structure of vector space in the natural way. It is clear that the
dimension of cfpGq is equal to the number of conjugacy classes of G.

Theorem 1.4. Let G be a group. The set IrrpGq is a basis of cfpGq.
Moreover, every character χ of G can be expressed as a sum of irreducible
characters of G.

Proof. See Theorem 2.8 of [Isa76]. �

By Theorem 1.4, if ψ is a character of G, then we can write

ψ “
ÿ

χPIrrpGq

aχχ,

where the aχ are non-negative integers. If aχ ‰ 0, then χ is called a con-
stituent of χ and aχ is the multiplicity of χ as a constituent of ψ.

Let ϕ and θ be two characters of a group G, we define the product ϕθ
for each g P G as

ϕθpgq “ ϕpgqθpgq.

It can be proved that there exists a representation affording ϕθ (see Theorem
4.1 and Corollary 4.2 of [Isa76]). Hence, products of characters are also
characters.

Let ClGpg1q, . . . ,ClGpgkq be the conjugacy classes of G (where gi P G
are conjugacy class representatives and g1 “ 1) and let χ1, . . . , χk be the
irreducible characters of G (set χ1 “ 1G the principal character of G). The
k ˆ k matrix XpGq “ pχipgjqq

k
i,j“1 is known as the character table of G.

The character table codifies fundamental information about the group. The
first column of the character table is the multiset of degrees of the irreducible
representations of G.

Theorem 1.5. Let G be a group. Then

|G| “
ÿ

χPIrrpGq

χp1q2.

Proof. See Corollary 2.7 of [Isa76]. �

Hence, the first column of the character table of G determines |G|. Also,
as a consequence of this result, we obtain that the group G is abelian if and
only if every irreducible character of G is linear. The following is another
fundamental relation between the degrees of irreducible characters and the
order of the group.

Theorem 1.6. Let χ P IrrpGq. Then χp1q divides |G|.

Proof. See Theorem 3.11 of [Isa76]. �
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4 1.1. Algebras, representations and characters

We can define an inner product on the vector space cfpGq. Let ϕ, θ P
cfpGq. We set

rϕ, θs “
1

|G|

ÿ

gPG

ϕpgqθpgq P C,

where we denote by ω the complex conjugate of ω P C. It is easy to check
that r , s satisfies the axioms of an inner product. Indeed r , s makes cfpGq
into a finite dimensional Hermitian space.

By the First Orthogonality Relation (see Corollary 2.4 of [Isa76]), if
χ, ψ P IrrpGq then

rχ, ψs “ δχψ,

where δij is the Kronecker delta symbol. In particular, IrrpGq is an orthonor-
mal basis for cfpGq with respect to the inner product r , s. The Second
Orthogonality Relation (see Theorem 2.13 of [Isa76]) is a consequence of
the first one and states that if g, h P G, then

ÿ

χPIrrpGq

χpgqχphq

is equal to |CGpgq| if g and h are conjugate, and is zero otherwise.

Let χ P IrrpGq. The map χ : G Ñ C defined by χpgq “ χpgq is a class
function of G. By Lemma 2.2(c) of [Nav98], if V is a CrGs-module affording
χ, then V ˚ “ HomCpV,Cq is a CrGs-module affording χ. (The proof of
Lemma 2.2(c) also applies for ordinary characters, we give this reference
since, unlike in [Isa76], a module affording χ is provided.) Hence χ P IrrpGq
and χpgq “ χpg´1q for every g P G. We call χ the complex conjugate of
χ.

Let χ be a character of G. We define the kernel of χ as

kerpχq “ tg P G | χpgq “ χp1qu.

Lemma 1.7. Let χ be a character of G and let X be a representation
affording χ. Then

kerpχq “ kerpXq.

In particular, the kernel of χ is a normal subgroup of G.

Proof. See Lemma 2.19 of [Isa76]. �

We say that the character χ is faithful if kerpχq “ 1.

Let N Ÿ G and let χ be a character of G such that N Ď kerpχq. If
we define χpgNq “ χpgq for every g P G, then χ is a character of G{N .
Conversely, if χ is a character of G{N then the function χpgq “ χpgNq is a
character of G, and obviously N Ď kerpχq. In both cases, χ is irreducible if
and only if χ is irreducible (see Lemma 2.22 of [Isa76]). Usually we shall
identify χ and χ. In general, we can identify the characters of G{N with
the characters of G containing N in their kernel.

Universitat de València Carolina Vallejo Rodŕıguez



1. Preliminaries on ordinary character theory of finite groups 5

It is easy to see that the linear characters of G are exactly the irre-
ducible characters of G containing the commutator subgroup G1 in their
kernel. Hence we can identify the linear characters of G with the irreducible
characters of the abelian group G{G1 and the index |G : G1| gives the num-
ber of linear characters of G. The set of linear characters of G has a group
structure given by the product of characters. In fact, the group of linear
characters of G is isomorphic to G{G1.

Let χ be a character of G. We can define a map detpχq : G Ñ Cˆ by
choosing X a representation that affords χ and setting

detpχqpgq “ detpXpgqq.

We claim that detpχq is a uniquely defined linear character of G. Actually if
X is a G-representation that affords the character χ, then detpXq : GÑ Cˆ
is a homomorphism and thus, a linear representation. For the uniqueness,
just notice that two representations afford the same character if and only if
they are similar, in this case both have the same determinant.

Let χ be a character of G. We write opχq to denote the order of λ “
detpχq as an element of the group of linear characters of G. We call opχq
the determinantal order of χ. Then opχq “ opλq “ |G : kerpλq|.

1.2. Induction and restriction of characters

Two essential features in character theory are restriction and induction of
characters. If ϕ is a class function of G and H ď G, then the restricted
function ϕH is obviously a class function of H. Also, if ϕ is a character,
then ϕH is a character.

Let θ be a class function of some subgroup H of G. We define the
induced class function θG : GÑ C of θ to G by

θGpgq “
1

|H|

ÿ

xPG

9θpxgx´1q

for every g P G, where 9θpyq “ θpyq if y P H and 9θpyq “ 0 otherwise. It is
easy to check that θG is a class function of G. In fact, by Corollary 5.3 of
[Isa76], if θ is a character of H ď G, then the class function θG is also a
character of G.

It is an elementary exercise to check that induction is a transitive oper-
ation on characters. As a consequence, if ϕ is a character of H ď G such
that ϕG P IrrpGq, then ϕS P IrrpSq for every H ď S ď G.

Let H ď G and let θ be a character of H. We can describe the kernel of
the induced character θG as follows

kerpθGq “
č

xPG

pkerpθqqx “ coreGpkerpθqq,

where coreGpHq is the intersection of all the G-conjugates of H, for H ď G.
(See Lemma 5.11 of [Isa76]).
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6 1.2. Induction and restriction of characters

Frobenius reciprocity (see Lemma 5.2 of [Isa76]) evidences that restric-
tion and induction of complex characters are closely related: if ϕ is a class
function of G and θ is a class function of H ď G, then

rϕH , θs “ rϕ, θ
Gs.

In particular, if ϕ and θ are irreducible, then the multiplicity of θ as con-
stituent of ϕH is equal to the multiplicity of ϕ as constituent of θG.

Let H ď G and let θ be a character of H. Let g P G. We can define

θgpxq “ θpxg
´1
q for every x P G. Then it is immediate that θg is a character

of Hg and rθ, θs “ rθg, θgs. In particular, θ is irreducible if and only if θg

is irreducible. Notice that if g P H, then θg “ θ because θ is constant on
conjugacy classes of H.

Mackey’s formula relates the operations of induction and restriction of
characters.

Lemma 1.8 (Mackey). Let H,K ď G. Let T be a set of representatives

of the double cosets HgK. That is, G “ 9
Ť

tPTHtK. Let θ be a character of
H. Then

pθGqK “
ÿ

tPT
pθtHtXKq

K .

In particular, if G “ HK then pθGqK “ pθHXKq
K .

Proof. This is problem 5.6 of [Isa76]. �

Restriction and induction of characters behave well with respect to nor-
mal subgroups. Let N Ÿ G. If θ P IrrpNq and g P G, then we have seen that
θg P IrrpNq. Hence conjugation defines a natural action of G on IrrpNq. Let
Gθ be the stabilizer of θ under this action. We call Gθ the inertia sub-
group of θ in G. Note that N ď Gθ ď G. Let g P G. Then it follows from
the definition that Ggθ “ Gθg . For H ď G, we say that θ is H-invariant if
H Ď Gθ.

Theorem 1.9 (Clifford). Let NŸ G and let χ P IrrpGq. Let θ be an irre-
ducible constituent of χN and denote by θ1, . . . , θt the different G-conjugates
of θ in G with θ1 “ θ. Then

χN “ e
t
ÿ

i“1

θi,

where e “ rχN , θs.

Proof. See Theorem 6.2 of [Isa76]. �

We establish now some notation. Let N Ÿ G, θ P IrrpNq and χ P IrrpGq.
If θ is such that rχN , θs ‰ 0 we say that θ lies under χ or that χ lies over
θ. We write IrrpG|θq to denote the set of irreducible characters of G that
lie over θ and we sometimes write IrrpχN q to denote the set of irreducible
characters of N lying under χ.
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1. Preliminaries on ordinary character theory of finite groups 7

By Clifford’s theorem, if N Ÿ G, χ P IrrpGq and θ P IrrpχN q, then the
number e “ χp1q{θp1q is the multiplicity of θ in χN . If Gθ “ G, this number
e is the degree of an irreducible projective representation of G{N and divides
|G{N |. (We will talk about projective representations in Chapter 4.) More
generally, we have the following.

Theorem 1.10. Let N Ÿ G and let θ P IrrpNq. If χ P IrrpG|θq then
e “ rχN , θs divides |G : N |.

Proof. See Corollary 11.29 of [Isa76] �

The following result is fundamental and it will be often used throughout
this work.

Theorem 1.11 (Clifford Correspondence). Let N Ÿ G and let θ be an
irreducible character of N . Then

(a) If ψ P IrrpGθ|θq then ψG is irreducible.
(b) The map ψ ÞÑ ψG from IrrpGθ|θq onto IrrpG|θq is a bijection.
(c) Let χ “ ψG where ψ P IrrpGθ|θq. Then ψ is the unique irreducible

constituent of χGθ which lies over θ.
(d) Let ψG “ χ where ψ P IrrpGθ|θq. Then rψN , θs “ rχN , θs.

Proof. See Theorem 6.11 of [Isa76]. �

If N Ÿ G, θ P IrrpNq and χ P IrrpG|θq, then by the Clifford correspon-
dence, there exists a unique ψ P IrrpGθ|θq such that ψG “ χ. We say that
ψ is the Clifford correspondent of θ and χ.

We discuss now some results on extension of characters. Let H ď G and
ϕ P IrrpHq, we say that ϕ extends to G if there exists χ P IrrpGq such that
χH “ ϕ.

Theorem 1.12 (Gallagher). Let NŸ G and let χ be an irreducible char-
acter of G such that θ “ χN is irreducible. Then, the map

IrrpG{Nq Ñ IrrpG|θq

β ÞÑ βχ,

is a bijection.

Proof. See Corollary 6.17 of [Isa76]. �

The following results give us sufficient conditions for extending irre-
ducible characters from normal subgroups. Recall that if χ is an irreducible
character of a group G, we have defined the determinantal order opχq of χ.

Theorem 1.13. Let N Ÿ G and θ P IrrpNq be invariant in G. Suppose
that p|G : N |, opθqθp1qq “ 1. Then there exists a unique extension χ P IrrpGq
of θ such that p|G : N |, opχqq “ 1. In fact, opχq “ opθq. In particular, this
holds if p|G : N |, |N |q “ 1.

Proof. See Corollary 8.16 of [Isa76]. �
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8 1.3. Actions and characters

Whenever the hypotheses of Theorem 1.13 hold, we call χ the canonical

extension of θ. We sometimes write χ “ pθ. The following are two useful
extendibility criteria (which however do not guarantee the existence of a
canonical extension).

Theorem 1.14. Let N Ÿ G. Let θ P IrrpNq be G-invariant. Suppose
that G{N is cyclic. Then θ extends to G.

Proof. See Corollary 11.22 of [Isa76]. �

Theorem 1.15. Let NŸG. Let θ P IrrpNq be G-invariant. Suppose that
for every prime p, the character θ extends to P for every P {N P SylppG{Nq.
Then θ extends to G.

Proof. See Corollary 11.31 of [Isa76]. �

1.3. Actions and characters

Let α : G Ñ H be a group isomorphism. Denote by gα the image of g P G
under α. If χ is a character of G, then the map χα : H Ñ C defined by

χαphq “ χphα
´1
q for every h P H is a character of H. Moreover

rχα, χαs “ rχ, χs,

by straightforward computations. Consequently χα is irreducible if and only
if χ is irreducible.

We see that AutpGq acts naturally on IrrpGq. Let ClpGq be the set of
conjugacy classes of G. Recall that we write ClGpgq to denote the conjugacy
class of the element g P G. Then AutpGq acts on ClpGq via ClGpgq

α “

ClGpg
αq for every g P G and for every α P AutpGq. Notice that if α P AutpGq

and χ P IrrpGq, then χαpgαq “ χpgq for every g P G. (In the same way, if a
group A acts on a group G by automorphisms, then A acts on IrrpGq and
on ClpGq.)

Theorem 1.16 (Brauer’s Lemma on the character table). Let A be a
group which acts on IrrpGq and on ClpGq. Assume that

χpgq “ χapgaq,

for all χ P IrrpGq, g P G and a P A; where ga belongs to the conjugacy class
ClGpgq

a. Then for each a P A, the number of irreducible characters of G
fixed by a is equal to the number of conjugacy classes of G fixed by a.

Proof. See Theorem 6.32 of [Isa76]. �

As a consequence of Brauer’s Lemma on the character table (see Lemma
13.23 of [Isa76]), if a cyclic group A acts on G by automorphisms, then the
actions of A on IrrpGq and on ClpGq are permutation isomorphic.

Let A andG be groups. Suppose that A acts by automorphisms onG and
p|G|, |A|q “ 1 (we will say that A acts coprimely on G). We write IrrApGq
to denote the subset of IrrpGq consisting of fixed points under the action
of A. Then there exists an important natural correspondence of characters
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1. Preliminaries on ordinary character theory of finite groups 9

between IrrApGq and IrrpCGpAqq. When A is solvable, this correspondence
was constructed by G. Glauberman [Gla68]. If A is not a solvable group,
then |A| is even by the Odd Order Theorem [FT63]. Consequently |G|
is solvable of odd order. In this case, I. M. Isaacs [Isa73] gave a totally
different construction of the desired correspondence. T. R. Wolf [Wol78b]
proved that when both constructions apply, when A is solvable and |G| is
odd, they yield the same map. This is what we call the Glauberman-Isaacs
correspondence (when A is solvable we refer to the map as the Glauberman
correspondence).

Theorem 1.17 (Glauberman-Isaacs correspondence). Suppose that A
acts coprimely on G. Let C “ CGpAq. Write IrrApGq to denote the subset
of IrrpGq consisting of fixed points under the action of A. There exists a
natural correspondence

πpG,Aq : IrrApGq Ñ IrrpCq,

such that:

(a) If B Ÿ A and D “ CGpBq, then πpG,Aq “ πpD,A{Bq ˝ πpG,Bq.
(b) If A is a p-group and we write χ˚ “ πpG,Aqpχq for χ P IrrApGq, then

χC “ eχ˚ ` p∆,

where p does not divide e and ∆ is a character of C or zero.

Proof. See Theorem 2.1 of [Wol79]. �

We consider another important example of group action on irreducible
characters: Galois action. Let n be an integer divisible by |G|. Consider
Qn the n-th cyclotomic field obtained by adjoining a primitive n-th root of
unity to Q. Then χpgq P Qn for every g P G and for every χ P IrrpGq (using
that if M P GLmpCq with Mn “ Im, then M is similar to a diagonal matrix
whose entries are n-th roots of unity). Let E Ď C be the field of all algebraic
numbers. Then the theory described at the beginning of this chapter can
be developed over the field E instead of C, and it works exactly as well as
for C. If we write IrrEpGq to denote the irreducible E-characters of G, then
IrrEpGq “ IrrpGq (see the discussion on page 22 of [Isa76]).

Let χ P IrrpGq. If σ P GalpQn{Qq, then we define the function

χσ : GÑ C

as χσpgq “ χpgqσ for every g P G. Let X be an irreducible E-representation
affording χ. If σ P GalpQn{Qq, then by elementary field theory we can
extend σ to pσ P GalpE{Qq. Define Xpσpgq “ pXpgqqpσ by applying pσ to each
entry of the matrix Xpgq, for every g P G. Clearly, Xpσ is an E-representation
of G and

tracepXpσpgqq “ tracepXpgqqpσ “ χpgqpσ “ χpgqσ “ χσpgq.

Universitat de València Carolina Vallejo Rodŕıguez



10 1.4. Basic Bπ-theory

Hence, if χ P IrrpGq, then χσ P CharpGq. Since

rχσ, χσs “
1

|G|

ÿ

gPG

χpgqσχpgqσ

“
1

|G|

ÿ

gPG

χpgqσχpgq
σ

“ rχ, χsσ “ 1,

we conclude that χσ P IrrpGq. Note that χpgqσ “ χpgq
σ

for every g P G and
for every σ P GalpQn{Qq (see Lemma 20.7 of [Isa94]). Hence GalpQn{Qq
acts on IrrpGq.

Let χ be a character of a group G, the field of values Qpχq of χ is the
minimum field extension of Q containing all values of χ. Hence

Qpχq “ Qpχpgq | g P Gq.

Lemma 1.18. Let χ be an irreducible character of a group G. Let F {Q
be an abelian Galois extension. Suppose that Qpχq Ď F . Then χσ is an
irreducible character of G for every σ P GalpF {Qq.

Proof. Let X be an E-representation of G affording χ. Write Fn “
F X Qn, where n “ |G|. Since F {Q is an abelian Galois extension, by
Theorem 18.21 of [Isa94] Fn{Q is a Galois extension. Thus σFn P GalpFn{Qq
and we can extend σFn to pσ P GalpQn{Qq. From the discussion preceding
this lemma we have that χpσ “ χσ is irreducible. �

It is immediate to check that the Galois action on characters commutes
with the action induced by group automorphisms.

A character χ of G is said to be real if χ only takes real values (equiv-
alently Qpχq Ď R). It is well-known that a group of odd order has no
non-principal real irreducible character.

Theorem 1.19 (Burnside). Let G be a group of odd order. If χ P IrrpGq
is not principal, then χ ‰ χ.

Proof. See Problem 3.6 of [Isa76]. �

1.4. Basic Bπ-theory

Throughout this section π is a set of primes and G is a π-separable group.
We write π1 to denote the complementary set of primes of π. If n is an
integer, then nπ is the greatest integer whose prime factors lie in π and such
that nπ divides n. If n “ nπ, we say that n is a π-number, and if nπ “ 1
then we say that n is a π1-number. If π consists of a single prime p, then we
write π “ p and π1 “ p1.

The π-special characters of G where introduced by Gajendragadkar
in 1979 [Gaj79] as the subset of IrrpGq consisting of characters χ with
χp1q a π-number and such that for every subnormal subgroup S of G, the
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1. Preliminaries on ordinary character theory of finite groups 11

determinantal order of every irreducible constituent of χS is a π-number. Of
course, the principal character is always a π-special character. In the words
of Isaacs, the π-special characters of G are those characters that think that
G is a π-group. In fact, if G is a π-group, then every IrrpGq is π-special,
and if G is a π1-group, the only π-special is the principal character 1G. We
collect some properties of the π-special characters. We begin with going
down properties.

Proposition 1.20. Let G be a π-separable group. Let M Ÿ G and let
χ P IrrpGq be π-special. Then:

(a) Every irreducible constituent of χM is π-special.
(b) Oπ1pGq ď kerpχq.

Proof. See Proposition 4.1 and Corollary 4.2 of [Gaj79]. �

The following are going up properties of the π-special characters.

Proposition 1.21. Let G be a π-separable group and let NŸG. Suppose
that θ P IrrpNq is π-special.

(a) If G{N is a π-group, then every χ P IrrpG|θq is π-special.
(b) Assume that θ is G-invariant. If G{N is a π1-group then θG has a

unique π-special irreducible constituent θ̂. In fact, θ̂ extends θ.
(c) θG has a π-special constituent iff θ is K-invariant for some Hall

π1-subgroup K of G.

Proof. See Propositions 4.3 and 4.5, and Corollary 4.8 of [Gaj79]. �

Let H be a Hall π-subgroup of G. The π-special characters of G restrict
to irreducible characters of H injectively.

Proposition 1.22. Let G be a π-separable group and let H be a Hall
π-subgroup of G. Then the map χ ÞÑ χH is an injection from the set of π-
special characters of G into the set of irreducible characters of H. Moreover,
if χ is a π-special character of G, then Qpχq Ď Q|G|π .

Proof. See Propositions 6.1 and 6.3 of [Gaj79]. �

The following feature about special characters is particularly surprising.
Although it is not common that a product of irreducible characters remains
irreducible, for special characters the following is true.

Proposition 1.23. Let G be π-separable. Let α be a π-special character
of G and β a π1-special character of G. Then αβ is irreducible. Moreover,
if αβ “ α1β1 for some π-special α1 and some π1-special β1, then α “ α1 and
β “ β1.

Proof. This is Proposition 7.2 of [Gaj79]. �

Gajendragadkar’s π-special characters are the foundation of Isaacs’ Bπ-
theory. In the important paper [Isa84], Isaacs defined a canonical set BπpGq
of IrrpGq whose elements are called Bπ-characters of G. The definition of
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12 1.4. Basic Bπ-theory

BπpGq is rather involved and we only give a few details below (for further
details see Sections 4 and 5 of [Isa84]). The Bπ-characters can be seen as a
generalization of the π-special characters. In fact, the π-special characters
of G are exactly those elements in BπpGq of π-degree (see Lemma 5.4 of
[Isa84]) and every Bπ-character is induced from some π-special character.
In particular, 1G P BπpGq.

Perhaps, the most important application of this theory is the fact that
Bp1-characters constitute a canonical lift of the so called p-Brauer characters
(on which we will talk in Chapters 4 and 5) in p-solvable groups.

We say that χ P IrrpGq is π-factorable if there exist a π-special α P
IrrpGq and a π1-special β P IrrpGq such that χ “ αβ. Suppose that G
is π-separable. For every χ P IrrpGq, there exists a particular pair pW,γq
where W ď G, γ P IrrpW q is π-factorable and γG “ χ. This pair pW,γq
is determined up to G-conjugacy. Any such pair is called a nucleus for
χ, and the character in the pair is called a nucleus character for χ. Let
χ P IrrpGq. Then χ is a Bπ-character if some nucleus character for χ is
π-special. Notice that if χ is a Bπ-character, then every nucleus character
is π-special, by the G-conjugacy property of the nuclei. We write BπpGq to
denote the set of Bπ-characters of G.

The following properties of Bπ-characters remind of those of π-special
characters.

Theorem 1.24. Let G be a π-separable group and let χ P BπpGq. Then:

(a) For any N Ÿ G, the irreducible constituents of χN lie in BπpNq,
(b) Oπ1pGq ď kerpχq, and
(c) Qpχq Ď Q|π|.

Proof. See Corollaries 5.3, 7.5 and 12.1 of [Isa84]. �

The set BπpGq is closed under group automorphisms and Galois action.

Theorem 1.25. Let G be π-separable. Let χ P BπpGq, α P AutpGq and
σ P GalpQ|G|{Qq. Then χα and χσ lie in BπpGq.

Proof. Follows from the definition of Bπ-characters in [Isa84]. �

We will also need some more recent results concerning the character
theory of π-separable groups.

Theorem 1.26. Let G be a π-separable group. Let ψ P BπpGq and
suppose that pW,γq is a nucleus for ψ. Then, the map α ÞÑ pαγqG is an
injection from the set of π1-special characters of W into IrrpGq. Moreover,
let pWi, γiq be nuclei for ψi P BπpGq and let αi P IrrpWiq be π1-special, for
i “ 1, 2. If pα1γ1q

G “ pα2γ2q
G, then the pairs pWi, γiq for i “ 1, 2 are

G-conjugate.

Proof. See Theorems 9.1 and 9.2 of [Nav97]. �

In [IN01] the authors refer to the irreducible characters pαγqG given by
Theorem 1.26 as the satellites of ψ P BπpGq. They note that the satellites
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1. Preliminaries on ordinary character theory of finite groups 13

of ψ P BπpGq do only depend on ψ and that ψ is a satellite of itself. In fact,
the second part of Theorem 1.26 implies that the sets of satellites of distinct
members of BπpGq are disjoint.

Satellites will be useful for us mainly because of the following result.

Theorem 1.27. Let G be a π-separable group. Every χ P IrrpGq of
π1-degree is a satellite of a unique ψ P BπpGq of π1-degree.

Proof. See Theorem 3.6 of [IN01]. �

Therefore, in a π-separable group G, for every χ P IrrpGq of π1-degree,
Theorem 1.27 guarantees the existence of a pair pW,γq, where W ď G and
γ P IrrpW q is π-special, and a π1-special α P IrrpW q such that χ “ pαγqG.

1.5. The projective special linear group PSL2pqq

In Chapter 3 we will need to study certain character correspondences in
groups PSL2p3

3aq for a ě 1. We will need to understand the action of field
automorphisms on characters. We include this section in order to make
this work as self-contained as possible. Throughout this section p is an odd
prime. Let q “ pf . We write G “ GL2pqq, H “ SL2pqq, Z “ ZpHq and
S “ PSL2pqq “ H{Z. We write F “ Fq to denote the Galois field of q
elements, and let α be a generator of the cyclic multiplicative group Fˆ.
Then Fp is the prime field of F .

1.5.1. Automorphisms of PSL2pqq. Let δ “

ˆ

α 0
0 1

˙

P G. Then δ

is an element of order q ´ 1 that acts on H as
ˆ

a b
c d

˙δ

“

ˆ

a α´1b
αc d

˙

,

for every

ˆ

a b
c d

˙

P H. We notice that

δ2 “

ˆ

α 0
0 α

˙ˆ

α 0
0 α´1

˙

P ZpGqH,

and thus δ2 acts on H as an inner automorphism (We remark that in the
case where q is even, δ actually acts as an inner automorphism because every
non-zero element of F is a square). We have that δ stabilizes Z. Hence δ
induces an automorphism of S of order q ´ 1, which we denote again by δ,
via

pxZqδ “ xδZ,

for every x P H. The automorphisms in xδy ď AutpSq are called diagonal
automorphisms. We have δ2 induces an inner automorphism of S. So if
we embed S Ÿ AutpSq, then we have that xδy X S “ xδ2y.

Let ϕ be the Frobenius automorphism ϕ : F Ñ F of F given by ϕpaq “
ap P F for every a P F . We have that ϕ P GalpF {Fpq generates the full Galois
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14 1.5. The projective special linear group PSL2pqq

group GalpF {Fpq. The Frobenius automorphism ϕ induces an automorphism
of H by applying ϕ to each entry of a matrix x P H (also in G). Then ϕ
stabilizes Z, and hence, ϕ defines an automorphism of S, which we denote
again by ϕ, via

pxZqϕ “ xϕZ,

for every x P G. If we embed S Ÿ AutpSq, we have that xϕy X S “ 1. To
see this, suppose that some ϕj ‰ 1 acts on H as the inner automorphism

associated to x “

ˆ

a b
c d

˙

P H. In particular, for every e P Fˆ, we would

have
ˆ

a b
c d

˙

˜

ep
j

0

0 pep
j
q´1

¸

“

ˆ

e 0
0 e´1

˙ˆ

a b
c d

˙

.

This yields ϕjpeq “ e´1 for every e P Fˆ and a “ 0 “ d. However, if we

compute the action of ϕj on elements of type

ˆ

1 g
0 1

˙

P H for g P F , we

get a contradiction. The automorphisms in xϕy are called field automor-
phisms.

The automorphisms δϕ and ϕδ of H differ by an inner automorphism of
H, therefore the same holds in Aut(S). It is straightforward to check that

for every x “

ˆ

a b
c d

˙

P H

xϕ
´1δ´1ϕδ “

ˆ

a pα´1qαpb
αpα´1qpc d

˙

.

Since pα´1qαp “ αp´1 P xα2y, we have that ϕ´1δ´1ϕδ P xδ2y ď S. Write
δ “ δS P AutpSq{S and ϕ “ ϕS P AutpSq{S. Thus, δ and ϕ commute in
the outer automorphism group OutpSq “ AutpSq{S of S.

We can embed PGL2pqq into AutpSq. Let ι : GÑ AutpSq be defined by
x P G sends yZ to yxZ for every y P H. Then ι is a homomorphism with
kernel ZpGq. We identify PGL2pqq with ιpGq, so that PGL2pqq ď AutpSq
and S is a subgroup of PGL2pqq of index 2. Since xδy ď PGL2pqq is not

contained in S we have that PGL2pqq “ Sxδy. Also S X xδy “ xδ
2
y. In fact,

there exists an automorphism γ of S such that

PGL2pqq “ S ¸ xγy.

If q ” 3 mod 4, then let

γ “ ι

ˆ

´1 0
0 1

˙

P AutpSq.

If q ” 1 mod 4, then ´1 is a square in F . Let ε P F be such that ε2 “ ´1.
Then let

γ “ ι

ˆ

0 ´1
ε 0

˙

P AutpSq.
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1. Preliminaries on ordinary character theory of finite groups 15

It is well-known that every automorphism of S is a product of an inner
automorphism, a diagonal automorphism and a field automorphism (see for
instance Theorem 12.5.1 of [Car93]). Thus

AutpSq “ PGL2pqq ¸ xϕy “ pS ¸ xγyq ¸ xϕy.

In particular |AutpSq| “ fqpq2 ´ 1q. We have noticed that rδ, ϕs “ 1 in
OutpSq. In fact,

OutpSq “ xδy ˆ xϕy.

Suppose that some δϕj acts on H as an inner automorphism of H. By

computing the action of δϕj on elements of the form

ˆ

a 0
0 a´1

˙

P H and
ˆ

1 b
0 1

˙

P H, we get a contradiction.

1.5.2. Conjugacy classes and irreducible characters of PSL2pqq.
Let E be a quadratic extension of F , so that |E| “ q2. Let G “ GalpE{F q
and µ be the nontrivial element of G. It is easy to show that µ is exactly
the automorphism of E taking every z P E to zq P E. Since q is odd, we
can fix ε P Fˆ a non-square so that E “ F r

?
εs is a quadratic extension of

F . Notice that any z P E has the form z “ a` b
?
ε. We write z “ a´ b

?
ε,

so that µpzq “ z. Now, every quadratic polynomial rrXs P F rXs factors in
ErXs. Thus, every x P H has eigenvalues in E.

Let x P H. Then there are three possibilities for the eigenvalues λ, λ´1

of the matrix x:

(a) λ “ λ´1 P t1,´1u,
(b) λ ‰ λ´1 in Fˆ and
(c) λ ‰ λ´1 not in Fˆ.

Case (a): If λ “ λ´1 P t1,´1u then x is H-conjugate to one of the
following

I,´I, u “

ˆ

1 1
0 1

˙

,´u, u1 “

ˆ

1 ε
0 1

˙

,´u1.

Indeed, suppose x ‰ λI and let

ˆ

a
b

˙

be an eigenvector of x associated to

the eigenvalue λ. We first assume a ‰ 0. Let y “

ˆ

a 0
b a´1

˙

P H, we have

that xy
ˆ

1
0

˙

“ λ

ˆ

1
0

˙

. By matrix calculation, it follows xy “

ˆ

1 c
0 1

˙

or xy “

ˆ

´1 c
0 ´1

˙

for some c P Fˆ. Finally, conjugating by an element

of the form

ˆ

d 0
0 d´1

˙

for some d P Fˆ, we get that x is conjugate to ˘u

if c is a square and x is conjugate to ˘u1 if c is a non-square. In case a “ 0,
we have that b ‰ 0. Then an analogous argument with b playing the role of
a shows that x is conjugate to ˘u or ˘u1.
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16 1.5. The projective special linear group PSL2pqq

Case (b): If λ ‰ λ´1 lie in Fˆ, then the matrix dpλq “

ˆ

λ 0
0 λ´1

˙

defines a conjugacy class. We have that dpλq is conjugate to dpλ´1q and
dpλq is not conjugate to other matrix of this form since the eigenvalues are
similarity invariants. There are 1

2pq ´ 3q such classes, the same as pairs

tλ, λ´1u Ď Fˆ.

Case (c): If λ ‰ λ´1 do not lie in Fˆ. Write T “ tz P Eˆ | zz “ 1u.
Then λ P T . Notice that T “ tc ` d

?
ε : c, d P F and c2 ´ d2ε “ 1u. Since

the norm map Eˆ Ñ Fˆ is surjective, we have that T is a cyclic group of
order q ` 1. An element c ` d

?
ε acts on E, which is a vector space over

F , and can be represented as the matrix

ˆ

c dε
d c

˙

P H, with respect to

the F -basis t1,
?
εu. Clearly T is isomorphic to the group of matrices of this

form, so we write T ď H under this identification. Let t P T ´ Z. Then t
defines a non-central conjugacy class in H. We have that t is conjugate to
t´1. Moreover, if t1 R tt, t´1u, then the eigenvalues of t and t1 are distinct, so
that the matrices t and t1 are not conjugate in GL2pq

2q. In particular, they
are not conjugate in H. Thus, each pair tλ, λ´1u Ď T defines a conjugacy
class, and there are 1

2pq ´ 1q such classes.

Write d “ dpαq “

ˆ

α 0
0 α´1

˙

. Let t be a generator of the subgroup

T ď H. By Theorem 38.1 of [Dor71], the set

tI,´I, u,´u, u1,´u1, dl, tmu,

where 1 ď l ď 1
2pq ´ 3q and 1 ď m ď 1

2pq ´ 1q, is a complete set of

representatives of the conjugacy classes of H. Write e “ p´1q
q´1

2 . Let ρ
be a primitive pq ´ 1q-th root of unity and let σ be a pq ` 1q-th primitive
root of unity. By Theorem 38.1 of [Dor71], the character table of H is the
following:

Class: I ´I u u1 dl tm

1H 1 1 1 1 1 1

StH q q 0 0 1 ´1

ξ1
1
2
pq ` 1q 1

2
epq ` 1q 1

2
p1`

?
eqq 1

2
p1´

?
eqq p´1ql 0

ξ2
1
2
pq ` 1q 1

2
epq ` 1q 1

2
p1´

?
eqq 1

2
p1`

?
eqq p´1ql 0

η1
1
2
pq ´ 1q ´ 1

2
epq ´ 1q 1

2
p´1`

?
eqq 1

2
p´1´

?
eqq 0 p´1qm`1

η2
1
2
pq ´ 1q ´ 1

2
epq ´ 1q 1

2
p´1´

?
eqq 1

2
p´1`

?
eqq 0 p´1qm`1

χi q ` 1 p´1qipq ` 1q 1 1 ρil ` ρil 0

θj q ´ 1 p´1qjpq ´ 1q ´1 ´1 0 ´pσjm ` σ´jmq

where 1 ď i, l ď 1
2pq ´ 3q and 1 ď j,m ď 1

2pq ´ 1q. As in [Dor71], the
columns for the classes ´u, ´u1 are omitted. These values can be obtained

from the relations χp´uq “ χp´Iq
χpIq χpuq and χp´u1q “ χp´Iq

χpIq χpu
1q, for every
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1. Preliminaries on ordinary character theory of finite groups 17

χ P IrrpHq. Just notice that if χ P IrrpHq and X is a representation affording

χ, then Xp´Iq “ λI, where λ P t˘1u and λ “ χp´Iq
χpIq .

Let D “ xdy ď H. We have that D is isomorphic to Fˆ. Let U be the
subgroup of H consisting of upper unitriangular matrices. It is easy to see

that NHpUq “ t

ˆ

a b
0 a´1

˙

| a P Fˆ, b P F u and NHpUq{U – D. Every

ξ P IrrpDq can be viewed as a character of NHpUq containing U in its kernel.
Under this identification, the character ξH is called the principal series
character of H associated to ξ (see Section 2.3 of [Bon11] for properties of
the principal series characters). The character ξH is irreducible if and only
if ξ is non-real. Moreover ξ and ξ yield the same principal series character.
The characters χi in the above character table are principal series characters
associated to some non-real ξ P IrrpDq. We write χi “ χξ, if χi comes from

the pair tξ, ξu. If ξ P IrrpDq is real-valued, then ξH decomposes as the
sum of two irreducible characters. By Mackey’s Lemma 1.8, we have that
p1NHpDqq

H “ 1H ` StH , where StH is the Steinberg character of H. Let ξ0

be the only non-principal real-valued character of D, namely ξ0pd
lq “ p´1ql.

Then pξ0q
H “ ξ1 ` ξ2. We write ξ10 “ ξ1 and ξ20 “ ξ2.

Recall T “ xty ď H is cyclic of order q` 1. Every η P IrrpT q has associ-
ated a virtual character πη of H (the description of πη is more complicated
than for principal series characters, see Section 4.3 of [Bon11] for properties
of πη). In fact, π1T “ StH ´ 1H and πη is actually a character whenever
η is non-principal. The irreducible constituents of πη, for η non-principal,
are cuspidal characters of H. If η P IrrpT q is non-real, then πη “ πη is
irreducible. The characters θj in the above character table are associated
to pairs tη, ηu Ď IrrpT q. We write θη “ θj if θ is associated to the pair
tη, ηu. The characters η1 and η2 are the irreducible constituents of πη0 the
character associated to the unique real-valued irreducible character η0 ‰ 1T
of T , namely η0pt

mq “ p´1qm. We write θ10 “ θ1 and θ20 “ θ2.

Recall that e “ 1 if q´1
2 is even and e “ ´1 otherwise. Hence, ξ0p´Iq “

e “ ´η0p´Iq. We write eξ “ ξp´Iq for ξ P IrrpDq and eη “ ηp´1q for
η P IrrpT q. We re-write the character table of H in this new notation:

Class: I ´I u u1 dl tm

1H 1 1 1 1 1 1

StH q q 0 0 1 ´1

ξ10
1
2
pq ` 1q e

2
pq ` 1q 1

2
p1`

?
eqq 1

2
p1´

?
eqq ξ0palq 0

ξ20
1
2
pq ` 1q e

2
pq ` 1q 1

2
p1´

?
eqq 1

2
p1`

?
eqq ξ0palq 0

η10
1
2
pq ´ 1q ´ e

2
pq ´ 1q 1

2
p´1`

?
eqq 1

2
p´1´

?
eqq 0 ´η0ptmq

η20
1
2
pq ´ 1q ´ e

2
pq ´ 1q 1

2
p´1´

?
eqq 1

2
p´1`

?
eqq 0 ´η0ptmq

χξ q ` 1 pq ` 1qeξ 1 1 ξpalq ` ξpalq 0

θη q ´ 1 pq ´ 1qeη ´1 ´1 0 ´ηptmq ´ ηptmq

As before 1 ď i, l ď 1
2pq´3q and 1 ď j,m ď 1

2pq´1q and the columns for the
classes ´u, ´u1 are omitted. With this notation χξp´uq “ χξp´u

1q “ eξ for
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18 1.5. The projective special linear group PSL2pqq

every non-real ξ P IrrpAq, and θηp´uq “ θηp´u
1q “ ´eη for every non-real

η P IrrpT q.

The irreducible characters of S are those of H which contain Z in their
kernel, so we can calculate the character table of S from the character table
of H. In Chapter 3, we will be interested in the case where q “ 33a for some
a ě 1, hence in the case where q ” 3 mod 4. Assume q ” 3 mod 4, so that
1
2pq´1q is odd and thus e “ ´1. Since ´1 is not a square of F (because the

subgroup of squares of Fˆ has order 1
2pq ´ 1q), we can fix ε “ ´1. Hence,

the subgroup T of H consists of matrices of the form

ˆ

c ´d
d c

˙

for c, d P F

with c2 ` d2 “ 1. Set w “

ˆ

0 ´1
1 0

˙

P T . Provided that xZ “ ´xZ for

every x P H, it is easy to check that a complete set of representatives of the
conjugacy classes of S is

tIZ, uZ, u1Z,wZ, dlZ, tmZu,

where 1 ď l ď 1
4pq ´ 3q and 1 ď m ď 1

4pq ´ 3q. Notice that w “ t
1
4
pq`1q.

If 1
4pq ´ 3q ď j ď 1

2pq ´ 1q, then ´tj is conjugate to ´t´j “ t
q`1

2
´j . Thus

tjZ “ ´tjZ defines the same class as tmZ, where m “
q`1

2 ´ j. Also

notice that ω “ t
1
4
pq`1q has order two in S. The character table of S is the

following:

Class: IZ uZ u1Z dlZ tmZ

1S 1 1 1 1 1

StS q 0 0 1 ´1

η10 1{2pq ´ 1q 1{2p´1` i
?
qq 1{2p´1´ i

?
qq 0 ´η0ptmq

η20 1{2pq ´ 1q 1{2p´1´ i
?
qq 1{2p´1` i

?
qq 0 ´η0ptmq

χξ q ` 1 1 1 ξpalq ` ξpalq 0

θη q ´ 1 ´1 ´1 0 ´ηptmq ´ ηptmq

Here 1 ď l ď 1
4pq ´ 3q and 1 ď m ď 1

4pq ` 1q.
Consider ϕ P AutpSq. We see that ϕ fixes the classes defined by IZ,

uZ, u1Z and wZ, and permutes the classes of type dlZ and the classes of
type tmZ. In particular, ϕ fixes the trivial character 1G and the Steinberg
character StG. Also notice that pη10q

ϕ has degree 1
2pq ´ 1q and takes the

same values as η10 on uZ and u1Z. We conclude that pη10q
ϕ “ η10. Similarly

pη20q
ϕ “ η20 . Furthermore, for every non-real ξ P IrrpDq and every non-real

η P IrrpT q
χϕξ “ χξϕ and θϕη “ θηϕ .

Hence, we can characterize the irreducible characters of S fixed by ϕ in
terms of the irreducible characters of D and T fixed by ϕ.
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CHAPTER 2

Monomial characters and Feit numbers

2.1. Introduction

Let G be a finite group. There are few results guaranteeing that a single
irreducible character χ P IrrpGq is monomial. Recall that χ is monomial if
there exist a subgroup U ď G and a linear character λ P IrrpUq such that
λG “ χ. For instance, if G is a supersolvable group, then every irreducible
character of G is monomial (see Theorem 6.22 of [Isa76]). However, this
result depends more on the structure of the group rather than on proper-
ties of the characters themselves. An exception is a lovely result by Gow
[Gow75] from 1975: an odd degree rational-valued irreducible character of
a solvable group is monomial. The first aim in this chapter is to generalize
Gow’s result.

It is convenient now to define the Feit number of a character. If χ P
IrrpGq, then we have already mentioned that Qpχq Ď Q|G|, so there is a
smallest integer fχ such that Qpχq Ď Qfχ . The number fχ is called the Feit
number of χ.

Our first original result, which generalizes Gow’s result, has been pub-
lished by the author in [Val14].

Theorem A. Let G be a solvable group. Let χ P IrrpGq. If χp1q is
odd and pχp1q, fχq “ 1, then there exists a subgroup U ď G and a linear
character λ of U such that λG “ χ. Moreover, if µ is a linear character of
some subgroup W ď G such that µG “ χ, then there exists some g P G such
that W “ Ug and µ “ λg.

Notice that we not only prove the monomiality of χ, but also uniqueness
in the induction. The conditions χp1q odd and G solvable are necessary
as they are for Gow’s original result: SL2p3q has a rational-valued non-
monomial character of degree 2, and A6 has a rational-valued non-monomial
character of degree 5. The new condition pχp1q, fχq “ 1 is also necessary:
Let G be SmallGroupp108, 15q. We checked with GAP that every irreducible
character χ of degree 3 is not monomial and fχ “ 3.

In particular, Theorem A guarantees that an odd degree irreducible
character of a solvable group with values in some Q2a for a ě 0 is monomial.
In Theorem B below we generalize this latter statement for odd primes,
although an oddness condition is still necessary. Let p be a prime. We recall
that Irrp1pGq denotes the subset of irreducible characters of G that have
degree not divisible by p.
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Theorem B. Let G be a p-solvable group for some prime p. Let P P

SylppGq. Assume that NGpP q{P has odd order. If χ P Irrp1pGq takes values
in Qpa for some a ě 0, then there exist a subgroup U and a linear character
λ of U with Qpλq Ď Qpa such that χ “ λG. Also, if µ is a linear character
of some subgroup W ď G such that µG “ χ, then W “ V g and µ “ λg for
some g P G. In particular Qpµq Ď Qpa.

Theorem B has been published in a joint work of the author with G.
Navarro [NV12]. Notice that the condition |NGpP q{P | odd is superfluous
if p “ 2. Unfortunately, this oddness condition is necessary in general: if
p “ 3, then SL2p3q has a rational-valued non-monomial character of degree
2. The p-solvability condition is also necessary. For instance, let G “ SL3p3q
and p “ 3. In this case, |NGpP q : P | “ 3 for a Sylow p-subgroup P of G.
The group G has a rational-valued character of degree 12 which cannot be
induced from any proper subgroup of G.

By using non-trivial Isaacs Bπ-theory the conclusion of Theorem B can
be strengthened: such a χ is a Bp-character. We prove this fact in Section
2.4. It does not seem easy at all how to control the behavior of the normal
constituents of χ without using this deep theory. We also use Bπ to provide
an alternative prove of Theorem A above.

Let G be a finite group, let p be a prime and let a ě 0. How many
p1-degree irreducible characters does G have with field of values contained
in Qpa? It does not seem easy at all how to answer this question in general.
However, if G is p-solvable and NGpP q{P has odd order, then this number
can be computed locally. We write XpapGq “ tχ P Irrp1pGq | Qpχq Ď
Qpau. We prove that there exists a canonical bijection from XpapGq onto
XpapNGpP qq. Theorem C below also appears in [NV12].

Theorem C. Let G be a p-solvable group and let P P SylppGq. Write
N “ NGpP q and assume that N{P has odd order. Define a map

Ω : XpapGq Ñ XpapNq

in the following way: If χ P XpapGq, choose a pair pU, λq where P ď U ď G
and λ P IrrpUq is linear with Qpλq Ď Qpa such that λG “ χ, then set
Ωpχq “ pλUXN q

N . Then Ω is a well-defined canonical bijection.

At the end of this chapter, we will come back to Feit numbers. The Feit
number fχ is a classic invariant in character theory that has been studied
by Burnside, Blichfeldt and Brauer, among others. But it was W. Feit who
following work of Blichfeldt made an astonishing conjecture that remains
open until today (see for instance [Fei80]).

Conjecture (Feit). Let G be a finite group and let χ P IrrpGq. Then
there exists an element g P G whose order is exactly fχ.

If G is an abelian group, then Feit’s Conjecture holds for every χ P IrrpGq
since G is isomorphic to IrrpGq. In [AC86], G. Amit and D. Chillag proved
Feit’s Conjecture for solvable groups.
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2. Monomial characters and Feit numbers 21

We prove a global/local variation (with respect to a prime p) of the
Amit-Chillag theorem (for odd-degree characters of p1-degree).

Theorem D. Let p be a prime and let G be a solvable group. Let
χ P IrrpGq of degree not divisible by p, and let P P SylppGq. If χp1q is odd,
then there exists g P NGpP q{P

1 such that opgq “ fχ. In particular, the Feit
number fχ divides |NGpP q : P 1|.

Theorem D appears in [Val16]. It is unfortunate that we really need
to assume that χp1q is odd, as G “ GL2p3q shows us: if χ P IrrpGq is non-
rational of degree 2, then fχ “ 8; but the normalizer of a Sylow 3-subgroup
of G has exponent 6. Also, Theorem A is not true outside solvable groups,
as shown by G “ A5, p “ 2, and any χ P IrrpGq of degree 3 (which has
fχ “ 5).

This chapter is structured in the following way: In Section 2.2 we prove
our two monomiality criteria, namely Theorem A and Theorem B. In Section
2.3 we study character correspondences and we prove Theorem C. In Section
2.4 we strengthen the conclusion of Theorem B by using Isaacs’ Bπ-theory.
We also give an alternative proof of Theorem A by making use of this deep
theory. The results contained in Section 2.4 appear in a joint work of the
author together with G. Navarro [NV15]. Finally, in Section 2.5 we prove
Theorem D.

2.2. Two criteria for monomiality

Let N Ÿ G and χ P IrrpGq. Let θ P IrrpNq be a constituent of χN . Write
T “ Gθ for the inertia subgroup of θ. By Clifford’s correspondence there is
a unique ψ P IrrpT |θq such that ψG “ χ. Of course, Qpχq Ď Qpψq, but in
general these two fields are not equal. The semi-inertia subgroup of θ is
defined as

T ˚ “ tg P G | θg “ θσ for some σ P GalpQpθq{Qqu.

Since T ď T ˚, then η “ ψT
˚

P IrrpT ˚|θq also induces χ. Moreover Qpηq “
Qpχq. Due to this fact, when dealing with character fields and normal
subgroups, the semi-inertia group is a useful tool.

Lemma 2.1. Let N Ÿ G and χ P IrrpGq. Let θ P IrrpNq be a constituent
of χN . Write T and T ˚ for the inertia and the semi-inertia groups of θ. If
ψ P IrrpT |θq is the Clifford correspondent of χ, then QpψT˚q “ Qpχq.

Proof. See Lemma 2.2 of [NT10]. �

We do not need more preparation in order to prove Theorem A, which
we restate below. We recall that if H ď G, then

coreGpHq “
č

gPG

Hg.
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Theorem 2.2. Let G be a solvable group. Let χ P IrrpGq. If χp1q is
odd and pχp1q, fχq “ 1, then there exists a subgroup U ď G and a linear
character λ of U such that λG “ χ. Moreover, if µ is a linear character of
some subgroup W ď G such that µG “ χ, then there exists some g P G such
that W “ Ug and µ “ λg.

Proof. First, we prove by induction on |G| that χ is monomial. We
prove it in a series of steps.

Step 1. We may assume χ is faithful and that there are no proper sub-
groups H ă G and ψ P IrrpHq such that ψG “ χ and Qpψq “ Qpχq.

Let K “ kerpχq. If K ą 1, all the hypotheses hold in G{K so by
induction we are done. Assume there exists H ă G and ψ P IrrpHq with
Qpψq “ Qpχq such that ψG “ χ. Then the degree of ψ divides the degree
of χ and fψ “ fχ. By induction hypothesis ψ is monomial, and thus χ is
monomial.

Step 2. FpGq “
ś

p-χp1qOppGq.

Let p be a prime. Suppose that p divides χp1q. In particular p is odd,
and p does not divide fχ. Let M be a normal p-subgroup of G. Since
Qpχq Ď Qfχ we have that Q|M | X Qpχq “ Q. Hence χM is rational-valued.

If ξ P IrrpMq, then rχM , ξs “ rχM , ξ̄s. Since χp1q is odd, there exists a real
irreducible constituent ξ of χM . Since |M | is odd, we have that ξ “ 1M ,
by Theorem 1.19. By Step 1, we know that χ is faithful and we conclude
M “ 1.

Step 3. F “ FpGq is abelian.
Let M be a normal p-subgroup of G, where p does not divide χp1q. It

then follows that the irreducible constituents of χM are linear. Let λ P
IrrpMq be under χ. We have that M 1 ď kerpλgq “ kerpλqg for every g P G.
Then M 1 ď coreGpkerpλqq ď kerpχq “ 1, so that M is abelian. Hence F is
abelian by Step 2.

Step 4. Let N Ÿ G and let θ P IrrpNq be under χ. Let g P G. Then
θg “ θσ for some σ P GalpQpθq{Qq. Also θ is faithful.

Let T “ Gθ be the stabilizer of θ in G, and write T ˚ for the semi-inertia
subgroup of θ. Recall T ˚ “ tg P G | θg “ θσ for some σ P GalpQpθq{Qqu.
By Lemma 2.1, if ψ P IrrpT |θq is the Clifford correspondent of χ, then

η “ ψT
˚

P IrrpT ˚q induces χ and Qpηq “ Qpχq. By Step 1, we have that
T ˚ “ G, and so every G-conjugate of θ is actually a Galois conjugate. Thus
kerpθgq “ kerpθq for every g P G. It follows that kerpθq Ÿ G and kerpθq is
contained in kerpχq by Clifford’s theorem. So θ is faithful by Step 1.

Final Step. If λ P IrrpF q is under χ, then λG “ χ.
Let λ P IrrpF q be under χ. If y P G is such that λy “ λ, then we have

rx, ys P kerpλq for every x P F . By Step 4, λ is faithful, so the element y
centralizes F . Since F is self-centralizing, see 6.1.4 of [KS04], necessarily
y P F . We have proved Gλ “ F . Thus λG is irreducible and thus λG “ χ.
This finishes the proof that χ is monomial.
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Now, we work by induction on |G| to show that if U and V are subgroups
of G and λ P IrrpUq and µ P IrrpV q are linear such that λG “ χ “ µG, then
there is some g P G such that V “ Ug and µ “ λg. Since K “ kerpχq ď
coreGpkerpλqq

Ş

coreGpkerpµqq we may assume that χ is faithful, for if K ą 1
then we can work in G{K. If p is a prime not dividing χp1q, then OppGq
is contained in both U and V , because |G : U | “ χp1q “ |G : V |. Let
F “ FpGq. By Step 2 (for which we only required that χ is faithful), we
have that

F “
ź

p-χp1q
OppGq ď U X V .

Now λF and µF lie under χ, so that µF “ pλF q
g for some g P G by Clifford’s

theorem. We may assume that µF “ ν “ λF , by replacing the pair pU, λq
by some G-conjugate. Thus U and V are contained in T “ Gν and also in
T ˚, the semi-inertia subgroup of ν. Since λG and µG are irreducible, also
λT and µT are irreducible. By uniqueness of the Clifford correspondent, we
deduce that λT “ µT . In particular λT

˚

“ µT
˚

“ ψ P IrrpT ˚|νq. We know
that Qpψq “ Qpχq, again using Lemma 2.1. If T ˚ ă G, then the result
follows by induction. Hence, we may assume T ˚ “ G. In particular, arguing
as in the first part of the proof, we conclude that νG “ χ. This implies that
U “ F “ V and the theorem is proven. �

Under the hypothesis of Theorem 2.2, it can also be proved that in fact
χ is supermonomial, that is, that every character inducing χ is monomial.
The arguments are the same as in the proof of Theorem 2.2.

Let G be solvable. Let χ P IrrpGq be an odd degree character. If
fχ “ 2a for some a ě 0, then Theorem 2.2 guarantees that the character
χ is monomial. Let p be a prime. We can prove a p-version of the latter
statement for p-solvable groups, alas an oddness condition is still necessary.
This is our Theorem B mentioned in the introduction, which appears in this
section as Theorem 2.6.

The following Lemma follows from an standard argument and will be
often used along this work.

Lemma 2.3. Let N Ÿ G and P P SylppGq. Let χ P IrrpGq have p1-degree.
Then there is a P -invariant θ P IrrpNq under χ, and any two of them are
NGpP q-conjugate. In particular, if NGpPNq “ PN , then θ is unique.

Proof. Let θ1 P IrrpNq be under χ, let T1 “ Gθ1 be the stabilizer of
θ1 in G and let ψ1 P IrrpT1|θ1q be the Clifford correspondent of χ over θ1.
Since χ has p1-degree, we have that |G : T1| is not divisible by p, and then

P h
´1
ď T1 for some h P G. Then P ď T “ Gθ, where θ “ pθ1q

h P IrrpNq.
Also, if η P IrrpNq is also P -invariant under χ, then by Clifford’s theorem
we have that ηg “ θ for some g P G. Then P, P g ď T , and thus P gt “ P
for some t P T by Sylow Theory. Now ηgt “ θt “ θ, and hence η and θ are
NGpP q-conjugate. The second part easily follows. �
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Remark 2.4. Let π be a set of primes, let G be a π-separable group, let
H be a Hall π-subgroup of G and let N Ÿ G. If χ P IrrpGq has π1-degree,
then there is some H-invariant θ P IrrpNq under χ and any two of them are
NGpHq-conjugate. The argument is analogous to the one given in the proof
of Lemma 2.3

The following easy argument will be used sometimes in this chapter.

Lemma 2.5. Let P be a p-group. Suppose that P acts coprimely on a
group N and that CN pP q has odd order. Let θ P IrrpNq be P -invariant. If
θ is real, then θ “ 1.

Proof. let θ P IrrpNq be By the Glauberman correspondence (see The-
orem 1.17) with respect to the coprime action of the p-group P on N , we
have a natural bijection

˚ : IrrP pNq Ñ IrrpCN pP qq ,

where IrrP pNq is the set of P -invariant irreducible characters of N . Since
θ is real, then also θ˚ is real. But CN pP q has odd order by hypothesis.
Thus θ˚ “ 1 by Theorem 1.19 on real characters of groups of odd order, and
therefore θ “ 1N since ˚ is bijective and p1N q

˚ “ 1CN pP q. �

Now, we can prove Theorem B.

Theorem 2.6. Let G be a p-solvable group for some prime p. Let P P
SylppGq. Assume that NGpP q{P has odd order. If χ P Irrp1pGq takes values
in Qpa, then there exist a subgroup U and linear character λ of U with
Qpλq Ď Qpa such that χ “ λG. Also, if there exist J ď G and ψ P IrrpJq
with ψG “ χ, then ψ “ τJ for some linear character τ of a subgroup W ď J ,
W “ Ug and τ “ λg for some g P G. In particular Qpψq Ď Qpa.

Proof. We first show the existence of U and λ. We argue by induction
on |G|. Of course, we may assume that G is non-abelian, so G1 ą 1.

Step 1. If N Ÿ G, θ P IrrpNq, g P G and σ P GalpQpθq{Qq, then we have
that pθσqg “ pθgqσ. In particular, the stabilizer of θ in G is the stabilizer of
θσ in G.

This immediately follows from the corresponding definitions.

Step 2. Suppose that N Ÿ G and let θ P IrrpNq be P -invariant under χ.
If the complex conjugate θ̄ of θ is also an irreducible constituent of χN , then
θ “ θ̄.

By Step 1, we have that θ̄ is also P -invariant, and therefore there exists
g P NGpP q such that θ̄ “ θg, by Lemma 2.3. Now, g2 fixes θ (also using
Step 1). Now since NGpP q{P has odd order by hypothesis, we conclude
that xgP y “ xg2P y. Therefore g fixes θ and θ “ θ̄ is real.

Step 3. We have that N “ Op1pGq ď kerpχq.
By Lemma 2.3, let θ P IrrpNq be P -invariant under χ, let T be the

stabilizer of θ in G and let ψ P IrrpT q be the Clifford correspondent of χ
over θ. We prove now that θ is real. By Step 2, it suffices to show that θ̄ is
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under χ. Notice that QpχN q Ď Qpa X Q|N | “ Q. In particular, χN is real-

valued and so θ also lies under χ. Notice that CN pP q “ NN pP q ď NGpP q{P
has odd order by hypothesis. By Lemma 2.5, we have that θ “ 1N . Hence
Op1pGq ď kerpχq, as claimed.

Step 4. The character χ is faithful. In particular N “ 1.
Let L “ kerpχq. Then NG{LpPL{Lq{pPL{Lq – NGpP q{PNLpP q has

odd order. If L ą 1, then the existence of suitable U and λ is readily
obtained by applying the inductive hypothesis in G{L.

Step 5. G is not a p-group.
Otherwise, since p does not divide χp1q, we would have χ is linear. In

this case, there is nothing to prove.

Step 6. M “ OppGq ą 1 is abelian.
Let ν P IrrpMq be under χ. Since χ has p1-degree, then we have that

ν is linear. Thus M 1 is contained in the kernel of every G-conjugate of ν.
Since χ is faithful, we deduce that M is abelian. By Step 4, Op1pGq “ 1 so
M ą 1.

Step 7. Let K be a minimal normal subgroup of G contained in G1. Let
µ P IrrpKq be P -invariant under χ. Then Qpµq Ď Qpa.

By Lemma 2.3, there exists a P -invariant µ P IrrpKq lying under χ. By
Step 4 K is an elementary abelian p-group. Hence µ is linear and Qpµq Ď Qp.
If a ě 1, then Qpµq Ď Qpa . Otherwise, χ is rational. Hence µ lies under χ.
By Step 2 µ is real, hence rational.

Step 8. Let I be the stabilizer of µ in G. Then I ă G and µ extends to
I.

Let Q{K be s Sylow q-subgroup of I{K. If p ‰ q, then µ extends to Q
because K is a p-group. If q “ p, then I is a p-group. Since χ has p1-degree,
then χQ has some linear constituent, and hence µ extends to Q. It follows
that µ extends to I. Since µ is linear and χ faithful, then K ­Ď I 1, and thus
I ă G.

Final Step. Let ψ be the Clifford correspondent of χ with respect to µ.
Since both χ and µ have values in Qpa (use Step 7), then also ψ has values
in Qpa . Since ψp1q divides χp1q, we have that ψp1q is a p1-number. Also I
contains P and the oddness condition still holds in I. By Step 8, we have
that I ă G, so by induction hypothesis, there exists U ď I and a linear
character λ of U with values in Qpa such that ψ “ λI . Also λG “ χ.

Now, suppose that J ď G and ϕ P IrrpJq with ψG “ χ. Then |G : J | is a
p1-number and so K ď J . Thus ϕ lies over some G-conjugate of µ. We may
replace the pair pJ, ϕq by some G-conjugate and assume that ϕ actually lies
over µ. Let S “ I X J “ Jµ and let η P IrrpSq be the Clifford correspondent
of ϕ with respect to µ. Then ϕ “ ηJ , so that ηG “ ϕG “ χ. This implies
that ηI is irreducible, lies over µ and induces χ. By the uniqueness of the
Clifford correspondent ηI “ ψ. Since the character ψ “ λI and λ is a linear
character of U ď I with values in Qpa , by the inductive hypothesis applied
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in I, we get that η “ τS , where τ is a linear character of a subgroup W ď I
such that the pairs pU, λq and pW, τq are conjugate in I. �

Remark 2.7. Notice that we have actually proven that the character χ
as in Theorem 2.6 is supermonomial.

Remark 2.8. Let χ be as in Theorem 2.6. Then fχ “ pb, where b ě 0.
Suppose that χ “ ψG for some ψ P IrrpHq and H ď G. By Theorem 2.6,
Qpψq Ď Qpb , so that fψ divides pb. By the induction formula, we have that
Qpχq Ď Qpψq. This implies that fχ divides fψ. Hence fψ “ fχ.

Remark 2.9. Let π be a set of primes, let G be a π-separable group
and let H be a Hall π-subgroup of G. We can mimic the proof Theorem 2.6
with π and H playing the role of p and P to get a π-version of this result
(use Remark 2.4 and Hall theory in π-separable groups).

2.3. Certain character correspondences

Let G be a finite group, let p be a prime and let a ě 0. How many p1-degree
irreducible characters does G have with field of values contained in Qpa? It
does not seem easy at all how to answer this question in general. However,
if G is p-solvable and NGpP q{P has odd order, then this number can be
computed locally. We write XpapGq “ tχ P Irrp1pGq | Qpχq Ď Qpau. We
are going to prove that there exists a canonical bijection from XpapGq onto
XpapNGpP qq. The fact that there exists such a canonical bijection follows
by using the natural correspondences Irrp1pGq Ñ Irrp1pNGpP qq constructed
by Isaacs (in the case where p “ 2) and Turull (in the case where |NGpP q|
is odd) (see [Isa73] and [Tur08] for these highly non-trivial theorems). By
using the fact that XpapGq consists of monomial characters, see Theorem 2.6,
and the main result of [Isa90] it is easier to construct a canonical bijection
XpapGq Ñ XpapNGpP qq, as we are going to show.

Lemma 2.10. Let U ď G and let p be a prime. Let λ be a linear character
of U such that χ “ λG P IrrpGq. Let P be a Sylow p-subgroup of U and write
N “ NGpP q. Then

(a) pλUXN q
N is irreducible.

(b) Suppose µG “ ϕ P IrrpGq for some linear character µ of a subgroup
L ď G which contains P . If pλUXN q

N “ pµLXN q
N then χ “ ϕ.

Proof. See the proof of Lemma 2.3 of [Isa90]. �

Let G be p-solvable and let P P SylppGq. Suppose that NGpP q{P has
odd order. If χ P XpapGq, then by Theorem 2.6 there exist U ď G and
a linear IrrpUq with Qpλq Ď Qpa such that λG “ χ. Write N “ NGpP q
and ϕ “ pλNXU q

N . Then Lemma 2.10 guarantees ϕ P IrrpNq. Clearly
ϕ P XpapNq. In order to see that the map XpapGq Ñ XpapNq given by
χ ÞÑ ψ is a well-defined bijection we need some preliminary results.
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Let G be p-solvable. We recall how to extend a linear character λ from
a Sylow p-subgroup of G to a subgroup M in a maximal way guaranteeing
that an extension of λ to M induces an irreducible character of G.

Theorem 2.11. Let G be a p-solvable group and let P P SylppGq. Sup-
pose that λ P IrrpP q is linear, then there exists a unique subgroup M of
G containing P and maximal such that λ extends to M . Moreover, if
µ P IrrpMq extends λ and opµq is a power of p, then µG P IrrpGq.

Proof. For the first part see Corollary 2.2 of [IN08]. The second part
is Theorem 3.3 of [IN08] �

We will also need the following Lemma.

Lemma 2.12. Let G be a group and let p be a prime. Let P P SylppGq
and assume that P Ÿ G and G{P has odd order . If λ P IrrpP q is linear and
Qpλq Ď Qpa, then there exists a unique χ P IrrpGq over λ with Qpχq Ď Qpa.

Proof. First note that every ψ P IrrpGq lying over λ has p1-degree.

By Lemma 1.13, let pλ be the canonical extension of λ to T “ Gλ. We

have that oppλq “ opλq. Hence pλG P XpapGq. Now, suppose ψ P XpapGq
lies over λ. Then ψ “ τG for some τ P IrrpT |λq. Using Theorem 1.12

τ “ βpλ for some β P IrrpT {P q. Since T {P has odd order, by Theorem
1.19 if β is real then β “ 1. Therefore, if β is real, then ψ “ χ. Assume
β is not real and let σ P GalpQpβq{Qq be the complex conjugation. Since
Qpβq Ď Q|T {P | and |T {P | is not divisible by p, we can extend σ to an
element of GalpQpapβq{Qpaq, by the natural irrationalities theorem of Galois

theory. We have, β “ βσ ‰ β. Since ψσ “ ψ and λσ “ λ, it must be

τσ “ βσpλσ “ βpλ “ βpλ “ τ . Using Theorem 1.12 again, βpλ “ βpλ implies
β “ β, a contradiction. �

We are ready to prove Theorem C, which we restate below.

Theorem 2.13. Let G be a p-solvable group and let P P SylppGq. Write
N “ NGpP q and assume that N{P has odd order. Define a map

Ω: XpapGq Ñ XpapNq

in the following way: If χ P XpapGq, choose a pair pU, λq where P ď U ď G
and λ P IrrpUq linear with Qpλq Ď Qpa such that λG “ χ, then set Ωpχq “
pλUXN q

N . Then Ω is a bijection.

Proof. Let χ P XpapGq, by Theorem 2.6 we know that there exists a
pair pU, λq where U ď G, λ is a linear character of U with Qpλq Ď Qpa

and λG “ χ. As χp1q “ |G : U | is a p1-number, U contains a Sylow
p-subgroup of G. We may assume P ď U maybe replacing pU, λq by a
conjugate pair. By Lemma 2.10(a), we have that ϕ “ pλUXN q

N P IrrpNq.
Also pλUXN q

N p1q “ |N : U X N | is a p1-number, and Qpϕq Ď Qpλq Ď Qpa .
Then, we get ϕ P XpapNq. In this situation, we will say that ϕ arises from
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χ. Using Lemma 2.10(b) we know that ϕ cannot arise from any ψ P XpapGq
different from χ. We have seen that in case Ω is well-defined, it is injective.

In order to prove that Ω defines a bijection, we need to show that Ω is
well defined and surjective. First, we show that ϕ is the only element that
arises from χ. Suppose that pW, νq is another pair such that P ď W ď G,
ν is linear and νG “ χ. Then by Theorem 2.6, we have that W “ Ug and
ν “ λg for some g P G. Thus, P, P g ď W . By Sylow Theory, there exists
t P W such that P “ P gt. Also W “ Ugt and ν “ λgt. Hence we may
assume g P N . Then, it suffices to show that pλgUgXN q

N “ pλUXN q
N . Write

µ “ λgUgXN . For every n P N we have that

µN pnq “
1

|U XN |

ÿ

xPN

9µpxnx´1q

“
1

|U XN |

ÿ

xPN

9λUXN pgxnpgxq
´1q

“
1

|U XN |

ÿ

yPN

9λUXN pyny
´1q

“ pλUXN q
N pnq.

Finally, we prove that Ω is surjective. Let θ P XpapNq, let λ P IrrpP q be
under θ. Then, λ is linear and opλq “ |P : kerpλq|. By Theorem 2.11 there
exists M ď G containing P maximal such that λ extends to M . Further-
more, M “ PU where P normalizes U and P X U “ kerpλq. Then, we can
choose the unique extension ν of λ with opνq “ opλq. Again using Theorem
2.11, we have that νG P Irrp1pGq. We need to show that Qpνq Ď Qpa . It
suffices to see that Qpλq Ď Qpa . We distinguish the cases where a “ 0 and
a ą 0.

Case a “ 0. In this case θ is rational. Then both λ and λ are under θ. By
Clifford’s theorem λ “ λg for some g P N , and we see that g normalizes T the

stabilizer of λ inN for the two actions commute. Then, λ “ λg “ pλqg “ λg
2
,

g2 P T . But NN pT q{T has odd order and thus g P T . Hence λ takes real
values, since λ is linear we conclude λ is rational.

Case a ą 0. We have that Qpλq Ď Qopλq where opλq “ pb. Suppose

pb ą pa and let 1 ‰ σ P GalpQpb{Qpaq. Since

|GalpQpb{Qpaq| “
|GalpQpb{Qq|
|GalpQpa{Qq|

“
pb´1pp´ 1q

pa´1pp´ 1q
“ pb´a,

σ has p-power order. Since χσ “ χ, by Clifford’s Theorem, λσ “ λg for
some g P G that normalizes T , the stabilizer of λ in N . We know that the
action by the automorphisms of G and Galois action on IrrpNq commute,

then gopσq P T . Since |NN pT q{T | is a p1-number, it must be that g P T , and
consequently λσ “ λ. Now, we know that pνMXN q

N P XpapNq. If we show
that pνMXN q

N “ θ we will be done. This is true since by Lemma 2.12 there
is a unique element of XpapNq over λ. �
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The bijection Ω given by Theorem 2.13 is completely canonical. In
particular, let α be an automorphism of G that fixes P . Let χ P XpapGq and
λ P IrrpUq such that Ωpχq “ pλUXN q

N . Then we have that Ωpχαq “ Ωpχqα

because pλαUαXN q
N “ ppλUXN q

N qα.

2.4. Certain monomial characters and their subnormal
constituents

As promised in the introduction, we use Isaacs Bπ-theory of π-separable
groups (see Section 1.4) to strengthen the conclusion of Theorem B. The
main feature of the use of this theory is that in the situation of Theorem B
we can guarantee that such χ is not only monomial but also any subnormal
constituent of χ is monomial, see Theorem 2.15 below. The results contained
in this section have been published in a joint work of the author with G.
Navarro in [NV15].

We refer the reader to Section 1.4 for the definition and first properties
of the Isaacs Bπ-characters.

Lemma 2.14. Suppose that G is a p-solvable group. Let P P SylppGq,
and assume that NGpP q{P has odd order. If α P IrrpGq is p1-special and
real, then α is the trivial character.

Proof. We argue by induction on |G|. Let N “ OppGq. By Proposition
1.20, we have that N ď kerpαq. If N ą 1, then we apply induction in G{N .
Otherwise, let K “ Op1pGq. Then K ą 1. By Lemma 2.3, there is some
P -invariant θ P IrrpKq under α, and any two of them are NGpP q-conjugate
(since α is p1-special it has in particular p1-degree). Since α is real, then θ̄
is also under α, and therefore there is g P NGpP q such that θ̄ “ θg. Now
g2 fixes θ, and since NGpP q{P has odd order, we see that θ̄ “ θ. Also, the
fact that NGpP q{P has odd order implies that that CKpP q has odd order.
By Lemma 2.5, we have that θ “ 1K . Thus K ď kerpαq, and we apply
induction in G{K. �

We are ready to prove the main result of this section.

Theorem 2.15. Let p be a prime, let G be a p-solvable group, and let
P P SylppGq. Let χ P IrrpGq be such that p does not divide χp1q and such
that Qpχq Ď Qpa for some a ě 0. If |NGpP q{P | is odd, then χ P BppGq. In
particular, if N Ÿ ŸG and θ is an irreducible constituent of χN , then θ is
monomial.

Proof. By Theorem 1.27, there exists a subgroup P ď W ď G and
a p-special linear character λ P IrrpW q, such that: ψ “ λG P IrrpGq is
a Bp-character, and pW,λq is a nucleus of ψ. Also, there is a p1-special
character α P IrrpW q such that χ “ pλαqG. By Theorem 1.26, the pair
pW,λαq is unique up to G-conjugacy. Now, let σ P GalpQ|G|{Q|G|pq be the

unique Galois automorphism that complex conjugates the p1-roots of unity
and fixes p-power roots of unity. Since χ and λ are fixed by σ, then we deduce
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30
2.4. Certain monomial characters and their subnormal

constituents

that there is g P G such that pW g, λgαgq “ pW,λασq. Hence αg “ ασ by
Proposition 1.23. Since P, P g ďW , then P gw “ P for some w PW , and we

may assume that g P NGpP q. Also, αg
2
“ α, and therefore since NGpP q{P

has odd order, we see that ασ “ α. Now, let H be a p-complement of W .
Then

ᾱH “ αH “ pα
σqH “ αH

and we deduce that ᾱ “ α, by using Proposition 1.22. Since NW pP q{P has
odd order, by Lemma (2.1), we have that α “ 1W . Thus χ “ ψ P BppGq
and χ is monomial. Now, to prove the second part of the theorem, use
that subnormal constituents of Bp-characters are Bp-characters by Theorem
1.24, and the second part of Theorem 2.2 of [CN08] , that asserts that Bp-
characters of p1-degree are monomial. �

We obtain the following consequence, in which a global invariant of a
finite group is calculated locally.

Corollary 2.16. Let p be a prime, let G be a p-solvable group, and
let P P SylppGq. Assume that NGpP q{P has odd order. Then the number
of irreducible characters χ of G such that χp1q is not divisible by p and
Qpχq Ď Q|G|p is the number of orbits of the natural action of NGpP q on

P {P 1.

Proof. Recall the notation from the previous section. If a is a non-
negative integer we write XpapGq “ tχ P Irrp1pGq | Qpχq Ď Qpau. Let
|P | “ pa. By Theorem 2.15, we have that XpapGq “ BppGq X Irrp1pGq and
XpapNq “ BppNqX Irrp1pNq. By Theorem 2.2 and Corollary 2.3 of [CN08],
we have that |XpapGq| “ |XpapNq|. We will show that |XpapNq| is equal
to the number of orbits under the natural action of NGpP q on IrrpP {P 1q.
Let Λ be a complete set of representatives of the NGpP q orbits on P {P 1. If
θ P XpapGq, then by Clifford’s theorem θ lies over a unique λ P Λ. Hence
|Xpa | ď |Λ|. Now, suppose that θ, θ1 P XpapNq lie over the same λ P Λ.
Then there exist ψ,ψ1 P IrrpNλ|λq such that θ “ ψN and θ1 “ pψ1q

G. No-
tice that ψ and ψ1 have p1-degree by the induction formula. By Theorem
1.13 λ extends canonically to Nλ and by Theorem 1.12, we have that ψ “ βλ̂
and θ1 “ β1λ̂, where β, β1 P Irrp1pNλ{P q and λ̂ is the canonical extension of
λ to Nλ. Since Qpθq, Qpθ1q and Qpλq are contained in Qpa , then also Qpψq
and Qpψ1q are contained in Qpa . Hence β and β1 are rational valued. Since
by assumption N{P is odd, by Burnside’s theorem 1.19 we have that β “ β1

and therefore θ “ θ1. �

As we have already mentioned, we can shorten the proof of our Theorem
2.2 if we are willing to use Isaacs Bπ-theory.

Theorem 2.17. Suppose that G is solvable. Suppose that χ P IrrpGq has
odd degree. Suppose that pχp1q, fχq “ 1. Then χ is monomial.

Proof. Let π be the set of primes (possibly empty) dividing fχ. Then
χ has π1-degree. By Theorem 1.27, there exist a pair pW,γq, where W ď G
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and γ P IrrpW q is π-special, and a π1-special character α P IrrpW q such
χ “ pαγqG. Also, γG “ ψ P BπpGq and pW,γq is a nucleus for ψ. Also by
Theorem 1.26, the pair pW,γαq is unique up to G-conjugacy. Notice that
χp1q “ |G : W |αp1qγp1q implies that γp1q “ 1 and W contains a full Sylow
2-subgroup of G.

We have that

Qpχq Ď Qfχ Ď Q|G|π .
Since γ is π-special, Qpγq Ď Q|G|π . Now, let σ P GalpQ|G|π1 {Qq. We may

extend σ to some σ P GalpQ|G|{Q|G|πq. Then σ fixes χ and γ. Thus
pW,γασq “ pW,γαqg for some g P G. In particular, g P NGpW q. By

Proposition 1.23, we have that γ “ γg and and ασ “ αg. Let β “ αNGpW q.
Now, although β is not necessarily irreducible we have that Qpβq Ď Q|G|π1 .
Moreover, since ασ “ αg, we have that β is fixed by σ and therefore β is
rational valued (of odd) degree.

Now αNGpW q “ β “ β “ pᾱqNGpW q. It follows that some irreducible
constituent ψ of β lies over α and ᾱ. Hence ᾱ “ αg for some g P NGpW q.
Since NGpW qα “ W , we have that g2 P W , but |NGpW q{W | odd implies
that g PW . Then α is real, and by Gow’s theorem it is monomial. Hence χ
is monomial. �

2.5. Feit’s Conjecture and p1-degree characters

Our aim in this section is to prove Theorem D of the introduction. We need
a little preparation in order to do that. We will use Gajendragadkar special
characters (we refer the reader to Section 1.4). The following result will help
us to control fields of values under certain circumstances.

Lemma 2.18. Let G be a finite group, let q be a prime and let ζ be a
primitive q-th root of unity. Suppose that G is q-solvable and χ P IrrpGq is
q-special. If χ ‰ 1, then ζ P Qpχq.

Proof. Let Q be a Sylow q-subgroup of G. By Lemma 1.22, we have
that ψ ÞÑ ψQ is an injection from the set of q-special characters of G into
the set IrrpQq. In particular Qpχq “ QpχQq. Of course χQ ‰ 1. Thus, we
may assume that G is a q-group. We also may assume that χ is faithful
by modding out by kerpχq. Choose x P ZpGq of order q. We have that
χxxy “ χp1qλ, where λ P Irrpxxyq is faithful. Hence λpxiq “ ζ for some
integer i. In particular ζ P Qpχq. �

The following elementary observation is stated as a Lemma for the
reader’s convenience.

Lemma 2.19. Suppose that λ is a linear character of a finite group, and
let P P SylppGq. Let NGpP q Ď H ď G and let ν “ λH . Then opλq “ opνq.

Proof. If λ “ 1G, then there is nothing to prove. We may assume λ
is non-principal and hence G1 ă G. We have that P Ď PG1 Ÿ G. By the
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Frattini argument, we have that G “ G1NGpP q “ G1H. Since G1 Ď kerpλq
and kerpνq “ kerpλq XH, the result follows. �

The proof of Theorem D requires the use of a magical character; the
canonical character associated to a character five defined by Isaacs in [Isa73].
We summarize the properties of ψ below.

Let L Ď K Ÿ G with L Ÿ G and K{L abelian. Let θ P IrrpKq and
ϕ P IrrpθLq. Suppose that θ is the unique irreducible constituent of ϕK (in
this case we say that ϕ is fully ramified with respect to K{L or equivalently
that θ is fully ramified with respect to K{L) and ϕ is G-invariant. Then
we say that pG,K,L, θ, ϕq is a character five.

Theorem 2.20. Let pG,K,L, θ, ϕq be a character five. Suppose that
K{L is a q-group for some odd prime q. Then there exist a character ψ of
G with K Ď kerpψq and a subgroup U ď G such that

(a) UK “ G and U XK “ L;
(b) ψpgq ‰ 0 for every g P G, ψp1q2 “ |K : L| and the determinantal

order of ψ is a power of q;
(c) if K Ď W ď G, then the equation ξW “ ψW ξ0 for ξ P IrrpW |θq

and ξ0 P IrrpW XU |ϕq defines a one-to-one correspondence between
these two sets; and

(d) if K ĎW ď G, then ξ P IrrpW |θq and ξ0 P IrrpWXU |ϕq correspond
in the sense of (c) if and only if ξG0 “ ψW ξ, where ψ denotes the
complex conjugate of ψ.

(e) If K{L is elementary abelian, then Qpψq Ď Qq.

Proof. For parts (a), (b) and (c) see Theorem 3.1 of [Nav02]. Part
(d) follows from Corollary 9.2 of [Isa73] (since the complement U provided
by [Nav02] is ”good” not only for G{L but also for every W {L where
K ĎW ď G). For part (e), by Theorem 9.1 of [Isa73] and the discussion at
the end of the page 619 of [Isa73], the values of the character ψ are Q-linear
combinations of products of values of the bilinear multiplicative symplectic
form ! , "ϕ : K ˆ K Ñ Cˆ associated to ϕ (defined at the beginning of
Section 2 of [Isa73]). The values of ! , "ϕ are values of linear characters of
cyclic subgroups of K{L. Since K{L is q-elementary abelian, we do obtain
that Qpψq Ď F . �

We can prove Theorem D, which we restate here.

Theorem 2.21. Let p be a prime and let G be a finite solvable group.
Let χ P IrrpGq of degree not divisible by p, and let P P SylppGq. If χp1q is
odd, then there exists g P NGpP q{P

1 such that opgq “ fχ. In particular, the
Feit number fχ divides |NGpP q : P 1|.

Proof. By the Amit-Chillag theorem [AC86], we may assume that p
divides |G|. We proceed by induction on |G|.

Let N Ÿ G. If θ P IrrpNq is P -invariant and lies under χ, then we may
assume that θ is G-invariant. Let ψ P IrrpGθ|θq be the Clifford correspondent

Universitat de València Carolina Vallejo Rodŕıguez
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of χ. By the character formula for induction, Qpχq Ď Qpψq and χp1q “ |G :
Gθ|ψp1q. Thus the character ψ satisfies the hypotheses of the theorem in
Gθ and fχ divides fψ. If Gθ ă G, then by induction there exists some
g P NGθpP q{P

1 ď NGpP q{P
1 (notice that the P -invariance of θ implies

P Ď Gθ) such that opgq “ fψ. Hence, some power of g has order fχ and we
may assume Gθ “ G.

We claim that we may assume that χ is primitive. Otherwise, suppose
that χ is induced from ψ P IrrpHq for some H ă G. In particular, p does
not divide |G : H| and so H contains some Sylow p-subgroup of G, which
we may assume is P . Again by the character formula for induction, the
degree ψp1q is an odd p1-number and fχ divides fψ. By induction there is
g P NHpP q{P

1 ď NGpP q{P
1 such that opgq “ fψ. Thus some power of g has

order fχ, as claimed.

By Theorem 2.6 of [Isa81] the primitive character χ factorizes as a
product

χ “
ź

q

χq,

where the χq are q-special characters of G for distinct primes q. Let σ P
GalpQ|G|{Qpχqq. Then

ź

q

χσq “
ź

q

χq.

By using the uniqueness of the product of special characters, see Proposition
1.23, we conclude that χσq “ χq for every q. Hence fχq divides fχ for
every q, and since the fχq ’s are coprime also

ś

q fχq divides fχ. Notice that

Qpχq Ď Qpχq | qq Ď Qś

q fχq
by elementary Galois theory. This implies the

equality fχ “
ś

q fχq .

Now, consider K “ Op1,ppGq ă G. Notice that PK “ OppGq Ÿ G. By
the Frattini argument G “ PKNGpP q “ KNGpP q. If K “ 1, then P Ÿ G
and we are done in this case. We may assume that K ą 1. Let K{L be
a chief factor of G. Then K{L is an abelian p1-group. If H “ NGpP qL,
then G “ KH and K XH “ L, by a standard group theoretical argument.
Furthermore, all the complements of K in G are G-conjugate to H. Finally,
notice that CK{LpP q “ 1 using that H XK “ L.

We claim that for every q, there exists some q-special χ˚q P IrrpHq such

that fχ˚q “ fχq and χ˚q p1q is an odd p1-number.

If q P t2, pu, then λ “ χq is linear (because χ has odd p1-degree). Let
λ˚ “ λH . Then λ˚ is q-special (since λ is linear and q-special, this is
straightforward from the definition) and fλ˚ “ fλ by Lemma 2.19.

Let q ‰ p be an odd prime and write η “ χq. We work to find some
η˚ P IrrpHq of odd p1-degree with fη˚ “ fη. By Lemma 2.3, let θ P IrrpKq be
some P -invariant constituent of ηK and let ϕ P IrrpLq be some P -invariant
constituent of ηL. By the second paragraph of the proof, we know that both
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θ and ϕ are G-invariant and hence ϕ lies under θ. By Theorem 6.18 of
[Isa76] one of the following holds:

(a) θL “
řt
i“1 ϕi, where the ϕi P IrrpLq are distinct and t “ |K : L|,

(b) θL P IrrpLq, or
(c) θL “ eϕ, where ϕ P IrrpLq and e2 “ |K : L|.

Notice that the situation described in (a) cannot occur here, because ϕ
is G-invariant.

In the case described in (b), we have ϕ “ θL P IrrpLq. Then restriction
defines a bijection between the set of irreducible characters of G lying over
θ and the set of irreducible characters of H lying over ϕ (by Corollary
(4.2) of [Isa86]). Write ξ “ ηH . By Theorem A of [Isa86], we know
that ξ is q-special. We claim that Qpηq “ Qpξq. Clearly, Qpξq Ď Qpηq.
If σ P GalpQpηq{Qpξqq, then notice that ϕ is σ-invariant because ξL is a
multiple of ϕ. Now, ϕ is P -invariant, and because CK{LpP q “ 1, there is
a unique P -invariant character over ϕ (by Problem 13.10 of [Isa76]). By
uniqueness, we deduce that θσ “ θ. Now, ησ lies over θ and restricts to
ξ, so we deduce that ησ “ η, by the uniqueness in the restriction. Thus
Qpηq “ Qpξq. We write η˚ “ ξ.

Finally, we consider the situation described in (c). Since θL is not ir-
reducible, then |K : L| is not a q1-group, by Theorem 1.10. Hence K{L is
q-elementary abelian and e is a power of q. By Theorem 2.20 (and using
that all the complements of K{L in G{L are conjugate), there exists a (not
necessarily irreducible) character ψ of G such that:

(i) ψ contains K in its kernel, ψpgq ‰ 0 for every g P G, ψp1q “ e and
the determinantal order of ψ is a power of q.

(ii) if K Ď W ď G and ξ P IrrpW |θq, then ξWXH “ ψWXHξ0 for a
unique irreducible character ξ0 of W XH.

(iii) The values of ψ lie on Qq.

In particular, ηH “ ψη0, so that η0 P IrrpH|ϕq (where we are viewing ψ
as a character of H). We claim that η0 is q-special. First notice that
η0p1q “ ηp1q{e is a power of q. Now, we want to show that whenever S
is a subnormal subgroup of H, the irreducible consituents of pη0qS have
determinantal order a power of q. Since pη0qL is a multiple of ϕ, which is
q-special, we only need to control the irreducible constituents of pη0qS when
L Ď S Ÿ ŸH, by using Proposition 1.20. We have that K Ď SK Ÿ ŸG.
Write

ηSK “ a1γ1 ` ¨ ¨ ¨ ` arγr,

where the γi P IrrpSKq are q-special because η is q-special and ai P N0. By
using the property (ii) of ψ, we have that ηS “ ψSpη0qS also decomposes as

ηS “ a1ψSpγ1q0 ` ¨ ¨ ¨ ` arψSpγrq0

“ ψSpa1pγ1q0 ` ¨ ¨ ¨ ` arpγrq0q.
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2. Monomial characters and Feit numbers 35

Since ψ never vanishes on G, we conclude that pη0qS “ a1pγ1q0`¨ ¨ ¨`arpγrq0.
It suffices to see that oppγiq0q is a power of q for every γi constituent of ηSK .
Just notice that

detppγiqSq “ detpψSpγiq0q

“ detpψSq
pγiq0p1qdetppγiq0q

e.

Since opψq, opγiq, γip1q and e are powers of q, we easily conclude that also
the determinantal order of pγiq0 is a power of q. This proves that η0 is q-
special. We claim that Qpηq “ Qpη0q so that the two Feit numbers are the
same. Let ζ be a primitive q-th root of unity and write F “ Qpζq. Then the
values of ψ lie in F . We next see that η and η0 are non-principal. This is
obvious because θ and ϕ are fully ramified. Suppose that σ P GalpQ|G|{F q
stabilizes η. Then

ψη0 “ ψσησ0 “ ψησ0 .

Using that ψ is never zero, we conclude that ησ0 “ η0. Now, by part (d) of
Theorem 2.20, we have that ξ and ξ0 correspond (as in part (c) of Theorem
2.20) if and only if pξ0q

G “ ψξ. Hence, if σ P GalpQ|G|{F q and ησ0 “ η0, then

ψη “ pη0q
G “ pησ0 q

G “ ψησ (because also Qpψq Ď F ). This implies again
that ησ “ η. By Galois theory, we have that F pηq “ F pη0q. By Lemma
2.18, this implies Qpηq “ Qpη0q. We set η˚ “ η0. The claim follows.

Now, we define χ˚ “
ś

q χq
˚ which has odd p1-degree. The character

χ˚ is irreducible by Proposition 1.23. Also fχ˚ “
ś

q χ
˚
q as in the fourth

paragraph of this proof. Hence

fχ˚ “
ź

q

fχq˚ “
ź

q

fχq “ fχ.

By the inductive hypothesis, there exists g P NHpP q{P
1 ď NGpP q{P

1 such
that opgq “ fχ˚ and we are done. �
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CHAPTER 3

McKay natural correspondences of characters

3.1. Introduction

Let p be a prime. Recall that for a finite group G, we denote by Irrp1pGq
the set of the irreducible characters χ P IrrpGq of G which have degree
χp1q not divisible by p. The McKay conjecture, one of the main problems
in the Representation Theory of Finite Groups, asserts that |Irrp1pGq| “
|Irrp1pNGpP qq|, where P P SylppGq. It is suspected that in general no choice-
free correspondence can exist between Irrp1pGq and Irrp1pNGpP qq, at least
there does not exist one commuting with Galois action. For instance, if
G “ GL2p3q, p “ 3 and P P SylppGq, then all the irreducible characters of
NGpP q are rational-valued, while G has characters of degree 2 which are not
rational-valued.

A key case to consider is when NGpP q “ P . If NGpP q “ P , then
McKay conjecture predicts the existence of a bijection between Irrp1pGq and
IrrpP {P 1q. We prove that much more is happening for p odd.

Theorem E. Let G be a group, let p be an odd prime and let P P

SylppGq. Suppose that P “ NGpP q. If χ P Irrp1pGq, then

χP “ χ˚ `∆ ,

where χ˚ P IrrpP q is linear and ∆ is either zero or ∆ is a character whose
irreducible constituents have all degree divisible by p. Furthemore, the map
χ ÞÑ χ˚ is a natural bijection Irrp1pGq Ñ IrrpP {P 1q.

Theorem E was proved for p-solvable groups in [Nav07] for any prime p,
although it was suspected long time ago that it should hold in general for odd
primes. For p “ 2, Theorem E is not true, the symmetric group S5 provides
a counterexample. However, E. Giannelli [Gia16] found canonical bijections
for p “ 2 and Sn. (This bijection cannot be described by restriction unless
n “ 2k.) We also mention that in [GKNT16] the authors provide a different
canonical bijection for p “ 2 and Sn as well as for GLnpqq and GUnpqq (for
q odd).

We will also work in greater generality. Instead of assuming that P P

SylppGq is self-normalizing, we assume that NGpP q “ CGpP qP (namely
NGpP q is p-decomposable). We prove that a bijection as in Theorem E does
exist but at the moment only between characters in the principal blocks
(again for p odd). Recall that a character χ P IrrpGq lies in the principal
(p-)block B0pGq of G if

ř

xPG0 χpxq ‰ 0, where G0 is the set of elements of
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G of order not divisible by p. If we further assume that G is p-solvable, then
we can prove the following (with no restriction on p).

Theorem F. Let G be a finite p-solvable group, and let P P SylppGq.
Suppose that NGpP q “ PCGpP q, and let N “ Op1pGq. Let IrrP pNq be the
set of P -invariant characters θ P IrrpNq. Then, for every θ P IrrP pNq and
λ P IrrpP {P 1q linear, there is a canonically defined character

λ ‹ θ P Irrp1pGq .

Furthermore, the map

IrrpP {P 1q ˆ IrrP pNq Ñ Irrp1pGq

given by pλ, θq ÞÑ λ ‹ θ is a bijection. As a consequence, if θ˚ P IrrpCN pP qq
is the Glauberman correspondent of θ P IrrP pNq (see Theorem 1.17), then
the map

λˆ θ˚ ÞÑ λ ‹ θ

is a natural bijection Irrp1pNGpP qq Ñ Irrp1pGq. Also, if θ “ 1N and λ P
IrrpP {P 1q, then λˆ θ˚ is the unique linear constituent of pλ ‹ θqNGpP q.

This chapter is structured in the following way: We begin by studying
some character correspondences in the groups PSL2p3

3aq for a ě 1 in Section
3.2. There is a good reason for that: these groups appear as the only
non-abelian composition factors of groups with a self-normalzing Sylow p-
subgroup for odd p (see [GMN04]). In Section 3.3 we prove the following
extension theorem which is key to prove Theorem E.

Theorem. Let N Ÿ G. Let p be an odd prime and let P P SylppGq.
Assume that NGpP q “ P . If χ P Irrp1pGq and θ P IrrpNq lies under χ, then
θ extends to Gθ.

In Section 3.4 we prove Theorem E and we present an application to char-
acterize groups with self-normalizing Sylow p-subgroups for odd p. In Sec-
tion 3.5, we consider the case where the normalizer of the Sylow p-subgroup
is p-decomposable.

We will start by proving a key group theoretical result, which extends a
classical work of J. Thompson (see Theorem 3.14 of [Isa08]).

Theorem. Let G be a group, let p be a prime, and let P P SylppGq.
Suppose that NGpP q “ P ˆ X. If p is odd or G is p-solvable, then X ď

Op1pGq. In particular, if NGpP q “ PCGpP q, then Op1pNGpP qq ď Op1pGq.

After that we prove there exist character correspondences as in Theorem
E between characters in the principal blocks. In the last section, we prove
Theorem F.

All the results contained in this chapter, unless otherwise stated, appear
in a joint work of the author together with G. Navarro and P. H. Tiep
[NTV14].

Universitat de València Carolina Vallejo Rodŕıguez
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3.2. Character correspondences associated with PSL2p3
3aq

By the main result of [GMN04], if a group G has a self-normalizing Sylow
p-subgroup for some odd prime p, then either G is solvable or p “ 3 and G
has a composition factor of type PSL2p3

3aq where a ě 1. In the case where
G is not solvable, it is easy to show that all non-abelian composition factors
of G are of type PSL2p3

3aq with a ě 1.

Lemma 3.1. Let G be a group. Let p be an odd prime. Suppose that
NGpP q “ P for some P P SylppGq. If K{L is a non-abelian composition

factor of G, then K{L is of type PSL2p3
3aq with a ě 1.

Proof. By Corollary 1.2 of [GMN04], the claim holds when G is sim-
ple. We proceed by induction on |G|. Let N be a minimal normal subgroup
of G. Then 1 ă |N | ă |G|. Since both K XN and L are normal subgroups
of K, we have that L ď pK X NqL Ÿ K. However, K{L simple yields
pK XNqL “ L or pK XNqL “ K.

Suppose pK X NqL “ L. Then K{L – KN{KL is a nonabelian com-
position factor of G{N . Since NG{N pPN{Nq “ NGpP qN{N “ PN{N , by

induction hypothesis K{L is of type PSL2p3
3aq with a ě 1.

Suppose that pK X NqL “ K. Then K{L – pK X Nq{pL X Nq is a
non-abelian composition factor of G0 “ PN . Therefore N is a non-abelian
minimal normal subgroup. We can write N “ T1 ˆ ¨ ¨ ¨ ˆ Tr, where the Ti’s
are non-abelian simple groups transitively permuted by G and consequently
all isomorphic. Also, the Ti’s are the composition factors of N up to isomor-
phism by the Jordan-Hölder Theorem. Thus K{L – Ti for some i. Since
NG0pP q “ P , if G0 ă G, then we are done by induction. We may assume
that G “ PN . By the main result of [GMN04], some composition factor
of G, thus some composition factor Tj of N is of type PSL2p3

3aq with a ě 1.
Hence K{L is also of this type and we are done. �

Due to these facts, the groups of type PSL2p3
3aq with a ě 1 play an

important role in the proof of our Theorem E. The description of the be-
havior of the character theory of groups of type PSL2pqq under the action
of automorphisms was accomplished in Section (15B) of [IMN07]. In order
to make this chapter as self-contained as possible, this section is devoted to
describe how does the character theory of PSL2p3

3aq behave under the ac-
tion of their field automorphisms using the background of Section 1.5. (We
will use results contained in Section 1.5 without specific reference).

First we need the following result about some special actions of p-groups
on groups of type PSL2pp

paq.

Lemma 3.2. Let S “ PSL2pqq, where q “ pp
a
, for some odd prime p

and a ě 1. Embed S Ÿ AutpSq “ A. Let P ď A be a p-subgroup such that
P X S “ Q P SylppSq. Suppose that P acts on S with CNSpQq{QpP q “ 1.
Then p “ 3 and P P SylppAq.
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Proof. We proceed in a series of steps.
Step 1. We may assume that Q is the Sylow p-subgroup Q1 of S induced

from upper unitriangular matrices.

We have that Q “ Qs1 for some s P S. Then Q1 “ P s
´1
XSŸ P s

´1
“ P1

and P1 acts on S with CNSpQ1q{Q1
pP1q “ pCNSpQq{QpP qq

s´1
“ 1.

Step 2. We describe the Sylow p-subgroups of A and NApQq.
Write F “ Fq. Let ϕ be the Frobenius automorphism of F . Then, ϕ

induces an automorphism of S and xϕy ď A has order f “ pa, see Section
1.5.1. By Step 1, the group xϕy normalizes Q, and so Qxϕy is a subgroup
of A of order pa ¨ q (we are using that xϕy X S “ 1). Hence Qxϕy P SylppAq,

because |A| “ paqpq2 ´ 1q. Write H “ NApQq. We claim:

(a) SylppAq “ tpQxϕyq
s | s P Su,

(b) SylppHq “ tpQxϕyq
t | t P NSpQqu.

We first prove (a). Since A{S is abelian, we have that Sxϕy Ÿ A and Qxϕy
is a Sylow p-subgroup of Sxϕy. By Frattini’s argument (see 3.2.7 of [KS04]
for instance)

A “ SxϕyNApQxϕyq “ SNApQxϕyq,

hence the description in (a) follows. To prove (b), we proceed analogously.
Since Q P SylppSq and SŸ A, we have that A “ SNApQq “ SH by Frattini’s
argument. In particular, H{NSpQq is abelian. We have that xϕy normalizes
NSpQq. Hence NSpQqxϕyŸH and using Frattini’s argument one more time,
we conclude

H “ NSpQqxϕyNHpQxϕyq “ NSpQqNHpQxϕyq.

Step 3. We may assume P ď Qxϕy. In particular P “ Qxϕey for some
integer e.

Since P ď NApQq is a p-subgroup, then P ď pQxϕyqt for some t P
NSpQq, by Step 2. Let s “ t´1. We have Qs “ Q ď P s ď Qxϕy. We may
replace P by P s because P s acts on S stabilizing Q and

CNSpQq{QpP
sq “ pCNSpQq{QpP qq

s “ 1.

Thus, we may assume P ď Qxϕy. Hence P “ P X Qxϕy “ QpP X xϕyq “
Qxϕey, for some integer e.

Final step. We conclude P “ Qxϕy is a full Sylow p-subgroup of A.
By Step 3, we know that P “ Qxϕey for some integer e. Consider ϕe

both as a Galois automorphism of F and as an automorphism of S. Suppose
that ϕe fixes an element a P Fˆ. Let dpaq “ diagpa, a´1q P NSpQq. By easy

matrix computations, for every x “

ˆ

1 b
0 1

˙

P Q and for every integer k,

we have that

dpaq´1dpaqxϕ
ek
“

ˆ

1 bp
ek
pa´ a´1q

0 1

˙

P Q.
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This proves that dpaq P CNSpQq{QpP q. By hypothesis CNSpQq{QpP q “ 1, so
that dpaq P Q. This means that dpaq is the identity of S. Thus a “ ˘1 P F .
Hence, the subfield of F fixed by ϕe is exactly F3. Since ϕe P GalpF {Fpq,
we conclude that p “ 3 and xϕey “ xϕy, by Galois Theory. �

Let S “ PSL2pqq, where q “ 33a for some a ě 1. We shall also need
the following result about the automorphisms of S that centralize a Sylow
3-subgroup of S.

Lemma 3.3. Let S “ PSL2pqq, where q “ 33a for some a ě 1.Write
A “ AutpSq. Let P P Syl3pAq. Write Q “ P X S P Syl3pSq. Suppose that
Y ď A is a 31-subgroup that centralizes Q. Then Y “ 1.

Proof. We may assume that Q is the Sylow 3-subgroup of S induced
from upper unitriangular matrices. Since A “ PGL2pqq ¸ xϕy, where xϕy is
the group of field automorphisms of S with opϕq “ 3a, and Y is a 31-subgroup
of A, we have that Y ď PGL2pqq. The result follows since CPGL2pqqpQq “
Q. �

Lemma 3.4. Let G be a group and let S ď G. Suppose that S “ PSL2pqq,
where q “ 33a and a ě 1. Write p “ 3 and let P be a p-subgroup of G
such that Q “ P X S P SylppSq. Suppose further that P acts on S with
CNSpQq{QpP q “ 1. If α P Irrp1pSq is P -invariant, then

αQ “ α˚ `∆,

where α˚ is P -invariant and no irreducible constituent of the character ∆ is
P -invariant. Moreover, the map α ÞÑ α˚ defines a bijection between the set
of irreducible character of S of p1-degree fixed by P and the set of irreducible
characters of Q fixed by P .

Proof. We proceed in a series of steps. Let F “ Fq. We write ϕ to
denote the Frobenius automorphism of the field F .

Step 1. We may assume Q is the Sylow p-subgroup Q1 of S induced from
upper unitriangular matrices.

We have that Qs “ Q1 for some s P S. Then Q1 “ P sXSŸ P s “ P1 and
P1 acts on S with CNSpQ1q{Q1

pP1q “ pCNSpQq{QpP qq
s “ 1. Also IrrP1pQ1q “

pIrrP pQqq
s.

Step 2. We may work in AutpSq and we may assume that P “ Qxϕy,
where we identify ϕ with the field automorphism of S corresponding to ϕ as
in Section 1.5.

Write A “ AutpSq. Let γ : P Ñ A be the homomorphism defined by
conjugation by P . Write P1 “ γpP q ď A. Embed S Ÿ AutpSq. Then
Q ď P1. Since the actions of P and P1 on S are equivalent, we have that
CNSpQq{QpP1q “ 1. By Lemma 3.2, we have that P1 is a Sylow p-subgroup

of A. Since P1 ď NApQq, we have that P1 “ pQxϕyq
t for some t P NSpQq

(proceed as in Step 2 of the proof of Lemma 3.2). Hence Q ď P2 “ pP1q
t´1
“
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Qxϕy. We notice that

CNSpQq{QpP2q “ pCNSpQq{QpP1qq
t´1
“ 1,

IrrxϕypQq “ IrrP2pQq “ IrrP1pQq and IrrxϕypSq “ IrrP pSq. This proves the
claim.

Step 3. We describe the set IrrxϕypSq.
We have that q ” 3 mod 4, for a ě 1. The character table of S has been

given in Section 1.5. We keep the notation of Section 1.5 throughout this
proof. Also in Section 1.5, it is is shown that t1S , StS , η

1
0, η

2
0u Ď IrrxϕypSq.

By Lemma 15.1 of [IMN07], we have that IrrxϕypSq “ t1S ,StS , η
1
0, η

2
0u. l

The only character of this set with degree divisible by p is the Steinberg
character StS . Of course p1SqQ “ 1Q has the desired form. Hence, in order
to prove the statement, we need to understand how does α P tη10, η

2
0u restrict

to Q.

Step 4. We compute pη10qQ and pη20qQ.
We denote by Tr the trace map TrF {F3

: F Ñ F3 associated to the field

extension F {F3. The trace map is F3-linear and Trpbq “ b` bp` ¨ ¨ ¨ ` bp
a´1

for every b P F , by Corollary 23.11 of [Isa94]. Fix ε a primitive cubic root of
unity. For every b P F , we define a homomorphism λb : QÑ Cˆ as follows:

if c P F , then λb

ˆ

1 c
0 1

˙

“ εTrpbcq. We have that

IrrpQq “ tλb | b P F u.

The automorphism ϕ acts on Q. Hence ϕ acts on IrrpQq. In fact λϕb “ λϕpbq
for every b P F . By Theorem 1.16, the number of elements of Q fixed by ϕ
is equal to the number of irreducible characters of Q fixed by ϕ. Since the
subfield of F fixed by ϕ is the prime field F3, we have that ϕ fixes exactly
three elements of Q. It is clear that IrrxϕypQq “ t1Q, λ1, λ´1u.

We denote by U the subgroup of Fˆ consisting of the squares of Fˆ.
The subgroup U has index 2 in Fˆ. Since ´1 is not a square in F , every
b P Fˆ is either in U or there exists an u P U such that b “ ´u. From the
character table of S we see that

pη10qQ ` pη
2
0qQ “ ρQ ´ 1Q,

where ρQ is the regular character of Q (we recall ρQ has degree |Q| “ q and
ρQ vanishes on every nontrivial element of Q). Thus

ρQ “
ÿ

bPF

λb “ 1Q ` pη
1
0qQ ` pη

2
0qQ.

We conclude that pη10qQ is the sum of 1
2pq ´ 1q nontrivial λb’s and pη20qQ is

exactly the sum of the 1
2pq ´ 1q nontrivial λb’s that do not appear in pη10qQ.

The normalizer of Q in S is

NSpQq “ t

ˆ

c b
0 c´1

˙

| c P Fˆ, b P F u “
ď

cPFˆ

ˆ

c 0
0 c´1

˙

Q.
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Let b P F . Write dpcq “ diagpc, c´1q P H, where c P Fˆ. It is straightforward
to check that

λ
dpcq
b “ λc2b.

Thus the action of NSpQq on IrrpQq decomposes IrrpQq into three orbits as
follows

IrrpQq “ t1Qu Y tλb | b P Uu Y tλ´b | b P Uu.

Hence, if λb is a consituent of pη10qQ, then

pη10qQ “
ÿ

uPU

λub

is exactly the sum over all squares of F if b is a square or the sum over
all the non-squares of F if b is a non-square. In particular, we have that
λe is a constituent of pη10qQ if and only if λ´e is a constituent of pη20qQ for
e P t´1, 1u. This finishes the proof of the statement. �

Remark 3.5. Under the hypothesis of Lemma 3.2, we have that

IrrP pSq “ t1S ,StS , η
1, η2u,

where StS is the Steinberg character of S and η1 and η2 are the two ir-
reducible cuspidal characters of S of degree 1

2pq ´ 1q, by Lemma 15.1 of
[IMN07].

3.3. An extension theorem

In this section we prove a non-trivial extension result which is key to proving
Theorem E.

Theorem 3.6. Let N Ÿ G and let p be an odd prime. Let P P SylppGq
and suppose that NGpP q “ P . Let χ P Irrp1pGq. If θ P IrrpNq lies under χ,
then θ extends to Gθ.

The proof of Theorem 3.6 we present here is totally different from the
one we originally gave in [NTV14]. This new shorter and cleaner proof is
based upon the ideas contained in [NT16]. In [NT16] the authors were
interested in the case p “ 2, but their argument becomes easier for odd
primes.

We begin with an elementary extension result.

Lemma 3.7. Let N be a normal p-subgroup of G. Let χ P Irrp1pGq and
let θ P IrrpNq be under χ. Then θ extends to Gθ.

Proof. We may assume that θ is G-invariant since the Clifford corre-
spondent ψ P IrrpGθ|θq of χ has p1-degree. Let P P SylppGq. Then N ď P .
Since χ has p1-degree, some irreducible consituent µ of χP has p1-degree. In
particular, µ is linear and lies over θ, hence µN “ θ. If Q P SylqpGq for
some prime q ‰ p, we have that θ also extends to NQ by Corollary 6.20 of
[Isa76]. According to Corollary 11.31 of [Isa76] θ extends to G. �
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We shall also need an extension result from [NT16], which is not hard
to prove.

Lemma 3.8. Let N Ÿ G. Suppose that N “ S1 ˆ ¨ ¨ ¨ ˆ St is the direct
product of subgroups which are transitively permuted by G by conjugation.
Write S “ S1 and view S{ZpSqŸ A “ AutpSq. Let θ “ θ1ˆ ..ˆ θt P IrrpNq
be G-invariant, where θi P IrrpSiq and θ1 P IrrpS{ZpSqq. If θ1 extends to
Aθ1, then θ extends to G.

Proof. This is Lemma 2.8 of [NT16]. �

We are ready to prove the main result of this section.

Proof of Theorem 3.6. Choose pG,Nq a counterexample of minimal
|G| ` |N |. We may assume that G “ Gθ by minimality of pG,Nq since the
Clifford correspondent ψ P IrrpGθ|θq of χ has p1-degree and |G : Gθ| is a
p1-number. Thus χN “ eθ for some e ě 1.

Suppose M Ÿ G and M ă N . Then

χM “ f
t
ÿ

i“1

τxi ,

where τ P IrrpMq and tτx1 , ..., τxtu is a G-orbit. Also

χM “ eθM “ ef 1
r
ÿ

i“1

τni ,

where the sum now is over an N -orbit. Write I “ Gτ . Then

|G : I| “ t “ r “ |N : N X I|,

so G “ NI. By Lemma 2.3 some irreducible constituent of χM is P -
invariant, let us say τ , so P ď I. Let ρ P IrrpN X I|τq be the Clif-
ford correspondent of θ. Since both τ and θ are I-invariant, also ρ is I-
invariant. Now, let ψ P IrrpIq be under χ and over ρ. In particular, ψ lies
over τ and then it must be the Clifford correspondent of χ over τ . Hence
ψG “ χ and ψ P Irrp1pIq. By minimality of pG,Nq, the character ρ ex-

tends to some µ P IrrpIq. Notice that I “ Gρ, so that µG P IrrpGq and
pµGqN “ pµNXIq

N “ ρN “ θ, a contradiction.
Hence, we may assume that N is a minimal normal subgroup of G. If N

is a p-group, then Lemma 3.7 yields a contradiction. If we suppose that N is
a p1-group, then the hypothesis NGpP q “ P implies CN pP q “ 1 by coprime
action. By the Glauberman correspondence (see Theorem 1.17) θ “ 1N ,
which obviously extends to G, a contradiction. We may hence assume that
N “ S1 ˆ ¨ ¨ ¨ ˆ Sk is the direct product of some simple non-abelian groups
tS1, ..., Sku of order divisible by p which are transitively permuted by G.
Write θ “ θ1 ˆ ¨ ¨ ¨ ˆ θk P IrrpNq with θi P IrrpSiq. Write S “ S1 and
Si “ Sxi for some xi P G for i “ 2, . . . , k. By Lemma 3.1, S is isomorphic
to PSL2p3

3aq for some a ě 1. View S Ÿ A “ AutpSq. In Section 1.5.1 we
have seen that |A{S| “ 2 ¨ 3a. Notice that opθ1q “ 1 because S1 has no
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non-principal linear character. If Q{S P Syl3pAθ1{Sq, then θ1 extends to Q
by Lemma 1.13. If P {S P Syl2pAθ1{Sq it must be cyclic or trivial, in any
case, θ1 extends to P by Theorem 1.14. By Theorem 1.15, we conclude that
θ1 extends to Aθ. By Lemma 3.8, we see that θ extends to G, contradicting
the choice of G as a minimal counterexample. �

3.4. The self-normalizing case

In this section we prove Theorem E. We also present a (perhaps surpris-
ing) consequence of Theorem E: a characterization of groups having a self-
normalizing Sylow p-subgroup in terms of the decomposition of a certain
permutation character (for odd primes). We shall need the following result
from [NTT07].

Lemma 3.9. Suppose that a finite p-group P acts on a finite group G,
stabilizing N Ÿ G. Suppose that Q{N P SylppG{Nq is P -invariant, and
assume that G{N “ T1{N ˆ ¨ ¨ ¨ ˆ Tr{N , where the Ti’s are permuted by P .
Let Qi “ QXTi, and let Pi be the stabilizer of Ti in P . If CNGpQq{QpP q “ 1,
then CNTi

pQiq{QipPiq “ 1.

Proof. Apply Lemma p4.1q of [NTT07] to each of the orbits defined
by Q on tT1, . . . , Tru. �

The only way we have found to prove Theorem E is to use a strong
induction over normal subgroups, and Theorem 3.6 is key in this inductive
process. The following result is a relative to normal subgroups version of
Theorem E.

Theorem 3.10. Let G be a finite group, p an odd prime, P P SylppGq,
and suppose that P “ NGpP q. Let LŸ G. Let χ P Irrp1pGq. Then

χLP “ χ˚ `∆,

where χ˚ P Irrp1pLP q and either ∆ is zero, or ∆ is a character of LP whose
irreducible constituents have all degree divisible by p.

Proof. Let G be a counterexample with |G| ¨ |G{L| smallest possible.

(a) By Lemma 2.3, let θ P IrrpLq be P -invariant under χ. Let T “ Gθ ě
LP , and let ψ P IrrpT |θq be the Clifford correspondent of χ over θ. Assume
that T ă G. By the choice of G, we have that

ψLP “ ψ˚ `∆ ,

where ψ˚ has p1-degree and the irreducible constituents of ∆ have degree
divisible by p. Let T be a transversal for the double cosets of T and P in
G. We may assume 1 P T Write

G “
ď

xPT
TxP
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Then, by Mackey’s Lemma 1.8, we have that

χLP “ pψ
GqLP “ ψLP `

ÿ

1‰xPT
ppψxqTxXLP q

LP .

Let α P IrrP pLq be an irreducible constituent of ppψxqTxXLP q
LP . Suppose

that α has degree not divisible by p. Hence αL P IrrpLq. Thus the irreducible
character αTxXLP lies under ψx. However pψxqL “ dθx for some d ě 1, so
we conclude that θx “ αL. Hence θx is P -invariant. By Lemma 2.3, we have
that θxy “ θ for some y P P and therefore x P T . But this is impossible
since x ‰ 1 lies in T.

We may assume then that θ is G-invariant. By Theorem 3.6, we have
that θ has an extension θ̃ P IrrpGq. By Gallagher Theorem 1.12, we have

that χ “ βθ̃, for some β P IrrpG{Lq. Now, if L ‰ 1, then the theorem holds
for G{L, whence we have that βPL is the sum of a p1-degree irreducible
character β˚ of PL{L (and hence linear) plus some character ∆ of PL{L
such that all of its irreducible constituents have degree divisible by p. Then

χLP “ pβ
˚qθ̃LP `∆θ̃LP ,

and using Gallagher Theorem 1.12, we see that we are done again. Hence
L “ 1.

(b) Suppose now that K is a minimal normal subgroup of G. Assume
first that K is a p-group. Then |G{K| ă |G| “ |G{L|, and since KP “ P ,
then the theorem is proved.

Assume next that K is a p1-group. Since NGpP q “ P , we have that
CKpP q “ 1. Since θ P IrrpKq is P -invariant, we necessarily have that
θ “ 1K by the Glauberman correspondence (see Theorem 1.17). But in this
case, K ď kerpχq, and we can work in the group G{K.

Hence, G has no abelian normal subgroup. In particular, F pGq “ 1.
We have E “ F ˚pGq “ EpGq ě CGpEpGqq (see Theorem 6.5.8 of [KS04]).
Since CGpEq “ ZpEq Ÿ G, it follows that ZpEq “ 1 and so E is product of
subnormal nonabelian simple subgroups. By the main result of [GMN04],
p “ 3 and G has a composition factor of type PSL2p3

3aq. By Lemma 3.1,
E “ S1 ˆ . . . ˆ Sn is a direct product of non-abelian simple groups Si –
PSL2pqiq, where qi “ 33ai with ai ě 1.

(c) Let Q “ P X E P SylppEq and write Q “ Q1 ˆ . . . ˆ Qn with
Qi P SylppSiq. Since P is self-normalizing in EP , by part (ii) of Lemma
2.1 of [NTT07], we have that CNGpQq{QpP q “ 1. This in turn implies,
by Lemma 3.9, that CNSi

pQiq{QipPiq “ 1 for Pi “ PSi . By Lemma 3.2, it

follows that Pi must induce the full subgroup C3ai of field automorphisms of
Si. By Remark 3.5, we see that the Pi-invariant irreducible characters of Si
are αi “ 1Si , the Steinberg character StSi of degree qi and the two cuspidal
characters η1i and η2i of degree 1

2pqi´1q. Furthermore for each α P tαi, η
1
i, η

2
i u,

Pi fixes a unique irreducible constituent of αQi , appearing with multiplicity
one, by Lemma 3.4. We denote by α˚ this constituent, so that the map ˚

defines a bijection from the Pi-invariant irreducible characters of p1-degree

Universitat de València Carolina Vallejo Rodŕıguez
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of Si onto the Pi-invariant irreducible characters of Qi, again this is Lemma
3.4.

Since the theorem holds for pG,Eq, χEP “ χ˚`∆, where χ˚ P Irrp1pEP q
and all irreducible constituents of ∆ have degree divisible by p. In particular,
θ “ pχ˚qE is irreducible. Write

θ “ θ1 ˆ ¨ ¨ ¨ ˆ θn

with θi P Irrp1pSiq. Since θ is P -invariant, it follows that θi is Pi-invariant
of p1-degree, and so θi P tαi, η

1
i, η

2
i u. As mentioned above,

pθiqQi “ θ˚i ` δi,

where θ˚i P IrrpQiq is Pi-invariant, and δi is a sum of non-Pi-invariant irre-
ducible characters of Qi. Setting

θ̃ “ θ˚1 ˆ ¨ ¨ ¨ ˆ θ
˚
n,

we see that each irreducible constituent of θQ ´ θ̃ is non-P -invariant and so
must lie under an irreducible character of P of degree divisible by p. But
p does not divides χ˚p1q. Hence pχ˚qP contains a linear constituent which

must be unique and lies above θ̃. Denote this constituent by θ˚. We have
shown that every irreducible constituent of pχ˚qP ´ θ

˚ is of degree divisible
by p, whereas θ˚p1q “ 1.

(d) It remains to show that every irreducible constituent of ∆P has
degree divisible by p. Assume the contrary: ∆P contains a linear constituent
λ, and write

λQ “ λ1 ˆ ¨ ¨ ¨ ˆ λn

with λi P IrrpQiq. Let γ P IrrpEP q be an irreducible constituent of ∆ that
contains λ upon restriction to P . Also, let

β “ β1 ˆ ¨ ¨ ¨ ˆ βn P IrrpEq

be lying under γ and above λQ. Since E�G, we have that β is G-conjugate
to θ. Note that the βi’s are Pi-invariant of degree not divisible by p, thus
βi P tαi, η

1
i, η

2
i u. As shown in (c), the restriction pβiqQi contains a unique

Pi-invariant irreducible constituent β˚i , of multiplicity one. Denoting

β̃ “ β˚1 ˆ ¨ ¨ ¨ ˆ β
˚
n,

we see that no irreducible constituent of βQ ´ β̃ can be invariant under P .

But λQ lies under β and is P -invariant. Hence λQ “ β̃ and λi “ β˚i . Now
we consider two cases.

Case 1: β is not P -invariant. In this case, there is some g P P such
that βg ‰ β. Then βg lies above pλQq

g “ λQ and under γ. Writing βg “
β11 ˆ . . . ˆ β1n with β1i P tαi, η

1
i, η

2
i u for βg is G-conjugate to θ and so the β1i

are Pi-invariant. Arguing as above, we see that β˚i “ λi “ pβ
1
iq
˚. By Lemma

3.4, the map α ÞÑ α˚ is a bijection. It follows that βi “ β1i and so β “ βg, a
contradiction.
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Case 2: β is P -invariant. Then, by Theorem 3.6, β extends to β̂ P
IrrpEP q. Since γ lies above β and p divides γp1q, we have that γ “ β̂µ,
where µ P IrrpP {Qq is considered as a character of EP {E and p divides
µp1q. Certainly, µλ is irreducible over P and non-linear. On the other hand,
as shown above, every irreducible constituent of

pγP ´ µλqQ “ µQβ̂Q ´ µQβ̃ “ µp1q ¨ pβQ ´ β̃q

is non-P -invariant and so must lie under an irreducible character of P of
degree divisible by p. Thus the degree of every irreducible constituent of
γP ´ µλ is divisible by p. Consequently, λ cannot be a constituent of γP , a
contradiction. �

Theorem E is now a corollary of Theorem 3.10.

Corollary 3.11. Let G be a finite group, let p be an odd prime and let
P P SylppGq. Suppose that P “ NGpP q. If χ P Irrp1pGq, then

χP “ χ˚ `∆ ,

where χ˚ P IrrpP q is linear and ∆ is either zero or ∆ is a character whose
irrreducible constituents have all degree divisible by p. Furthemore, the map
χ ÞÑ χ˚ is a natural bijection Irrp1pGq Ñ IrrpP {P 1q.

Proof. The first part follows from considering L “ 1 in Theorem 3.10.
Let λ P IrrpP {P 1q. Then

λG “ a1χ1 ` ¨ ¨ ¨ ` anχn,

where the ai’s are natural numbers and χi P IrrpGq. Since λGp1q “ |G : P |,
some χi must have degree not divisible by p. So χi P Irrp1pGq. By Theorem
3.10, pχiqP “ pχiq

˚`∆, where pχiq
˚ is linear and no irreducible constituent

of ∆ is linear. However, λ is a linear constituent of pχiqP , and so pχiq
˚ “ λ.

Thus, ˚ is surjective. By the main theorem of [GMN04] and Theorem A
of [IMN07], we have that |Irrp1pGq| “ |IrrpP {P

1q|. Hence, the natural map
˚ defines a bijection. �

We finish this section with an application of Theorem E. We obtain
the following characterization of groups having a self-normalizing Sylow p-
subgroup, for an odd prime p.

Corollary 3.12. Let G be a finite group, let p be odd, and let P P

SylppGq. Then NGpP q “ P if and only if

p1P q
G “ 1G ` Ξ ,

where Ξ is either zero or a character whose irreducible constituents all have
degree divisible by p.

Proof. One implication follows from Corollary 3.11. Assume now that

p1P q
G “ 1G ` Ξ ,

Universitat de València Carolina Vallejo Rodŕıguez
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where Ξ is either zero or a character whose irreducible constituents all have
degree divisible by p, but N “ NGpP q ą P . Then there exists a non-
principal character γ P IrrpN{P q, which can be viewed as a character of
N . Since γ has p1-degree (because N{P is a p1-group), it follows that γG

possesses an irreducible constituent χ P Irrp1pGq. Now, χ lies over γ ‰ 1N
and therefore χ ‰ 1G lies over 1P , a contradiction. �

It is remarkable that Corollary 3.12 gives the exact opposite of a result
by G. Malle and G. Navarro in [MN12]: a finite group G has a normal
Sylow p-subgroup if and only if all irreducible constituents of p1P q

G have
degree not divisible by p.

The conclusion of corollary 3.12 is false for p “ 2, as shown by G “ S5:
in this case p1P q

G contains the trivial character of G and an irreducible
character of degree 5.

3.5. The p-decomposable Sylow normalizer case

Let N be a group and let p be a prime. We say that N is p-decomposable
if N “ P ˆ X, where P P SylppNq. Suppose that the group G has a p-
decomposable Sylow p-normalizer for an odd prime p (by Schur-Zassenhaus’
theorem [Isa08, Thm. 3.5] this is equivalent to NGpP q “ CGpP qP for
P P SylppGq). Then we can prove the following.

Theorem 3.13. Let G be a finite group, let p be an odd prime, and let
P P SylppGq. Suppose that NGpP q “ PCGpP q. If χ P Irrp1pGq lies in the
principal block, then

χNGpP q “ χ˚ `∆ ,

where χ˚ P IrrpNGpP qq is linear in the principal block, and ∆ is either zero
or ∆ is a character whose irreducible constituents all have degree divisible
by p. Furthermore, the map χ ÞÑ χ˚ is a bijection

Irrp1pB0pGqq Ñ Irrp1pB0pNGpP qqq,

where Irrp1pB0pGqq is the set of irreducible characters in the principal block
of G of degree not divisible by p.

Theorem 3.13 is the main result of this section. We begin by proving
Theorem 3.14 below. Theorem 3.14 extends a classical result by J. Thomp-
son (see Theorem 3.14 of [Isa08]) and it will be key for us later in this
section.

Theorem 3.14. Let G be a group, let p be a prime, and let P P SylppGq.
Suppose that NGpP q “ P ˆ X. If p is odd or G is p-solvable, then X ď

Op1pGq. In particular, if p is odd or G is p-solvable and also NGpP q “
PCGpP q, then Op1pNGpP qq ď Op1pGq.

Proof. We argue by induction on |G|. If LŸ G, then

NG{LpPL{Lq “ NGpP qL{L “ PL{LˆXL{L .
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Hence, if L ą 1, then we have that XL{L ď Op1pG{Lq. In particular, we
may assume that Op1pGq “ 1. Now, suppose that N “ OppGq ą 1. Then
XN{N ď Op1pG{Nq implies that X ď Opp1pGq “ M . Since rX,P s “ 1,
then rX,N s “ 1. By Schur-Zassenhaus theorem [Isa08, Thm. 3.5], N has
a complement in H in M , similarly ZpNq has a complement K in CM pNq
which must be contained in some conjugate Hg of H. Since K Ÿ Hg it
follows that K Ÿ M , so K Ď Op1pMq. However, using that Op1pGq “ 1, we
have that CM pNq “ ZpNqˆOp1pMq “ ZpNq, and we conclude that X “ 1,
in this case. Hence, we may assume that G is not p-solvable, and that p is
odd.

Now, let N be a minimal normal subgroup of G. By [GMN04], we
have that N “ S1 ˆ ¨ ¨ ¨ ˆ Sk, where tS1, . . . , Sku are transitively permuted
by G and S1 “ S “ PSL2p3

3aq. Now P X N “ pP X S1q ˆ ¨ ¨ ¨ ˆ pP X Skq.
Fix some index i. Since rP,Xs “ 1, then rQi, Xs “ 1, where 1 ă Qi “
P X Si P Syl3pSiq. Now, if x P X, then we have that pSiq

x “ Sj for some j.
However Qxi ď Sxi X Si “ Sj X Si, so we conclude that X ď NGpSiq for all
i with rX,Qis “ 1. Let Yi “ XCGpSiq{CGpSiq, which is a 31-subgroup of
AutpSiq centralizing the Sylow 3-subgroup Qi of Si. By Lemma 1.5, Yi “ 1,
whence X ď CGpSiq for all i. Thus X ď CGpNq for every minimal normal
subgroup. Since FpGq “ 1, then F˚pGq “ EpGq “ E. Since ZpEq “ 1, then
E is semisimple and CGpEq “ 1 by Theorems 9.7 and 9.8 of [Isa08]. Now E
is a direct product of non-abelian simple groups Ki and the normal closure
of Ki is a minimal normal subgroup of G (by Lemma 9.17 of [Isa08], for
instance), and we conclude that X ď CGpEq “ 1, as desired.

Finally, since CGpP q “ ZpP q ˆOp1pNGpP qq (by the Schur-Zassenhaus
theorem [Isa08, Thm. 3.5]), it follows that if NGpP q “ PCGpP q, then

NGpP q “ P ˆOp1pNGpP qq,

and we apply the first part of the theorem. �

Note that the conclusion of Theorem 3.14 is not true for p “ 2: If
G “ E6p11q and P P Syl2pGq, then NGpP q “ P ˆC5, cf. [KM03, Theorem
6(c)].

Let G be a group and let p be a prime. We denote by G0 the set of
p-regular elements of G (those elements whose order is not divisible by p).
For the purpose of this exposition, we define the irreducible characters in
the principal (p)-block of G as the set of χ P IrrpGq satisfying

ÿ

xPG0

χpxq ‰ 0.

We write IrrpB0pGqq to denote the set of the irreducible characters of G that
lie in the principal block of G. (See Theorem 3.19 of [Nav98]).

Theorem 3.15. Let N “ Op1pGq. Suppose that χ P IrrpGq lies in the
principal block of G, then N Ď kerpχq and the corresponding χ P IrrpG{Nq
lies in the principal block of G{N .
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Proof. We notice that x P G is p-regular if and only if Nx P G{N is
p-regular. Hence, we can write

G0 “ Nx1 Y . . .YNxt

as a disjoint union (the p-regular classes of G in N correspond to the class
of N1 in G{N). Let X be a representation afffording χ. We can extend X by
linearity to a representation CGÑ Matpn,Cq which we denote again by X.
We also denote by χ the trace CG Ñ C of this representation. Notice that
χp
ř

gPG aggq “
ř

gPG agχpgq for every
ř

gPG agg P CG. If X Ď G, then we

write X̂ “
ř

xPX x P CG. By hypothesis, we have that χpĜ0q ‰ 0. Hence,

the matrix XpĜ0q “ XpN̂qXpx1q`¨ ¨ ¨`XpN̂qXpxtq is non-zero. In particular,

XpN̂q ‰ 0. Notice that for every g P G

XpN̂qXpgq “ XpN̂gq “ XpgN̂q “ XpgqXpN̂q,

so that XpN̂q is scalar. We conclude that the trace of XpN̂q is non-zero, this
is, 0 ‰

ř

nPN χpnq “ |N |rχN , 1N s. Consequently N Ď kerpχq. The following
observation

ÿ

xPG0

χpxq “ |N |
t
ÿ

j“1

χpxjq “ |N |
t
ÿ

j“1

χpNxjq “ |N |
ÿ

xPpG{Nq0

χpxq

proves the second statement of the theorem. �

The proof of the following lemma is a straightforward consequence of
Theorem 3.15.

Lemma 3.16. Suppose that N is a normal subgroup of H, with N ď

Op1pHq. Suppose that H “ NU for some U ď H. Then restriction de-
fines a bijection between the characters in the principal block of H and the
characters in the principal block of U .

As we prove below, in the case where NGpP q “ P , every character of
p1-degree of G lies in the principal block.

Lemma 3.17. Let G be a group and let p be a prime. Suppose that
NGpP q “ P where P P SylppGq. Let χ P IrrpGq. Then

ÿ

xPG0

χpxq ” χp1q mod p.

In particular, if χ P IrrpGq has p1-degree, then χ lies in the principal block
B0pGq of G.

Proof. Let P act on G0 by conjugation. The set of fixed points under
this action is G0 X CGpP q “ 1 by the assumption NGpP q “ P . Since the
orbits corresponding to non-trivial elements of G0 have length divisible by
p we have that

ÿ

xPG0

χpxq ” χp1q mod p.
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The second statement follows from the definition of IrrpB0pGqq. �

We can finally prove Theorem 3.13. The key to do that is to reduce the
proof to the self-normalizing case and then apply Theorem E. This reduction
is possible fundamentally thanks to Theorem 3.14.

Proof of Theorem 3.13. Let G be a counterexample to the first part
of the theorem with |G| as small as possible. Let N “ Op1pGq. Using
Theorem 3.14 we can write NGpP q “ PˆX, where X ď N . Write Ḡ “ G{N
and use the bar convention. Hence P̄ “ PN{N P SylppḠq and NḠpP̄ q “

P̄ ˆ X̄ “ P̄ , by elementary group theory. By Lemma 3.15, N Ď kerpχq. If
N ą 1, then considering χ as a character of Ḡ, by inductive hypothesis we
have that

χNḠpP̄ q
“ χP̄ “ χ˚ `∆,

where the character χ˚ is an irreducible character of p1-degree lying in the
principal block of P̄ “ PN{N and ∆ is either zero or a character of PN{N
such that every irreducible constituent of ∆ has degree divisible by p. Now,
Lemma 3.16 applies and we are done in this case. Hence, we may assume
N “ 1. In particular, NGpP q “ P and the first part of the statement follows
from Theorem 3.10.

Now, we prove that our map χ ÞÑ χ˚ is a bijection. By Theorem 3.14
we have that Op1pNGpP qq ď Op1pGq and by Theorem 3.15 we have that
Op1pGq is contained in the kernel of every χ P IrrpB0pGqq. Modding out by
Op1pGq, we may assume that Op1pGq “ 1 and so NGpP q “ P . By Lemma
3.17 every irreducible character of p1-degree of G lies in IrrpB0pGqq. We have
that Irrp1pB0pGqq “ Irrp1pGq and Irrp1pB0pP qq “ Irrp1pP q. By Lemma 3.1 all

the non-abelian composition factors of G are of type PSL2p3
3aq with a ě 1.

We know by Theorem A of [IMN07] that the McKay conjecture holds for
G. Hence |Irrp1pGq| “ |Irrp1pP q| “ |IrrpP {P

1q|. Now, if λ P IrrpP q is linear,

then some irreducible constituent χ of λG has p1-degree. Now, χP contains
λ and by the first part of the proof it must be χ˚ “ λ. Our map χ ÞÑ χ˚ is
surjective, and therefore injective. �

It is entirely possible that, under the hypotheses of Theorem 3.13, a
natural correspondence exists between all the characters in Irrp1pGq and
Irrp1pNGpP qq (not only the characters in the principal blocks). We have
been able to find it for p-solvable groups, see coming Section 3.6.

3.6. The p-solvable case

We finish this chapter by proving Theorem F. Our correspondence in Theo-
rem F extends the Glauberman correspondence (see Theorem 1.17) and also
the correspondence in Theorem 3.13. We shall use Bπ-theory, for which we
refer the reader to Section 1.4.
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Lemma 3.18. Suppose that L Ÿ G, P P SylppGq and NG{LpPL{Lq “
PL{L. Assume that G{L is p-solvable. Let θ P IrrpLq be P -invariant and

p1-special. Then there exists a unique θ̂ P IrrpG|θq such that θ̂ is p1-special.

Proof. We argue by induction on |G : L|. Let K{L be a chief factor of
G, and notice that G{K has self-normalizing Sylow p-subgroups, by elemen-
tary group theory. Assume first that K{L is a p-group, and let η P IrrpK|θq
be the unique p1-special character lying over θ, by using part (b) of Propo-
sition 1.21. By uniqueness, η is P -invariant, and by induction, there is a
unique p1-special character η̂ P IrrpGq that lies over η (and therefore over θ).
Now, if γ is any other p1-special character of G lying over θ and ψ P IrrpKq
lies under γ and over θ, we have that ψ is p1-special by part (a) of Proposi-
tion 1.20, and therefore ψ “ η, by uniqueness. But in this case, γ “ η̂, by
using the inductive hypothesis.

Suppose finally that K{L is a p1-group. Then CK{LpPL{Lq “ 1 us-
ing that PL{L is self-normalizing and coprime action. Hence, by Problem
(13.10) of [Isa76], there exists a unique P -invariant τ P IrrpK|θq. Also, τ
is p1-special by part (a) of Proposition 1.21. Since |G : K| ă |G : L|, by
induction there exists a unique p1-special character τ̂ of G lying over τ (and
therefore over θ). Suppose now that γ P IrrpGq is any other p1-special char-
acter lying over θ. By Lemma 2.3, let ϕ P IrrpKq be P -invariant under γ,
and, by Theorem (13.27) of [Isa76], let ρ P IrrpLq be P -invariant under ϕ.
Then ρ and θ are P -invariant lying under γ, so ρ “ θ by Lemma 2.3. Then
ϕ “ τ by the uniqueness of τ , and hence γ “ τ̂ by induction. �

We translate the statement of Theorem 1.26 for p-solvable groups.

Remark 3.19. Let G be a p-solvable group and let P P SylppGq. For
χ P IrrpGq, the following are equivalent:

(a) χ is a satellite of some ψ P BppGq of p1-degree.
(b) There exists a linear character λ of P and a p1-special character

α P IrrpW q, where W is the maximal subgroup of G to which λ

extends, such that χ “ pαλ̂qG, where λ̂ is the unique extension of λ
to W with p-power order.

Proof. Assume that χ is a satellite of ψ P BppGq of degree not divisible
by p. Then there exists a nucleus pW,γq for ψ and a p1-special character
α P IrrpW q such that χ “ pαγqG. Notice that χp1q “ |G : W |αp1qγp1q is
a p1-number. Hence, we have that γp1q “ 1 and W contain a full Sylow
p-subgroup of G. We may assume P ď W , by conjugating the pairs pW,γq
and pW,αq with an element of G. Let λ “ γP P IrrpP q. Then γ is the
unique extension of λ to W with p-power order. The fact that γG P IrrpGq
guarantees that W is maximal with the property that λ extends to W .

To prove the converse, just notice that pλ̂qG P BppGq by Theorem 2.2 of
[IN01]. �
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Recall that whenever a group A acts on the irreducible characters IrrpGq
of a group G, we write IrrApGq to denote the set of fixed characters of G
under the action of A. We can prove Theorem F, which we restate here.

Theorem 3.20. Let G be a p-solvable group, and let P P SylppGq.
Suppose that NGpP q “ PCGpP q, and let L “ Op1pGq. Then for every
θ P IrrP pLq and λ P IrrpP {P 1q linear, there is a canonically defined

λ ‹ θ P Irrp1pGq.

Furthermore, the map

IrrpP {P 1q ˆ IrrP pLq Ñ Irrp1pGq

given by pλ, θq ÞÑ λ ‹ θ is a bijection. As a consequence, if θ˚ P IrrpCLpP qq
is the Glauberman correspondent of θ P IrrP pLq (see Theorem 1.17), then
the map

λˆ θ˚ ÞÑ λ ‹ θ

is a natural bijection Irrp1pNGpP qq Ñ Irrp1pGq. Also, if θ “ 1L and λ P
IrrpP {P 1q, then λˆ θ˚ is the unique linear constituent of pλ ‹ θqNGpP q.

Proof. By using Theorem 3.14, write NGpP q “ P ˆ X, where X “

CLpP q. Let λ P IrrpP q be linear and let θ P IrrP pLq. Since P X L “ 1,
we trivially have that λ extends to PL. By Theorem 2.11, there exists a
maximal subgroup P ďW ď G such that λ extends to W . Hence PL ďW .
Now, by elementary character theory, let λ̂ P IrrpW q be the unique linear
character of p-power order that extends λ. Since NW {LpPL{Lq “ PL{L, by

Lemma 3.18, there exists a unique p1-special θ̂ P IrrpW q lying over θ. By

Theorem 2.2 of [IN01], the pair pW, λ̂q is a nucleus for pλ̂qG P IrrpGq. Thus,
by Theorem 1.26 we have that

λ ‹ θ “ pθ̂λ̂qG P IrrpGq .

Notice that λ ‹ θ has p1-degree, because θ̂ has p1-degree and |G : W | is not

divisible by p. (We notice for the record that pλ ‹ θqW contains θ̂λ̂, and
therefore, when restricted to L, we have that pλ ‹ θq lies over θ. It is not in
general true that λ ‹ θ lies over λ, on the other hand.)

We have now defined a map

IrrpP {P 1q ˆ IrrP pLq Ñ Irrp1pGq

given by pλ, θq ÞÑ λ ‹ θ.
Next we show that our map is surjective. Let χ P Irrp1pGq. By Theorem

1.27 (see also Remark 3.19), we have that there exist a linear character
δ P IrrpP q and a p1-special character α P IrrpUq, where U is the maximal
subgroup of G to which δ extends, such that

χ “ pδ̂αqG ,

where the order of δ̂ is a p-power and δ̂ extends δ. Now, αL contains a
(unique) P -invariant character µ P IrrP pLq by Lemma 2.3, and it follows
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that α is the unique p1-special character of U lying over µ by Lemma 3.18.
It follows then that χ “ δ ‹ µ, and therefore, that our map is surjective.

Recall that the Glauberman correspondence provides a natural bijection

IrrP pLq Ñ IrrpCLpP qq .

Since the McKay conjecture is true for p-solvable groups (see for instance
[IMN07]) we have that

|Irrp1pGq| “ |Irrp1pNGpP qq| “ |IrrpP {P
1q||IrrpCLpP qq| “ |IrrpP {P

1q||IrrP pLq| .

It then follows that our map is bijective.
In the case where θ “ 1L, for every λ P IrrpP {P 1q, we have that λ ‹ θ “

pλ̂qG, where λ̂ is a p-special extension of λ to a subgroup W ď G with the
property that λ does not extend to any subgroup of G properly containing
W . Let T be a set of representatives of the double cosets of NGpP q and W
in G with 1 P T. By Mackey Lemma 1.8, we have that

pλ̂GqNGpP q “ λˆ 1`
ÿ

1‰tPT
ppλ̂tqNGpP qXW tqNGpP q.

By the first part of the proof ppλ̂tqNGpP qXW tqNGpP q P IrrpNGpP qq, and so
λˆ 1 is the unique linear constituent of pλ ‹ θqNGpP q. �
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CHAPTER 4

Preliminaries on modular character theory of
finite groups

The first part of this chapter is the modular version of Chapter 1. Our aim
is to collect the basic results on (p-)Brauer characters that will be used later
in this work, namely in Chapter 5. However, since the results contained
in Chapter 5 are of a more technical nature (than the rest of results of
this work), in the second part of this chapter we shall develop some new
techniques on Brauer characters.

In Section 4.1, we introduce Brauer characters and we focus on properties
that Brauer characters share with ordinary characters. In Section 4.2, we
study a modular version of the notion of central isomorphism of character
triples firstly defined in [NS14] and later developed in [Spä16]. In Section
4.3, we introduce the concept of fake Galois action on the set of Brauer
irreducible characters IBrpNq of a group N . This latter definition will help
us to avoid some difficulties in Chapter 5 originated from the fact that, in
general, the Galois group GalpQ|N |{Qq does not act on IBrpNq. (See Section
5.4 for the motivation of the definition of fake Galois action.)

4.1. Brauer characters (as characters)

We fix a prime p and a maximal ideal M in the ring R of algebraic integers
with p PM. We let F “ R{M and write ˚ : R Ñ F to denote the natural
ring homomorphism. This homomorphism can be extended to S “ tr{s | r P
R, s P RzMu by

pr{sq˚ “ r˚ps˚q´1,

for every r P R and s P RzM. Let U Ď R be the multiplicative group
of roots of unity of order not divisible by p, so that U “ tξ P C | ξk “
1 for some integer k not divisible by p u.

Lemma 4.1. The restriction of ˚ to U defines an isomorphism U Ñ Fˆ

of multiplicative groups. Also F is an algebraically closed field of character-
istic p.

Proof. This is Lemma 2.1 of [Nav98]. �

Let g P G. We say that x is p-regular if p does not divide opgq. We
recall that G0 denotes the subset of p-regular elements of G. Suppose that
X : G Ñ GLnpF q is an F -representation of the group G. If g P G0, then
by Lemma 4.1, the eigenvalues of the matrix Xpgq are ξ˚1 , . . . , ξ

˚
n P F

ˆ for
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58 4.1. Brauer characters (as characters)

uniquely determined ξ1, . . . , ξn P U (because F is algebraically closed). We
define ϕ : G0 Ñ C by ϕpgq “ ξ1 ` ¨ ¨ ¨ ` ξn. Then we say that ϕ is the
Brauer character afforded by X. (Brauer characters are also called mod-
ular characters.) The degree of ϕ is ϕp1q, which is the degree of any
F -representation affording ϕ. Notice that similar F -representations afford
the same Brauer characters and Brauer characters are constant on conjugacy
classes.

We say that ϕ is irreducible if an F -representation X of G affording ϕ
is irreducible. We denote by IBrpGq the set of irreducible Brauer characters
of G. Unlike ordinary characters, the degrees of the irreducible Brauer
characters do not divide, in general, the order of the group (PSL2p7q for
p “ 7 has an irreducible Brauer character of degree 5).

We define the field of values Qpϕq of ϕ P IBrpGq as Qpϕpgq | g P G0q.
Notice that Qpϕq Ď Q|G|p1 Ď Q|G|.

Write cfpG0q to denote the C-vector space of class functions on G0

(functions θ : G0 Ñ C constant on conjugacy classes of G0). Of course the
dimension of cfpG0q is equal to the number of conjugacy classes of p-regular
elements of G. Brauer characters are class functions on G0.

If H ď G and ϕ is a Brauer character of G, then we denote by ϕH the
restriction of ϕ to H0. The map ϕH is a Brauer character of H.

As happens with ordinary characters, Brauer characters are nonnegative
integer linear combination of irreducible Brauer characters.

Theorem 4.2. Let G be a group. Then IBrpGq is a basis of cfpG0q.
Moreover, ψ P cfpG0q is a Brauer character of G if and only if

ψ “
ÿ

ϕPIBrpGq

aϕϕ,

where aϕ P N.

Proof. See Corollary 2.10 and Theorem 2.3 of [Nav98]. �

The nonnegative integer aϕ in the decomposition of ψ in Theorem 4.2 is
called the multiplicity of ϕ in ψ. If aϕ ‰ 0, then we call ϕ a constituent
of ψ.

By Theorem 4.2, the number |IBrpGq| equals the number of conjugacy
classes of p-regular elements of G. Also, a Brauer character ϕ is irreducible
if and only if ϕ cannot be written as α` β for Brauer characters α and β.

As a consequence of Theorem 4.2, if ϕ P IBrpGq, then any two irreducible
representations affording ϕ are similar. Hence, ϕ uniquely determines an F -
representation of G up to similarity.

If χ P IrrpGq, we denote by χ0 the restriction of χ to G0. By Corollary
2.9 of [Nav98], χ0 is a Brauer character of G. Hence

χ0 “
ÿ

ϕPIBrpGq

dχϕϕ,
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4. Preliminaries on modular character theory of finite groups 59

for suitable nonnegative integers dχϕ. The nonnegative integers dχϕ in the
above decomposition are called the decomposition numbers of χ.

The study of Brauer characters is more interesting when p divides |G|
because of the following.

Theorem 4.3. Let G be a group. If p does not divide |G|, then IBrpGq “
IrrpGq.

Proof. This is Theorem 2.12 of [Nav98]. �

As in the ordinary case, if ϕ and θ are Brauer characters of G, then the
product ϕθ defined by

ϕθpgq “ ϕpgqθpgq

for every g P G0 is a Brauer character of G (see Theorem 2.23 of [Nav98]).

Let ϕ P IBrpGq and let n “ ϕp1q. Since ϕ uniquely determines an irre-
ducible F -representation X up to similarity, then kerpXq is uniquely deter-
mined by ϕ. We can define the kernel of ϕ as kerpϕq “ tg P G | Xpgq “ In u.
As in the ordinary case, if N Ÿ G, one can identify the irreducible Brauer
characters of G containing N in their kernel and the irreducible Brauer char-
acters of the quotient group G{N . Usually we identify these sets and we
think of IBrpG{Nq as a subset of IBrpGq.

We recall that OppGq is the maximal normal p-subgroup of G.

Lemma 4.4. Let G be a group. If ϕ P IBrpGq, then OppGq Ď kerpϕq. In
particular, we can identify IBrpG{OppGqq with IBrpGq.

Proof. See Lemma 2.32 of [Nav98]. �

Let ϕ P IBrpGq. The fact that ϕ uniquely determines up to similarity
an F -representation X of G allows us to define the determinantal order opϕq
of ϕ as in the ordinary case. The determinant detpXq : G Ñ Fˆ of X is
a homomorphism. We write opϕq to denote the smallest positive integer k
such that detpXqk “ 1.

As for ordinary characters, every isomorphism of groups α : G Ñ H
defines a bijection between IBrpGq and IBrpHq, by defining for ϕ P IBrpGq
the map ϕα given by ϕαpgαq “ ϕpgq for every g P G0. In particular, if
N Ÿ G, then G acts on IBrpNq via the action of conjugation of G on N .

Induction and restriction are essential features also in modular character
theory. We have already noticed that the restriction of a Brauer character
to a subgroup is again a Brauer character. Let H ď G and let θ P cfpH0q.
We define for every x P G0, the function

θGpxq “
1

|H|

ÿ

gPG

9θpgxg´1q,

where 9θpyq “ θpyq if y P H0 and 0 otherwise. Then θG P cfpG0q. In fact, we
have the following.
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60 4.1. Brauer characters (as characters)

Theorem 4.5. Let H ď G and let ϕ be a Brauer character of H. Then
ϕG is a Brauer character of G.

Proof. This is Theorem 8.2 of [Nav98]. �

As for ordinary characters, ifH ď G and θ P IBrpHq, we write IBrpG|θq “
tϕ P IBrpGq | ϕ is a constituent of θG u (this set is non-empty by Corollary
8.3 of [Nav98]). If ϕ P IBrpG|θq we will say that ϕ lies over θ or that θ
lies under ϕ. If ϕ P IBrpGq, then we write IBrpϕHq to denote the set of
irreducible Brauer characters which are constituents of the Brauer character
ϕH .

The main difference between ordinary and modular characters with re-
spect to the induction-restriction process is that in the modular case we do
not have Frobenius reciprocity. For H ď G, this means that if θ P IBrpHq
and ϕ P IBrpGq, then the multiplicity of ϕ in θG is not necessarily equal to
the multiplicity of θ in ϕH . In fact, it can happen that ϕ is a constituent of
θG but θ is not a constituent of ϕH and viceversa (see the discussion after
Corollary 8.3 of [Nav98] for these extreme examples).

Despite this fact, restriction-induction techniques with respect to normal
subgroups work exactly as well as for ordinary characters.

Theorem 4.6. Let N Ÿ G. If θ P IBrpNq and ϕ P IBrpGq, then ϕ is a
constituent of θG iff θ is a constituent of ϕN . In this case,

ϕN “ e
t
ÿ

i“1

θxi ,

for some e ě 1, where x1 “ 1 and θx1 , . . . , θxt are the distinct G-conjugates
of θ.

Proof. This is Corollary 8.7 of [Nav98]. �

Let NŸG. If θ P IBrpNq, then we write Gθ “ tg P G | θ
g “ θ u to denote

the inertia group of θ in G. For H ď G, we say that θ is H-invariant if
H Ď Gθ.

Theorem 4.7 (Clifford correspondence). Let NŸ G and let θ P IBrpGq.
Then the map ψ ÞÑ ψG is a bijection from IrrpGθ|θq onto IBrpG|θq.

Proof. This is Theorem 8.9 of [Nav98]. �

In view of Theorem 4.6 and Theorem 4.7, we see that there is a Clif-
ford theory for modular characters. Also, Gallagher’s Theorem works for
modular characters.

Theorem 4.8. Let NŸ G and let ϕ P IBrpGq. If ϕN “ θ P IBrpNq, then
the characters βϕ for β P IBrpG{Nq are irreducible, distinct for distinct β
and they are all the irreducible constituents of θG.

Proof. See Corollary 8.10 of [Nav98]. �
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4. Preliminaries on modular character theory of finite groups 61

Next, we collect some extendibility criteria. If H ď G and θ P IBrpHq,
then we say that θ extends if there is ϕ P IBrpGq such that ϕH “ θ.

Theorem 4.9 (Green). Let N Ÿ G and let θ P IBrpNq. If G{N is a
p-group, then there exists a unique ϕ P IBrpG|θq. Furthermore, ϕN is the
sum of the distinct G-conjugates of θ. In particular, if θ is G-invariant then
ϕN “ θ.

Proof. See Theorem 8.11 of [Nav98]. �

The following criteria are modular analogues of well-known results on
ordinary characters.

Theorem 4.10. Let N Ÿ G. Suppose that G{N is cyclic. If θ P IBrpNq
is G-invariant, then θ extends to G.

Proof. See Theorem 8.12 of [Nav98]. �

Theorem 4.11. Let N Ÿ G and let θ P IBrpNq be G-invariant. If θ
extends to Q for every Q{N P SylqpG{Nq and for every prime q ‰ p, then θ
extends to G.

Proof. See Theorem 8.29 of [Nav98]. �

Theorem 4.12. Let N Ÿ G and let θ P IBrpNq be G-invariant. If one
of the following holds:

(a) p|N |, |G : N |q “ 1, or
(b) popθqθp1q, |G : N |q “ 1,

then θ extends to G.

Proof. See Theorem 8.13 and Theorem 8.23 of [Nav98]. �

Notice that part (a) does not follow from part (b) since, as we said, the
degrees of irreducible Brauer characters do not divide in general the order
of the group.

4.2. Isomorphisms of modular character triples

In this section we start by introducing the theory of projective representa-
tions we will later need. We will follow Chapter 8 of [Nav98] since we are
interested in the modular case, but this theory works exactly the same both
in the ordinary and the modular case (a reference for the ordinary case is
Chapter 11 of [Isa76]). After that, we will introduce the notion of centrally
isomorphic modular character triples, which is a modular analogue of the
notion of centrally isomorphic character triples introduced in [NS14] for
ordinary character triples. (Hence the proofs of most of the results concern-
ing the construction of centrally isomorphic modular character triples will
follow from arguments contained in [NS14] and [Spä16].)

If NŸ G and θ P IBrpNq is G-invariant, then the triple pG,N, θq is called
a modular character triple. Every modular character triple pG,N, θq has
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62 4.2. Isomorphisms of modular character triples

associated an (F -)projective representation P (up to similarity and up to
product by some function µ : G Ñ Fˆ) satisfying certain properties. (See
Theorem 4.13 and Remark 4.15 below.)

A projective representation P of G is a map P : GÑ GLnpF q satis-
fying that for every g, g1 P G

PpgqPpg1q “ αpg, g1qPpgg1q,
where αpg, g1q P Fˆ. We say that n is the degree of P. This definition
yields a function α : GˆGÑ Fˆ, which is the factor set (see page 164 of
[Nav98]) associated to P.

The notions of similarity and irreducibility of projective representations
are analogous to those on representations.

Theorem 4.13. Let pG,N, θq be a modular character triple. Let X be
an F -representation affording the Brauer character θ. Then, there exists a
projective representation P of G, such that PN “ X and the factor set α
associated to P satisfies

αpg, nq “ 1 “ αpn, gq,

for every g P G and n P N . Moreover, if Q is another such projective
representation, then there exists a map µ : G Ñ Fˆ with µp1q “ 1 which is
constant on N -cosets in G and such that Q “ µP.

Proof. See Theorem 8.14 of [Nav98]. �

The factor set α associated to P in Theorem 4.13 can be seen as a map
defined on G{N ˆG{N (see the remarks after Theorem 8.14 of [Nav98]).

Definition 4.14. Let pG,N, θq be a modular character triple. We say
that a projective representation P of G is associated with θ if:

(i) PN is a representation affording θ, and
(ii) the factor set α of P satisfies

αpg, nq “ 1 “ αpn, gq

for every g P G and n P N .

Notice that if pG,N, θq is a modular character triple and P is a projective
representation of G associated to θ, then condition (ii) in Definition 4.14
implies that for every g P G and n P N

Ppgnq “ PpgqPpnq and Ppngq “ PpnqPpgq.
Remark 4.15. Let pG,N, θq be a modular character triple. By Theorem

4.13, projective representations of G associated with θ do always exist. In
fact, it is easy to prove that if P and Q are two projective representations
of G associated with θ, then there exists a map µ : G Ñ Fˆ with µp1q “ 1
which is constant on cosets of N and such that Q is similar to µP. Let α
be the factor set of P. Then the factor set β of Q is given by

βpg, g1q “
µpgqµpg1q

µpgg1q
αpg, g1q
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4. Preliminaries on modular character theory of finite groups 63

for every g, g1 P G. (This latter fact follows from straightforward calcula-
tions.)

We can study the Clifford theory of a character triple pG,N, θq via
projective representations associated to θ and projective representations of
G{N . We will view the projective representations of G{N as projective
representations Q of G satisfying Qpgnq “ Qpgq for every g P G and n P N .

Let P be a projective representation associated with θ with factor set
α (recall we can consider α as a function defined on G{N ˆ G{N). Let
N ď J ď G and let γ denote the restriction of the factor set α´1 to J{N ˆ
J{N . By Theorem 8.16 and Theorem 8.18 of [Nav98], if ProjF pJ{N, γq
is a set of representatives of the similarity classes of irreducible projective
F -representations of J{N with factor set γ, then

RepF pJ, θq “ tQb PJ | Q P ProjF pJ{N, γqu

is a set of representatives of similarity classes of representations affording a
Brauer character in IBrpJ |θq.

Definition 4.16. Let pG,N, θq be a modular character triple. We de-
note by BrpG|θq the set of Brauer characters χ of G such that χN is a mul-
tiple of θ. Hence this is the set of nonnegative integer linear combinations
of IBrpG|θq. Let pΓ,M, ϕq be another modular character triple and suppose
that τ : G{N Ñ Γ{M is an isomorphism of groups. For every N ď J ď G,
write Jτ {N “ τpJ{Nq and suppose that there exists a map σJ : BrpJ |θq Ñ
BrpJτ |ϕq such that σJ yields a bijection IBrpJ |θq Ñ IBrpJτ |ϕq. Suppose
further that for every N ď K ď J ď G and for every χ, ψ P BrpJ |θq the
following hold:

(a) σJpχ` ψq “ σJpχq ` σJpψq.
(b) σKpχKq “ σJpχqK .
(c) σKpχβq “ σKpχqβ

τ , for every β P IBrpJ{Nq.

Then we say that pσ, τq : pG,N, θq Ñ pΓ,M, ϕq is an isomorphism of mod-
ular character triples.

To define an isomorphism pσ, τq of modular character triples it is enough
to give for N ď J ď G bijections

σJ : IBrpJ |θq Ñ IBrpJτ |ϕq,

extend these maps using (a) and check that conditions (b) and (c) hold for
every χ, ψ P IBrpJ |θq.

We strengthen Definition 4.16. Let N ď J ď G. For ψ P IBrpJ |θq and
g “ gN P G{N , we define ψg P IBrpJg|θq by

ψgpxgq “ ψpxq for every x P J.

Note that this is well-defined. We say that a modular character triple iso-
morphism pσ, τq : pG,N, θq Ñ pΓ,M, ϕq is strong if

pσJpψqq
τpgq “ σJgpψ

gq,
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64 4.2. Isomorphisms of modular character triples

for all g P G{N , all groups J with N ď J ď G and all ψ P IBrpJ |θq.

From now on, we will work with strong isomorphisms of character triples.
Isomorphisms of modular character triples define an equivalence relation on
modular character triples.

We collect below some examples of (strong) modular character triple
isomorphisms.

Lemma 4.17. Let pG,N, θq be a modular character triple.

(a) If α : GÑ H is an isomorphism of groups, then pG,N, θq is strongly
isomorphic to pH,M,ϕq where M “ αpNq and ϕ P IBrpMq is the
character defined by ϕpαpnqq “ θpnq for every n P N0.

(b) If M Ÿ G and M ď kerpθq, then pG,N, θq and pG{M,N{M, θq are
strongly isomorphic, where θpnMq “ θpnq for every n P N0.

(c) Suppose that µ : GÑ H is an epimorphism and that K “ kerpµq ď
kerpθq. Then pG,N, θq and pH,M,ϕq are strongly isomorphic, where
M “ µpNq and ϕ P IrrpMq is the unique character of M with
ϕpµpnqq “ θpnq for every n P N0.

(d) Suppose that there exists some η P IBrpGq such that ηNθ “ ϕ P
IBrpNq. Then pG,N, θq and pG,N,ϕq are strongly isomorphic.

Proof. Parts (a) and (b) are particular cases of part (c). To prove
(c) mimic the proof of Lemma 11.26 of [Isa76]. It is easy to check that
the isomorphism obtained this way is strong. Part (d) is Theorem 8.26 of
[Nav98]. As before, it is straightforward to check that the isomorphism
given by this proof is strong. �

The following result explains how to construct (strong) isomorphisms of
modular character triples via projective representations.

Theorem 4.18. Let pG,N, θq and pH,M, θ1q be modular character triples
satisfying the following assumptions:

(i) G “ NH and M “ N XH,
(ii) there exist projective representations P and P 1 of G and H associ-

ated to θ and θ1, respectively, whose factor sets α and α1 coincide
via the natural isomorphism τ : G{N Ñ H{M .

For N ď J ď G, write γ “ pα´1qJ{NˆJ{N . If ψ P IBrpJ |θq is afforded
by Q b PJ , where Q P ProjF pJ{N, γq, then let σJpψq be the Brauer char-
acter afforded by the irreducible representation Q b P 1JXH . Then the map
σJ : IBrpJ |θq Ñ IBrpJ X H|θ1q is a bijection. These bijections σJ together
with τ give a strong isomorphism

pσ, τq : pG,N, θq Ñ pH,M, θ1q

of modular character triples.

Proof. See the proof of Theorem 3.2 of [NS14]. The fact that pσ, τq
is strong follows from straightforward calculations. �
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In the situation of Theorem 4.18, we say that pσ, τq is an isomorphism
of modular character triples given by P and P 1.

We are finally ready to define when two modular character triples are
centrally isomorphic.

Definition 4.19. Let pG,N, θq and pH,M, θ1q be modular character
triples satisfying the following conditions:

(i) G “ NH, M “ N XH and CGpNq ď H.
(ii) There exist a projective representation P of G associated to θ with

factor set α and a projective representation P 1 of H associated to
θ1 with factor set α1 such that

(ii.1) α|HˆH “ α1, and
(ii.2) for every c P CGpNq the scalar matrices Ppcq and P 1pcq are

associated with the same scalar (notice that Ppcq and P 1pcq
are scalar by Schur’s Lemma [Isa76, Lem. 1.5]).

Let pσ, τq be the isomorphism of character triples given by P and P 1 as in
Theorem 4.18. Then we call pσ, τq a central isomorphism of modular
character triples, and we write

pG,N, θq ąBr,c pH,M, θ1q.

By the proof of Lemma 3.3 of [NS14], condition (ii.2) in Definition 4.19
is equivalent to

IBrpψCJ pNqq “ IBrpσJpψqCJ pNqq,

for every ψ P IBrpJ |θq and N ď J ď G. Definition 4.19 is a modular
analogue of the relation „c defined in [NS14]. In particular, the fact that
ąBr,c defines an order relation on the set of modular character triples and
is thereby transitive follows from the proof of Lemma 3.8 of [NS14].

Remark 4.20. Suppose that pG,N, θq ąBr,c pH,M, θ1q. Then ZpNq Ď
M . The condition (ii.2) in Definition 4.19 implies that θ and θ1 lie over the
same λ P IBrpZpNqq.

We are interested in studying how to construct new centrally isomorphic
modular character triples from given ones. In order to do that, we shall
frequently use the following.

Lemma 4.21. Let pG,N, θq and pH,M, θ1q be modular character triples
with

pG,N, θq ąBr,c pH,M, θ1q.

(a) If P is any projective representation of G associated to θ with factor
set α, then there exists a projective representation P 1 of H associ-
ated to θ1 with factor set α1 such that

(a.1) α|HˆH “ α1, and
(a.2) for every c P CGpNq the scalar matrices Ppcq and P 1pcq are

associated with the same scalar.
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(b) If P 1 is any projective representation of H associated to θ1 with
factor set α1, then there exists a projective representation P of G
associated to θ with factor set α such that

(b.1) α|HˆH “ α1, and
(b.2) for every c P CGpNq the scalar matrices Ppcq and P 1pcq are

associated with the same scalar.

Proof. We first prove part (a). Let Q and Q1 be projective repre-
sentations as in Definition 4.19 giving pG,N, θq ąBr,c pH,M, θ1q. In the
situation of (a), by Remark 4.15, there exists a map µ : G Ñ Fˆ and a
matrix M P GLθp1qpF q such that P “M´1µQM . Let P 1 “ µQ1. Then P 1 is

a projective representation of H associated to θ1 whose factor set certainly
satisfies (a.2). By the second part of Remark 4.15, the factor set of P 1 also
satisfies (a.1).

The proof of part (b) is analogous. �

The following nearly trivial observation on centrally isomorphic modular
character triples will be useful later.

Lemma 4.22. Suppose that pG,N, θq ąBr,c pH,M, θ1q. Let Γ with N ď

G ď Γ and x P Γ. Then pGx, Nx, θxq ąBr,c pH
x,Mx, pθ1qxq.

Proof. According to Definition 4.19 one can obtain projective represen-
tations giving pGx, Nx, θxq ąBr,c pH

x,Mx, pθ1qxq, by using the isomorphism
x : G Ñ Gx given by g ÞÑ gx, from those projective representations giving
pG,N, θq ąBr,c pH,M, θ1q. �

We analyze the behavior of centrally isomorphic modular character triples
with respect to certain quotients.

Lemma 4.23. Suppose that pG,N, θq ąBr,c pH,M, θ1q. Let ε : GÑ G1 be
an epimorphism. Write N1 “ εpNq, H1 “ εpHq and M1 “ εpMq. Suppose
that Z “ kerpεq ď kerpθq X kerpθ1q and εpCGpNq{Zq “ CG1pN1q. Then

pG1, N1, θ1q ąBr,c pH1,M1, θ
1
1q,

where θ1 P IBrpN1q is such that θ “ θ1 ˝ ε and θ11 P IBrpM1q is such that
θ1 “ θ11 ˝ ε.

Proof. See the proof of Corollary 4.5 of [NS14]. (Note that there the
stronger assumption Z ď ZpGq in [NS14] is only used for the block-theoretic
statements that are not relevant in our context.) �

Let Gi be finite groups for i “ 1, 2. Of course pG1 ˆ G2q
0 “ G0

1 ˆ

G0
2. Recall that IBrpG1 ˆ G2q “ tθ1 ˆ θ2 | θi P IBrpGiqu. (See Theorem

8.21 of [Nav98].) The following lemma tells us how to construct centrally
isomorphic modular character triples using direct and semi-direct products.

If G is a group and m is an integer, then we denote by Gm the external
direct product of m copies of G. The group Sm acts naturally on Gm by
pg1, . . . , gmq

σ “ pgσ´1p1q, . . . , gσ´1pmqq.
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Theorem 4.24. Suppose that pG,N, θiq ąBr,c pH,M, θ1iq, for 1 ď i ď m.
Let θ “ θ1 ˆ ¨ ¨ ¨ ˆ θm P IrrpNmq, and θ1 “ θ11 ˆ ¨ ¨ ¨ ˆ θ

1
m P IrrpHmq. Suppose

that A ď Sm stabilizes θ and θ1. Then

pGm ¸A,Nm, θq ąBr,c pH
m ¸A,Mm, θ1q.

Proof. If σ P Sm, then θσ “ θσ´1p1q ˆ ¨ ¨ ¨ ˆ θσ´1pmq, (evaluate θσ on
elements of the form p1, . . . , n, . . . , 1q for n P N). Therefore, σ fixes θ if and
only if θσpiq “ θi for every i P t1, . . . ,mu.

We may certainly assume that N ‰ 1. Notice that pn, 1, . . . , 1qσ “
pn, 1, . . . , 1q for 1 ‰ n P N if and only if σp1q “ 1. Using this for every
i P t1, . . . ,mu, we check that CGmApN

mq “ CGpNq
m Ď Hm.

Let Vi “ F θip1q for each i P t1, . . . ,mu. Write V “ V1b ¨ ¨ ¨bVm. Notice
that if σ P A, then Vi “ Vσpiq for every i P t1, . . . ,mu. Let σ P A. We define a
linear map σ̃ : V Ñ V by σ̃pv1b¨ ¨ ¨bvmq “ vσ´1p1qb¨ ¨ ¨bvσ´1pmq for vi P Vi,
and extending linearly to all tensors. This defines a group homomorphism
AÑ GLpV q. Let Rpσq P GLnpF q be the matrix associated to σ̃, so that

RpσqpM1 b ¨ ¨ ¨ bMmqRpσq´1 “Mσp1q b ¨ ¨ ¨ bMσpmq

for matrices Mi P GLθip1qpF q.

By hypothesis, we have projective representations Pi and P 1i associated
with θi and θ1i giving pG,N, θiq ąBr,c pH,M, θiq. Next, we define a projective
representation P of Gm ¸A associated with θ. Set

Pppg1, . . . , gmqσq “ pP1pg1q b ¨ ¨ ¨ b PmpgmqqRpσq,

for gi P G and σ P A. It is easy to check that the factor set α of P satisfies

αppg1, . . . , gmqσ, pg
1
1, . . . , g

1
mqτq “

m
ź

i“1

αipgi, g
1
σpiqq,

for gi, g
1
i P G and σ, τ P A, where αi is the factor set of Pi for each

i P t1, . . . ,mu. Analogously, we construct a projective representation P 1
of Hm ¸ A associated with θ1. Let α1i be the factor set of P 1i for each
i P t1, . . . ,mu. By construction, the factor set α1 of P 1 satisfies

α1pph1, . . . , hmqσ, ph
1
1, . . . , h

1
mqτq “

m
ź

i“1

α1iphi, h
1
σpiqq,

for hi, h
1
i P H and σ, τ P A. Since αi and α1i agree on H ˆH, we have that

α and α1 satisfy Definition 4.19(ii.1). Recall that CGm¸ApN
mq “ CGpNq

m,
hence P and P 1 trivially satisfy Definition 4.19(ii.2). �

Let G “ G1 be a group, and let αi : G Ñ Gi be a group isomorphism
for each i P t1, . . . ,mu, with α1 “ idG. Let G̃ “ G1 ˆ ¨ ¨ ¨ ˆ Gm. Then the

symmetric group Sm acts on G̃ in the following way:

pxα1
1 , . . . , xαmm qσ “ ppxσ´1p1qq

α1 , . . . , pxσ´1pmqq
αmq.
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Corollary 4.25. With the previous notation, for each i P t1, . . . ,mu,
assume that pGi, Ni, θiq ąBr,c pHi,Mi, θ

1
iq, where Hi “ Hαi, Ni “ Nαi and

Mi “Mαi, for some subgroups N , M and H of G. Write H̃ “ H1ˆ¨ ¨ ¨ˆHm,
Ñ “ N1 ˆ ¨ ¨ ¨ ˆ Nm, and M̃ “ M1 ˆ ¨ ¨ ¨ ˆMm. Write θ̃ “ θ1 ˆ ¨ ¨ ¨ ˆ θm,
and θ̃1 “ θ11 ˆ ¨ ¨ ¨ ˆ θ

1
m. Suppose pSmqθ̃ “ pSmqθ̃1. Then

pG̃¸ pSmqθ̃, Ñ , θ̃q ąBr,c pH̃ ¸ pSmqθ̃, M̃ , θ̃1q.

Proof. Define α : Gm ¸ pSmqθ̃ Ñ G̃ ¸ pSmqθ̃ by αppg1, . . . , gmqσq “

pgα1
1 , . . . , gαmm qσ. Then α is an isomorphism. Write β “ α´1, θ “ pθ̃qβ,

θ1 “ pθ̃1qβ. By Theorem 4.24 we have that

pGm ¸ pSmqθ, N
m, θq ąBr,c pH

m ¸ pSmqθ,M
m, θ1q.

Let P and P 1 be projective representations giving the above central isomor-
phism. Then it is easy to check that Pα and pP 1qα give the desired central
isomorphism of modular character triples. �

The following key result is deeper than the others mentioned in this
section so far. It is basically a modular version of Theorem 5.3 of [Spä16]
without taking into account p-blocks. The proof we present is the modular
version of the one given in [NS16].

Theorem 4.26. Let pG,N, θq ąBr,c pH,M, θ1q. Suppose that N Ÿ Ĝ and

Ĝ{CĜpNq is equal to G{CGpNq as a subgroup of AutpNq. Let Ĥ ď Ĝ such

that Ĥ ě CĜpNq, and Ĥ{CĜpNq and H{CGpNq are equal as subgroups of
AutpNq. Then

pĜ,N, θq ąBr,c pĤ,M, θ1q.

Proof. By assumption we have that Ĥ “ tx P Ĝ | for some h P H, nx “
nh for every n P Nu.

We start by proving that Ĝ “ NĤ. Let x P Ĝ. Then there exists some
g P G such that mx “ mg for every m P N . Since g “ hn for some h P H
and n P N , we conclude xn´1 P Ĥ. Therefore Ĝ “ NĤ. Now, we prove that
N X Ĥ “M “ N XH. The inclusion N XH Ď N X Ĥ is obvious. Assume
now that m P N X Ĥ. Hence there is some h P H such that nm “ nh for
every n P N . Hence mh´1 P CGpNq Ď H. Thus n P H and n P NXH “M .

Therefore N X Ĥ ĎM .

The map τ : G{CGpNq Ñ Ĝ{CĜpNq given by τpxCGpNqq “ yCĜpNq
if and only if x and y induce the same conjugation automorphism of N is
a group isomorphism sending NCGpNq{CGpNq onto NCĜpNq{CĜpNq. In
fact, τpnCGpNqq “ nCĜpNq.

Notice that θ is Ĝ-invariant. This is derived from the fact that θ is G-
invariant since every element of Ĝ acts on N as an element of G. Similarly
θ1 is Ĥ-invariant.
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By assumption pG,N, θq ąBr,c pH,M, θ1q, so there exist projective rep-
resentations P of G associated with θ with factor set α and P 1 of H asso-
ciated with θ1 with factor set α1 such that α1ph1, h2q “ αph1, h2q for every
h1, h2 P H. Also, there is a map ν : CGpNq Ñ Fˆ such that Ppcq “ νpcqIθp1q
and P 1pcq “ νpcqIθ1p1q for every c P CGpNq. Notice that if λ P IBrpZpNqq

lies under θ and θ1, then νZpNq affords λ. Also νpczq “ νpcqνpzq for every
c P CGpNq and z P ZpNq.

In order to construct projective representations P̂ of Ĝ associated to
θ and P̂ 1 of Ĥ associated to θ1, we need some ingredients: appropriate
transversals T and T̂ of the NCGpNq-cosets in N and the NCĜpNq-cosets

in Ĝ, and a function ν̂ : CĜpNq Ñ Fˆ playing the role of ν for P and P 1.
Let T Ď H be a complete set of representatives of cosets of NCGpNq

in G with 1 P T (we can choose such T because of G “ NH). Hence every
g P G can be written as tcn for some t P T, c P CGpNq and n P N . Notice
that tcn “ t1c1n1 if and only if there is some z P ZpNq such that t “ t1,
c “ c1z, and n “ z´1n1. By elementary group theory, observe that T is also
a complete set of representatives of cosets of MCGpNq in H.

Since Ĥ{CĜpNq and H{CGpNq are equal as subgroups of AutpNq, for

every t P T we can choose t̂ P Ĥ such that mt “ mt̂ for every m P N . Also
we can set 1̂ “ 1. By definition, we have that τptCGpNqq “ t̂CĜpNq. Using

that τ is a group isomorphism, we have that T̂ “ tt̂ | t P Tu is a complete

set of representatives of right cosets of NCĜpNq in Ĝ. Also since T is a

complete set of representatives of cosets of MCGpNq in H, we have that T̂
is a complete set of representatives of cosets of MCĜpNq in Ĥ.

Let ν̂ : CĜpNq Ñ Fˆ be any function such that ν̂pczq “ ν̂pcqνpzq for ev-

ery c P CĜpNq and z P ZpNq. (For instance, write CĜpNq “
Ťt
j“1 xjZpNq,

and define ν̂pxjzq “ νpzq.)
We define functions

P̂ : ĜÑ GLθp1qpF q and P̂ 1 : Ĥ Ñ GLθ1p1qpF q

by

P̂pt̂ncq “ PptqPpnqν̂pcq and P̂ 1pt̂mcq “ P 1ptqP 1pmqν̂pcq,
where t P T, n P N , c P CĜpNq and m PM .

Notice that if t̂nc “ t̂1n1c1, then t “ t1, c “ c1z and n “ z´1n1 for some
z P ZpNq, by a previous argument. Then

P̂pn1c1q “ Ppn1qν̂pc1q “ Ppnqνpzqν̂pz´1cq “ Ppnqν̂pcq “ P̂pncq,

using our defining property for ν̂. Hence P̂ is well-defined. Similarly, one
proves that P̂ 1 is a well-defined function. Notice that P̂pnq “ Ppnq and

P̂ 1pmq “ P 1pmq for every n P N and m PM .

We want to show that P̂ and P̂ 1 define projective representations of Ĝ
and Ĥ, associated with θ and θ1, respectively, with factor sets α̂ and α̂1
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coinciding on Ĥ ˆ Ĥ, and such that for x P CĜpNq they are associated

with the same scalar. The latter part is obvious by the definition of P̂
and P̂ 1. Let β be the factor set associated with P or with P 1. We recall
that βph, nq “ 1 “ βpn, hq for every h P H and n P N and, in particular,
βph, h´1nhq “ 1.

Let x P Ĝ and let n P N . We prove that P̂pxnq “ P̂pxqP̂pnq. Write
x “ t̂mc, where m P N and c P CĜpNq. Then xn “ t̂pmnqc and

P̂pxnq “ P̂pt̂pmnqcq “ PptqPpmnqν̂pcq “ PptqPpmqν̂pcqPpnq “ P̂pxqP̂pnq .

Next, we prove that P̂pnxq “ P̂pnqP̂pxq. By the comment in the previous
paragraph about the factor set of P, we have that PpnqPptq “ PptqPpt´1ntq.
Then

P̂pnxq “ P̂pnt̂mcq “ P̂pt̂t̂´1nt̂mcq “ PptqPpt̂´1nt̂qPpmqν̂pcq
“ PptqPpt´1ntqPpmqν̂pcq “ PpnqPptqPpmqν̂pcq

“ P̂pnqP̂pxq.

Next we show that P̂ is a projective representation of Ĝ. Suppose that
t1, t2, t3 P T, c1, c2, c3 P CĜpNq, and n1, n2, n3 P N are such that

pt̂1n1c1qpt̂2n2c2q “ t̂3n3c3.

Notice that

τpt1n1t2n2CGpNqq “ pt1n1pt2n2CĜpNq “
pt3n3CĜpNq “ τpt3n3CGpNqq .

Thus t1n1t2n2 “ t3n3c, for some c P CGpNq. Then

P̂pt̂1n1c1qP̂pt̂2n2c2q “ Ppt1n1qν̂pc1qPpt2n2qν̂pc2q

“ Ppt1n1t2n2qαpt1, t2qν̂pc1qν̂pc2q

“ Ppt3n3cqαpt1, t2qν̂pc1qν̂pc2q

“ Ppt3n3qPpcqαpt3, cq´1αpt1, t2qν̂pc1qν̂pc2q

“ Ppt3n3qν̂pc3qµpcqαpt3, cq
´1αpt1, t2qν̂pc1qν̂pc2qν̂pc3q

´1.

This implies that P̂ is a projective representation of Ĝ with factor set

α̂pt̂1n1c1, t̂2n2c2q “ µpcqαpt3, cq
´1αpt1, t2qν̂pc1qν̂pc2qν̂pc3q

´1,

where c is any element of CGpNq satisfying the equation t1n1t2n2 “ t3n3c.
The same argument, substituting elements in N by elements in M , shows
that P̂ 1 is a projective representation of Ĥ with factor set

α̂1pt̂1m1c1, t̂2m2c2q “ µpcqαpt3, cq
´1α1pt1, t2qν̂pc1qν̂pc2qν̂pcq

´1,

where c P CGpNq satisfies t1m1t2m2 “ t3m3c. It is now clear that both

factor sets coincide on Ĥ ˆ Ĥ. This finishes the proof. �

Next, we discuss the Brauer characters of a central product of groups
and their relation with centrally isomorphic modular character triples.
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Lemma 4.27. Let N Ÿ G and Ti with N ď Ti ď G be such that G{N “

T1{N ˆ ¨ ¨ ¨ ˆ Tk{N . Suppose that rTi, Tjs “ 1 for every i ‰ j. Given
θ P IBrpNq and ϕi P IBrpTi|θq, there is a unique χ “ ϕ1 ¨ . . . ¨ ϕk P IBrpG|θq
such that χTi is a multiple of ϕi. Moreover, the map

IBrpT1|θq ˆ ¨ ¨ ¨ ˆ IBrpTk|θq Ñ IBrpG|θq

pϕ1, . . . , ϕkq ÞÑ ϕ1 ¨ . . . ¨ ϕk

is a natural bijection.

Proof. This is a natural adaptation of Lemma 5.1 of [IMN07] to
Brauer characters. �

In the situation described in Lemma 4.27, if ϕ1 P IBrpT1|θq,. . . ,ϕk P
IBrpTk|θq, we refer to ϕ1 ¨ . . . ¨ ϕk P IBrpG|θq as the dot product of ϕ1, . . .
,ϕk.

Lemma 4.28. Let N Ÿ H ď G. Suppose that pH,N, θq ąBr,c pK,M, θ1q.
Let Z Ÿ G be an abelian group such that Z ď CGpNq and Z XN “ Z XM .
Then

pHZ,NZ, θ ¨ νq ąBr,c pKZ,MZ, θ1 ¨ νq

for every ν P IBrHpZ|λq where λ P IBrpθZXM q.

Proof. See the proof of Proposition 3.9(b) of [NS14] together with
Theorem 4.26. �

The following method for constructing projective representations from
representations given in [NS14] will be useful later in this work. More
precisely, it will be useful to control the values of certain projective repre-
sentations in Section 4.3 (see the proof of Lemma 4.34).

We recall that if ε : Ĝ Ñ G is an epimorphism with kerpεq “ Z, then a

Z-section rep: GÑ Ĝ of ε is a map such that ε˝ rep “ idG and repp1q “ 1.

Theorem 4.29. Let pG,N, θq be a modular character triple. There exists

a finite group Ĝ, an epimorphism ε : Ĝ Ñ G with cyclic kernel Z ď ZpĜq

and a Z-section rep: GÑ Ĝ satisfying:

(a) N̂ “ N1 ˆ Z “ ε´1pNq, N1 – N via δ “ ε|N1 and N1 Ÿ Ĝ. The

action of Ĝ on N̂ coincides with the action of G on N via ε.

(b) The character θ1 “ θδ
´1
P IBrpN1q extends to Ĝ. The Z-section

rep: G Ñ Ĝ satisfies reppnq P N1, reppngq “ reppnqreppgq and
reppgnq “ reppgqreppnq for every n P N and g P G.

(c) εpCĜpN̂qq “ CGpNq.

In particular, if D is a representation of Ĝ such that D|N1 affords θ1, then
the map P defined for every g P G by

Ppgq “ Dpreppgqq

is a projective representation of G associated to θ.

Proof. See the proof of Theorem 4.1 of [NS14]. �
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4.3. Fake Galois action on Brauer characters

Perhaps, the most important application of Isaacs’ Bπ-theory (see Section
1.4) relies on the fact that Bp1-characters constitute a canonical lift of Brauer
characters of p-solvable groups.

Theorem 4.30 (Isaacs). Let G be a p-solvable group. Then, restriction
to p-elements yields a bijection from Bp1pGq onto IBrpGq. In particular, the
Galois group GalpQ|G|{Qq acts on IBrpGq.

Proof. For the first part see Corollary 10.3 of [Isa84]. Then the latter
statement follows directly from Theorem 1.25. �

However, in general, GalpQ|G|{Qq does not act on IBrpGq. The group
G “ SL2p7q and the prime p “ 7 exemplify this, as pointed out to us by
P. H. Tiep. Let σ P GalpQ|G|{Q|G|21 q be the automorphism sending a 16-th

root of unity ξ to ξ3. By using GAP, we see that if ϕ P IrrpGq has degree 6,
then ϕσ is not irreducible.

Let N be a group and let m be a positive integer. If θ is a class function
of N (or of N0), then θpmqpnq “ θpnmq is a class function of N (respectively

of N0). If p|N |,mq “ 1 and θ P IrrpNq, then θpmq “ θσ for a certain σ P

GalpQ|N |{Qq and so θpmq P IrrpNq. It is no longer true that θpmq P IBrpNq
if we consider θ P IBrpNq. (We refer to the above example for m “ 211.)

The aim of the final part of this works is to reduce Conjecture 5.1 to a
problem on quasi-simple groups. In order to do that, we will need that for
every quasi-simple group X, for every integer m with p|X|,mq “ 1 and for
every ϕ P IBrpXq, there exists some ϕ1 P IBrpXq that in some sense behaves

like ϕpmq. This is what we call a fake m-th Galois conjugate of ϕ. Let us
state this definition clearly. The results of this section are part of an original
joint work with B. Späth [SV16].

Let V “ tξ P C | opξq “ n for some natural nu ď Cˆ. Recall that U is
the subgroup of p1-roots of unity of C. Hence U ď V. For a fixed positive
integer m, let π be the set of primes dividing m. Define σm : V Ñ V by

σmpξq “ ξσm “ ξπξ
m
π1 ,

for every root of unity ξ P V, where ξπ and ξπ1 are respectively the π-part
and the π1-part of ξ. Notice that σm is an automorphism of V and restriction
of σm to elements of U defines an automorphism of U which we denote again
by σm. Let ωm : Fˆ Ñ Fˆ be the group homomorphism that σm induces
via ˚ : U Ñ Fˆ. We denote by ζωm the image of ζ P Fˆ under ωm.

Moreover, for any positive integer n, by elementary Galois Theory, we
have that σm defines a Galois automorphism of Qn (which we denote again
by σm P GalpQn{Qq) that sends every n-th root of unity ξ P Qn to ξσm .

Definition 4.31. Let pG,N,ϕq and pG,N,ϕ1q be modular character
triples and let m be a positive integer coprime to |N |. We write

pG,N,ϕqpmq « pG,N,ϕ1q,

Universitat de València Carolina Vallejo Rodŕıguez
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if there exist projective representations P and P 1 of G associated to ϕ and
ϕ1 such that:

(i) for every x, y P G the factor sets α and α1 of P and P 1 satisfy

αpx, yqωm “ α1px, yq,

and
(ii) for every c P CGpNq the scalar matrices Ppcq and P 1pcq are associ-

ated with scalars ζ and ζωm .

In the above situation we may say that ϕ1 is a fake m-th Galois conjugate
of ϕ with respect to N Ÿ G and that the triples pG,N,ϕq and pG,N,ϕ1q are
fake m-th Galois conjugate.

Remark 4.32. Let pG,N,ϕq be a modular character triple, and let m
be a positive integer coprime to |N |.

(a) If ϕ is linear, then ϕσm “ ϕm P IBrpNq.

(b) In general ϕσm “ ϕpmq is an integer linear combination of IBrpNq.

(c) Let ϕ1 P IBrpNq and λ P IBrpϕ|ZpNqq. Then pN,N,ϕqpmq « pN,N,ϕ1q

if and only if IBrpϕ1|ZpNqq “ tλ
mu.

Proof. For part (a), notice that Qpϕq Ď Q|N |, then ϕσmpnq “ ϕpnqσm “

ϕpnqm for every n P N0, by the definition of σm. Of course, ϕm P IBrpNq,
in this case. For part (b), let n P N0. Since ϕxny “ λ1 ` ¨ ¨ ¨ ` λt, where
λi P IBrpxnyq are linear, we have that

ϕpnqσm “ λ1pnq
σm ` ¨ ¨ ¨ ` λtpnq

σm

“ λ1pn
mq ` ¨ ¨ ¨ ` λtpn

mq

“ ϕpnmq “ ϕpmqpnq.

The class function ϕpmq is an integer linear combination of IBrpNq by Prob-
lem 2.11 of [Nav98]. Part (c) follows from the definition of fake m-th Galois
conjugate modular character triples. �

We shall give an alternative reformulation of Definition 4.31 in Lemma
4.35. This new way of defining fake Galois conjugate modular character
triples will make it easier to work with them later on. We first need to show
that for a modular character triple pG,N,ϕq there always exists a projective
representation associated to ϕ with particular properties.

Lemma 4.33. Let N Ÿ G and χ P IBrpGq with χN P IBrpNq. Then
CGpNq

1 ď kerpχq.

Proof. Let D be a representation affording χ and c P CGpNq. Then
Dpcq commutes with the irreducible representation DN . By Schur’s Lemma
[Isa76, Lem. 1.5], this implies that Dpcq “ λpcqI is a scalar matrix. The
map λ : CGpNq Ñ Fˆ given by Dpcq “ λpcqI is a homomorphism. Hence
CGpNq{kerpλq is an abelian p1-group. This proves the statement. �
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Lemma 4.34. Let pG,N,ϕq be a modular character triple, m an integer
coprime to |N | and pFˆqm1 the subgroup in Fˆ of elements of order coprime
to m. Then, there exists a projective representation P of G associated to ϕ
with factor set α such that:

(i) αpg, g1q P pFˆqm1 for every g, g1 P G, and
(ii) for every c P CGpNq, Ppcq is the scalar matrix associated to some

ξ P pFˆqm1.

Proof. Let ρ be the set of primes dividing m different from p, so that
p R ρ. (Then ρ “ π ´ tpu with the notation of this section.)

Suppose that ϕ extends to some χ P IBrpGq. We claim that there exists
an extension ψ of ϕ to G such that every ρ-element of CGpNq lies in kerpψq.

By Lemma 4.33, we may assume that CGpNq
1 “ 1. Hence CGpNq

is abelian and the Hall ρ-subgroup C of CGpNq satisfies C Ÿ G. Then
N X C “ 1 and NC – N ˆ C. We want to prove that there exists an
extension of ϕ to G containing C in its kernel. It suffices to prove that the
character ϕ P IBrpNC{Cq given by ϕ (more precisely ϕpncCq “ ϕpnq for
every n P N and c P C) extends to G{C.

Let q be any prime. If q P ρ and Q{N P SylqpG{Nq, then ϕ P IBrpNC{Cq
extends to QC{C because of pq, |NC : C|q “ 1 by Theorem 4.12. If q R ρ and
Q{N P SylqpG{Nq we have that QXC “ 1. Since CŸ G, then χQ P IBrpQq
defines an irreducible Brauer character of QC{C – Q which extends ϕ. By
Theorem 4.11, this implies that ϕ extends to G{C, and the claim follows.

Now, by Theorem 4.29, there exists a central extension ε : Ĝ Ñ G of G
with finite cyclic kernel Z and a Z-section rep: GÑ Ĝ of ε such that:

(a) N̂ “ N1 ˆ Z “ ε´1pNq, the groups N1 and N are isomorphic via

δ “ ε|N1 and N1 Ÿ Ĝ. Moreover, the action of Ĝ on N̂ coincides
with the action of G on N via ε.

(b) ϕ1 “ ϕδ
´1
P IBrpN1q extends to Ĝ. The Z-section rep: G Ñ Ĝ

satisfies reppnq P N1, reppngq “ reppnqreppgq and reppgqreppnq “
reppgnq for every n P N and g P G.

(c) εpCĜpN̂qq “ CGpNq.

According to (b) the character ϕ1 extends to Ĝ. By the first part of the

proof applied to Ĝ, there is an extension χ1 P IBrpĜq such that every ρ-

element of CĜpN̂q lies in kerpχ1q. Let D be a representation affording χ1

and let P : GÑ GLϕp1qpF q be defined by

Ppgq “ Dpreppgqq for every g P G.

For every g, g1 P G we obtain

PpgqPpg1q “ Dpzg,g1qPpgg1q,

where zg,g1 P Z ď ZpĜq is given by reppgqreppg1q “ zg,g1reppgg1q. Since
Dpzg,g1q is a scalar matrix, P is a projective representation of G associated
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to ϕ with factor set α : G ˆ G Ñ Fˆ defined by αpg, g1qI “ Dpzg,g1q for
every g, g1 P G. Since Dpcq “ Iϕ1p1q for every ρ-element c P CĜpNq, it is
straightforward to check that P satisfies the required properties. �

As a consequence of Lemma 4.34, we can reformulate Definition 4.31 in
the following (easier to handle) way.

Lemma 4.35. Let pG,N,ϕq and pG,N,ϕ1q be modular character triples,
and let m be coprime to |N |. Then the following are equivalent:

(a) pG,N,ϕqpmq « pG,N,ϕ1q,
(b) there exist projective representations P and P 1 of G associated to ϕ

and ϕ1 satisfying the properties (i) and (ii) in 4.34 and such that
(b.1) the factor sets α and α1 of P and P 1 satisfy

αpg, g1qm “ α1pg, g1q for every g, g1 P G,

and
(b.2) for every c P CGpNq, the scalar matrices Ppcq and P 1pcq are

associated with scalars ζ and ζm respectively.

Proof. We first prove that (a) implies (b). Since pG,N,ϕqpmq « pG,N,ϕ1q
there exist projective representations Q and Q1 of G associated to ϕ and ϕ1

having the properties listed in Definition 4.31. Let P be a projective repre-
sentation of G associated to ϕ with the properties described in Lemma 4.34.
By Remark 4.15, there exists a map µ : G Ñ Fˆ such that P is similar to
µQ. Also µ is constant on N -cosets in G and µp1q “ 1. Let µ1 : GÑ Fˆ be
given by µ1pgq “ µpgqωm for every g P G. Since µ1 is constant on N -cosets
in G and µ1p1q “ 1, then it is straightforward to check that P 1 “ µ1Q1 is a
projective representation of G associated to ϕ1.

In order to verify that P and P 1 satisfy the condition in (b.1) let g, g1 P G.
According to Definition 4.31, the factor sets β and β1 of Q and Q1 satisfy
βpg, g1qωm “ β1pg, g1q. By Remark 4.15, the factor sets α and α1 of P and
P 1 satisfy

αpg, g1q “
µpgqµpg1q

µpgg1q
βpg, g1q and α1pg, g1q “

µ1pgqµ1pg1q

µ1pgg1q
β1pg, g1q.

This implies that αpg, g1qωm “ α1pg, g1q. By the choice of P, we have that
αpg, g1q is a root of unity in Fˆ of order coprime to m, hence α1pg, g1q “
αpg, g1qωm “ αpg, g1qm also is. This proves that P and P 1 satisfy the condi-
tion (b.1).

In order to verify that P and P 1 satisfy the condition in (b.2) let c P
CGpNq and ζ P Fˆ be the scalar associated to Qpcq. According to Definition
4.31, ζωm is the scalar associated to Q1pcq . By definition Ppcq and P 1pcq are
scalar matrices associated with ζµpcq and pζµpcqqωm respectively. By the
choice of P, we have that ζµpcq is a root of unity of Fˆ of order coprime to
m. Hence pζµpcqqωm “ pζµpcqqm P Fˆ has also order coprime to m. This
proves that P and P 1 satisfy the condition (b.2).
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Moreover we see that P 1 is a projective representation having the prop-
erties mentioned in 4.34.

To prove the converse, just notice that the projective representations P
and P 1 in (b) have the properties described in Lemma 4.34 and recall that
ωm acts on roots of unity of Fˆ of order coprime to m by raising them to
their m-th power. It is then immediate that P and P 1 give pG,N, θqpmq «
pG,N, θ1q. �

The following is an easy consequence of Lemma 4.35.

Corollary 4.36. Let pG,N,ϕq be a modular character triple. Let m be
a positive integer coprime to |N | and let σm be defined as in the beginning

of this section. If ϕ is linear, then pG,N,ϕqpmq « pG,N,ϕσmq.

Proof. By Remark 4.32, we know that ϕσm “ ϕm. Let P be a pro-
jective representation of G associated to ϕ as in Lemma 4.34. Then, it
is straightforward to check that Pm is a projective representation of G
associated to ϕm (as in Lemma 4.34). By Lemma 4.35, we have that

pG,N,ϕqpmq « pG,N,ϕσmq. �

We have defined the notion of fake m-th Galois conjugate character
triples. We conclude this section by introducing fake m-th Galois actions
and verifying their existence on p-solvable groups.

Definition 4.37. Let NŸ G. Let S ď IBrpNq be a G-invariant subset.
Let m be an integer coprime to |N |. We say that there exists a fake m-th
Galois action on S with respect to G if there exists a G-equivariant
bijection

fm : S Ñ S

such that

pGϕ, N, ϕq
pmq « pGϕ, N, fmpϕqq for every ϕ P S .

Let N be a p-solvable group. Then the Galois group GalpQ|N |{Qq acts
on IBrpNq, by Theorem 4.30. In this case, we show that there exists a fake
m-th Galois action on IBrpNq for any integer m coprime to |N | and with
respect to any G with N Ÿ G. We first need to control the values of certain
projective (ordinary) representations.

We recall that the theory of projective representations associated to a
character triple over C is very similar to the theory of projective represen-
tations associated to character triples over F . In particular, Theorem 8.12
and Lemma 8.27 of [Nav98] work for C instead of F .

Recall we have chosen an ideal M ă R with pR ĎM and F “ R{M.

Lemma 4.38. Let N Ÿ G and θ P IrrpNq. Assume that θ is G-invariant
and θ0 P IBrpNq. Write L “ Q|G| and SL “ tr{s | r P RXL, s P RXLzMu.
There exists a projective representation of G associated to θ with matrix
entries in SL.
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Proof. We notice that by Brauer’s Theorem [Isa76, Thm. 10.3], L
is a splitting field for G. By Problem 2.12 of [Nav98], let Y be an SL-
representation of N affording θ. We check that there exists a projective
representation of G associated to θ extending Y with entries in SL. For
every g P G{N , the representation Y extends to a representation Yg of
xN, gy as in Theorem 8.12 of [Nav98], where g P G with gN “ g. Define
Dpgq “ Ygpgq for every g P G. Then D is a projective representation of G
extending Y, by Lemma 8.27 of [Nav98]. Hence, it suffices to control the
matrix entries of the representations Yg. In other words, we only need to
check the case where θ extends to G.

Let χ P IrrpGq be an extension of θ. Let X be a representation affording
χ with entries in SL (again such X does exist by Problem 2.12 of [Nav98]).
We have that XN affords θ. Hence, there is some T P GLnpLq such that
XN “ T´1YT . Write T “ ptijq, where tij P L. By Lemma 2.5 of [Nav98],
since all tij are algebraic over Q, there exists β P L such that all βtij P R but
not all βtij P M. Since XN “ pβT q

´1YpβT q, we may assume that tij P R
and T ˚ ‰ 0 (replacing T by βT ). By assumption, the F -representations
pXN q

˚ and Y˚ are irreducible. Moreover T ˚pXN q
˚ “ Y˚T ˚. By Schur’s

Lemma [Isa76, Lem. 1.5], this implies T ˚ P GLnpF q. In particular, we
have that detpT ˚q “ detpT q˚ ‰ 0 and so detpT q R M. Thus T P GLnpSLq
and the representation TXT´1 with entries in SL extends Y. �

Theorem 4.39. Let N be a p-solvable group and let m be a positive
integer coprime to |N |. If N Ÿ G, then there exists a fake m-th Galois
action on IBrpNq with respect to G.

Proof. By Theorem 4.30, we have that Bp1pNq provides a canonical
lift of IBrpNq. Moreover, AutpNq and GalpQ|N |{Qq act on the set Bp1pNq
by Theorem 1.25. Thus, the bijection Bp1pNq Ñ IBrpNq given by θ ÞÑ
θ0 commutes with the action of AutpNq. Consider σm as defined at the
beginning of this section, before Definition 4.31. Let ϕ P IBrpNq and θ P
Bp1pNq with ϕ “ θ0. Since θσm P Bp1pNq, we have that ϕσm “ pθσmq0 P
IBrpNq. Hence the map fm : IBrpNq Ñ IBrpNq defined by ϕ ÞÑ ϕσm is an
AutpNq-equivariant bijection.

Let ϕ P IBrpNq. We want to prove that pGϕ, N, ϕq
pmq « pGϕ, N, ϕ

σmq.
We may assume that G “ Gϕ. Let θ P Bp1pNq be the canonical lift of ϕ.
Then θ is G-invariant and θσm is the canonical lift of ϕσm . Write L “ Q|G|.
By Lemma 4.38, there exists a projective representation D of G associated
to θ with matrix entries in SL “ tr{s | r P R X L, s P R X LzMu. In
particular, the map Dσm is a well-defined projective representation of G
associated to θσm with matrix entries in SL. It is straightforward to check
that the F -projective representations P “ D˚ and P 1 “ pDσmq˚ associated
to ϕ and ϕσm satisfy the required properties of Definition 4.31. �
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CHAPTER 5

Coprime action and Brauer characters

5.1. Introduction

Let A and G be finite groups. Assume that A acts coprimely on G (recall
that this means that A acts by automorphism on G and p|A|, |G|q “ 1).
Then there exists a canonical bijection

πpG,Aq : IrrApGq Ñ IrrpCGpAqq,

between the set IrrApGq of irreducible characters fixed under the action of A
and the irreducible characters of the group CGpAq of fixed points under the
action of A. This bijection is known as the Glauberman-Isaacs correspon-
dence. (We refer the reader to the discussion preceding Theorem 1.17 and
to Theorem 1.17 itself.) The bare fact that these two sets have the same
cardinality is highly non-trivial and has already important consequences.
For instance, it proves that the actions of A on the irreducible characters of
G and on the conjugacy classes of G are permutation isomorphic.

Let us fix a prime p. Recall that g P G is p-regular if p does not divide
opgq. In this chapter we consider the same question on p-Brauer characters
and p-regular conjugacy classes.

Conjecture 5.1. Let A and G be finite groups. Let p be a prime.
Suppose that A acts coprimely on G. Then the actions of A on the irreducible
Brauer characters of G and on the conjugacy classes of p-regular elements
of G are permutation isomorphic.

Conjecture 5.1 is an open problem posed by G. Navarro in [Nav94].
By Corollary 13.10 and Lemma 13.23 of [Isa76], it is easy to prove that
Conjecture 5.1 is equivalent to the following.

Conjecture 5.2. Let A and G be finite groups. Let p be a prime.
Suppose that A acts coprimely on G. Then the number of A-invariant irre-
ducible Brauer characters of G is equal to the number of irreducible Brauer
characters of CGpAq.

There is some evidence of the validity of Conjecture 5.2. First, it holds
whenever G is p-solvable by work of K. Uno [Uno83] (fundamentally based
on the fact that there exist canonical lifts of the irreducible Brauer char-
acters). The fact that Conjecture 5.2 holds whenever A is a cyclic group,
and hence also Conjecture 5.1, is a well-known consequence of the so-called
Brauer’s argument on the character table (see Lemma 1.16; the argument
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is the same in both the ordinary and the modular cases). In particular,
this implies that Conjecture 5.1 holds whenever G is a quasi-simple group,
using the classification of the finite simple groups (see Theorem 5.17). It
has also been proven in [NST16] that A fixes a unique irreducible Brauer
character of G if and only if CGpAq is a p-group, proving Conjecture 5.2 in
this case. However, if G is not p-solvable (and therefore A is solvable) no
other progress has been made.

Our aim in this chapter is to reduce Conjecture 5.2 to a problem on finite
simple groups (in the same spirit as for the McKay conjecture [IMN07]).
We can prove the following, which is the main result of this chapter.

Theorem G. Let G and A be finite groups. Suppose that A acts co-
primely on G. Suppose that all finite non-abelian simple groups (of order
divisible by p) involved in G satisfy the inductive Brauer Glauberman con-
dition. Then the number of irreducible p-Brauer characters of G fixed by A
is the number of irreducible p-Brauer characters of CGpAq.

Consequently, the actions of A on the irreducible p-Brauer characters
and on the conjugacy classes of p-regular elements of G are permutation
isomorphic.

Hence, we prove that if every non-abelian simple group satisfies the in-
ductive Brauer-Glauberman condition, then Conjectures 5.1 and 5.2 hold.
We do not define this inductive condition right now, but we feel it is worth
mentioning that there is a surprising difference between this inductive con-
dition and other inductive conditions coming from global/local conjectures
(for instance the inductive McKay condition in [IMN07]). This difference
is derived from the fact that the Galois group does not act on irreducible
Brauer characters together with the fact that Galois action plays an im-
portant role in the description of the Glauberman correspondent in a key
situation. We will require the existence of fake Galois actions in our induc-
tive condition. See Definition 5.24 for further details.

The content of this chapter is arduous. We think that it is fair to say
that our reduction of Conjecture 5.2 is at least as hard as the reduction of
the McKay conjecture. Although both reductions bear similarities, there
are also differences, as we said. It does not seem possible to conduct both
reductions at the same time. Our reduction here is used in the forthcoming
paper [NST16] in which more evidence for the truth of Conjectures 5.1 and
5.2 is given.

This chapter is structured in the following way: In Section 5.2 we re-
call some well-known results on character counts above Glauberman-Isaacs
correspondents. In Section 5.3 we study a particular case of the Glauber-
man correspondence. This particular example motivates the definition of
fake Galois conjugate modular character triples in Section 4.3. We also ex-
plain how to construct centrally isomorphic modular character triples from
fake Galois conjugate ones. In Section 5.4 we study coprime actions on
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direct products of quasi-simple groups. In Section 5.5 we define the in-
ductive Brauer-Glauberman condition on finite simple groups. Then, we as-
sume that a finite non-abelian simple group S satisfies the inductive Brauer-
Glauberman condition and we study consequences for the character theory
of central extensions of direct products S ˆ ¨ ¨ ¨ ˆ S of S. This section is
of a highly technical nature and the results contained in it are key in the
inductive process used to prove Theorem G. In Section 5.6, making use
of everything proved in preceding sections, we can prove Theorem G. We
conclude by studying some natural questions related to Conjecture 5.2 in
Section 5.7.

All the results of this chapter are part of an original work of the author
together with B. Späth [SV16].

5.2. Review on character counts above Glauberman-Isaacs
correspondents

The main goal of this section is to count Brauer characters lying above
characters of normal p1-subgroups and their Glauberman correspondents.

We shall use the following.

Lemma 5.3. Assume that a group A acts on a group G. Let K Ÿ G
be A-invariant. Assume that p|G : K|, |A|q “ 1 and CG{KpAq “ G{K. If
η P IBrApKq, then every χ P IBrpG|ηq is A-invariant.

Proof. The proof follows from the same arguments as the in proof of
Lemma 2.5 of [Wol78a]. �

Suppose that K Ÿ G and η is an irreducible G-invariant character of
K. If η is an ordinary character, then |IrrpG|ηq| can be determined by
a purely group theoretical method due to P. X. Gallagher. There is an
analogous result for Brauer characters. If η is a Brauer character we say that
Kg P pG{Kq0 (or g) is η-good if every extension ϕ P IBrpxK, gyq of η is U -
invariant where U{K “ CG{KpKgq. Notice that η always extends to xK, gy
since xK, gy{K is cyclic (by Theorem 4.10). Also, U acts on IBrpxK, gy|ηq
since xK, gy � U . It is clear that if Kg P pG{Kq0 is η-good, then every
G-conjugate of Kg also is, so we can talk about p-regular η-good classes of
G{K.

Theorem 5.4. Suppose that KŸ G and that η P IBrpKq is G-invariant.
Then, |IBrpG|ηq| is equal to the number of p-regular η-good classes of G{K.

Proof. See Theorem 6.2 of [Isa76]. �

The following is basically a particular case of Theorem 2.12 of [Wol79].

Theorem 5.5. Let A act coprimely on G. Suppose that K Ÿ G is A-
invariant and G “ KC, where C “ CGpAq. Then η P IrrApKq extends
to Gη iff η1 P IrrpK X Cq extends to Cη1, where η1 P IrrpCKpAqq is the
Glauberman-Isaacs correspondent of η.
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Proof. Notice that GηXC “ Cη1 by Lemma 2.5(b) of [Wol79]. Hence,
we may assume that η and η1 are C-invariant.

Suppose that η extends to some χ P IrrpGq. By [Wol78a, Lem. 2.5] we
see that χ P IrrApGq. Since rG,As ď K, by [Wol79, Thm. 2.12]

η1 “ πpK,Aqpηq “ πpK,AqpχKq “ pπpG,AqpχqqKXC .

Hence πpG,Aqpχq is an extension of η1. Analogously we see that η extends to

G, if η1 extends to C. �

We need similar results for Brauer characters. We state the following
easy observation as a lemma for the reader’s convenience.

Lemma 5.6. Let K �G, θ P IrrpKq be G-invariant and suppose that K
is a p1-group. Then θ extends to an ordinary character of G if and only if θ
extends to a Brauer character of G.

Proof. Let χ P IrrpGq be an extension of θ to G. Then χ0 is a Brauer
character of G extending θ since K Ď G0. In particular, χ0 P IBrpGq.
Suppose that ϕ P IBrpGq extends θ. Let Q{N be a Sylow q-subgroup of
G{N for some prime q. If q ‰ p, then ϕQ is an ordinary character extending
θ. If q “ p, then θ extends to Q by Theorem 1.13. Hence θ extends to G by
Theorem 1.15. �

Theorem 5.7. Suppose that A acts coprimely on G. Let K Ÿ G be an
A-invariant p1-group. Suppose that G “ KC, where C “ CGpAq. Let η P
IrrApKq be G-invariant and write η1 P IrrpKXCq to denote its Glauberman-
Isaacs correspondent. Then

|IBrpG|ηq| “ |IBrpC|η1q|.

Proof. By Theorem 5.4 it suffices to show that for every c P C, the
element cK is η-good if and only if the element cK X C is η1-good. By
Theorem 4.7 of [IN96], it suffices to show that for every U with K ď U ď G
and abelian U{K, η extends to U as a Brauer character if and only if η1

extends to UXC as a Brauer character. We apply Theorem 5.5 and Lemma
5.6 in U . Then we are done. �

Corollary 5.8. Suppose that A acts coprimely on G. Let K Ÿ G be
an A-invariant p1-group. Suppose that G “ KC, where C “ CGpAq. Let
N Ÿ G be contained in K X C and let θ P IrrpNq. Then

|IBrApG|θq| “ |IBrpC|θq|.

Proof. Let B be a set of representatives of the C-orbits of IrrApK|θq
and B1 “ tπpK,Aqpηq | η P Bu. Then B1 Ď IrrpKXC|θq by [Wol79, Lem. 2.4]

and B1 is a set of representatives of the C-orbits of IrrpKXC|θq. By Corollary
5.2 of [Wol78a], we deduce that the bijection πpK,Aq is C-equivariant. Hence

B1 is a set of representatives of the C-orbits of IrrpK X C|θq.
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Every element of IBrApG|θq lies over a unique element of B and also
every element of IBrpC|θq lies over a unique element of B1. Thus

|IBrApG|θq| “
ÿ

ηPB
|IBrApG|ηq| and |IBrpC|θq| “

ÿ

ηPB
|IBrpC|πpK,Aqpηqq|.

By Lemma 5.3, for every η P B we have that |IBrApG|ηq| “ |IBrpG|ηq|.
Hence, it suffices to show that |IBrpG|ηq| “ |IBrpC|πpK,Aqpηqq| for every
η P B. By the Clifford correspondence on Brauer characters, we may assume
that η P B is G-invariant. Now, the result follows from Theorem 5.7. �

5.3. More on fake Galois conjugates

We begin this section with the description of the Glauberman correspon-
dence in a very specific situation. This example shows that the Glauberman
correspondence is related to a certain Galois action on ordinary characters.

Let G be a group and let A ď Sm. Recall Gm denotes the external

direct product of m copies of G. Write rG “ Gm. Then A acts on rG by

pg1, . . . , gmq
a´1

“ pgap1q, . . . , gapmqq for gi P G and a P A. If A is transitive,
then

C
rG
pAq “ tpg, . . . , gq P rG | g P Gu.

The group C
rG
pAq is isomorphic to G. An irreducible A-invariant character

χ of rG has the form

χ “ θ ˆ ¨ ¨ ¨ ˆ θ

for some θ P IrrpGq. If p|A|, |G|q “ 1, then the Glauberman correspondent

of an A-invariant character χ “ θˆ ¨ ¨ ¨ ˆ θ of rG is some Galois conjugate of
θ viewed as a character of C

rG
pAq. (See Proposition 5.10 below.)

Notation 5.9. Let m be a positive integer. Recall the definition of
σm from Section 4.3: let π be the set of primes dividing m, then for every
positive integer n we define σm P GalpQn{Qq to be the automorphism fixing
π-roots of unity and raising to the m-th power π1-roots of unity. For a group

G, we denote here by rG the external direct product Gm of m copies of G.

Let ∆m : G Ñ rG be the injective morphism defined by g ÞÑ pg, . . . , gq for
every g P G. Then ∆m defines natural bijections IrrpGq Ñ Irrp∆mGq and
IBrpGq Ñ IBrp∆mGq, where ∆mG “ ∆mpGq. We also write ∆mθ “ ∆mpθq.
If from the context m is clear, we omit the superscript m and write ∆, ∆G
and ∆θ instead of ∆m, ∆mG and ∆mθ.

Proposition 5.10. Let m be a positive integer. Assume that a solvable
subgroup A ď Sm is transitive. Let G be a finite group with p|A|, |G|q “

1. Let rG be the direct product of m copies of G. Let θ P IrrpGq and let

χ “ θ ˆ ¨ ¨ ¨ ˆ θ P IrrAp rGq. Then, the Glauberman correspondent of χ is
the character χ1 “ ∆θσm, where θσm is the image of θ under the Galois
automorphism σm.
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Proof. This is essentially the content of Exercise 13.11 of [Isa76]. To
do the case where A is cyclic of prime order, use Exercise 4.7 of [Isa76].
The general case, follows by induction on |A|. �

It is clear that the Clifford theory over two ordinary irreducible Galois
conjugate characters is related.

Proposition 5.11. Let N Ÿ G and θ P IrrpNq. Let m be a positive
integer coprime to |N |. Let θ1 “ θσm. Then:

(a) Gθ “ Gθ1.
(b) Assume G “ Gθ. There exist P and P 1 projective representations

of G associated to θ and θ1 such that:
(b.1) the factor sets α and α1 of P and P 1 satisfy

αpg, g1qσm “ α1pg, g1q

for every g, g1 P G, and
(b.2) for every c P CGpNq the scalar matrices Ppcq and P 1pcq are

associated with ξ and ξσm for some root of unity ξ P Q|G|.

Proof. By Theorem 4.29 and [Isa76, Thm. 10.3], there exists a pro-
jective representation P of G associated to θ whose entries are in Qk for
some k ě 1. Choose P 1 “ Pσm . The result follows from straightforward
calculations. �

It is worth comparing Proposition 5.11 with Definition 4.31. If pG,N,ϕq
and pG,N,ϕ1q are fake m-th Galois conjugate modular character triples,
then the Clifford theory over ϕ and ϕ1 is related in the same way as the
Clifford theory over two σm-conjugate ordinary character triples.

We recall below the definition of fake Galois conjugate characters in the
alternative version provided by Lemma 4.35.

Definition 5.12. Let pG,N,ϕq and pG,N,ϕ1q be modular character
triples, and let m be a positive integer coprime to |N |. Then we say that ϕ
and ϕ1 are fake m-th Galois conjugate with respect to N Ÿ G, and we write
pG,N,ϕqpmq « pG,N,ϕ1q, if there exist projective representations P and P 1
of G associated to ϕ and ϕ1 with factor sets α and α1 such that

(i) αpg, g1q, α1pg, g1q P Fˆ have order coprime to m and

αpg, g1qm “ α1pg, g1q

for every g, g1 P G, and
(ii) for every c P CGpNq, the scalar matrices Ppcq and P 1pcq are associ-

ated with elements ζ, ζ 1 P Fˆ of order coprime to m and ζm “ ζ 1.

The notion of fake Galois conjugate (modular) character triples is im-
portant in our later application, since it allows us to construct centrally
isomorphic character triples from Galois conjugate character triples (see
Theorem 5.14 below).
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Notation 5.13. Let m be a positive integer. For groups H ď G we
continue writing Hm to denote the external direct product of m copies of
H. Recall that ∆H ď Gm. For groups K,H ď G with K ď NGpHq, we

denote by q∆HK the group Hm∆K ď Gm.

Recall the description of the Brauer characters of a central product of
groups in Lemma 4.27.

Theorem 5.14. Let pG,N,ϕq and pG,N,ϕ1q be modular character triples.

Let Z “ ZpNq. Write rZ “ Zm, rN “ Nm, qG “ q∆ZG and qN “ q∆ZN . Let

ν P IBrpϕZq, rϕ “ ϕ ˆ ¨ ¨ ¨ ˆ ϕ P IBrp rNq, rν “ ν ˆ ¨ ¨ ¨ ˆ ν P IBrp rZq and

qϕ “ ∆ϕ1 ¨ rν P IBrp qNq. Then the following are equivalent:

(a) pG,N,ϕqpmq « pG,N,ϕ1q,

(b) p rNp qG¸Smq, rN, rϕq ąBr,c p qG¸Sm, qN, qϕq.

Proof. Notice that

rNp qG¸Smq “ p rN qGq ¸Sm.

Also rNXp qG¸Smq “ qN is the central product of rZ and ∆N . Hence, the char-

acters in IBrp qNq are dot products of characters in IBrp rZq and characters in
IBrp∆Nq that lie over the same λ P IBrp∆Zq (see Theorem 4.27). Note that

qϕ “ ∆ϕ1 ¨ν̃ is well-defined and lies in IBrp qNq since IBrprν∆Zq “ IBrpp∆ϕ1q∆Zq
Now, we prove that (a) implies (b). Let Q and Q1 be projective repre-

sentations of G giving

pG,N,ϕqpmq « pG,N,ϕ1q

as in Definition 5.12.
We construct projective representations P0 and P 10 of rN qG and qG associ-

ated to rϕ and qϕ respectively. Note that rN qG “ q∆NG. It is straightforward

to show that the map P0 : rN qGÑ GLϕp1qmpF q given by

P0ppn1, . . . , nmq∆gq “ Qpn1gq b ¨ ¨ ¨ bQpnmgq

for every pn1, . . . , nmq P rN and g P G, defines a projective representation
associated to rϕ. The factor set α0 of P0 satisfies

α0prn∆g, rn1∆g1q “ βpg, g1qm for every rn, rn1 P rN and g, g1 P G,

where β denotes the factor set of Q. Let τ be an F -representation of rZ

affording rν. The map P 10 : qGÑ GL
qϕp1qpF q given by

P 10prz∆gq “ τprzqQ1pgq for every rz P rZ and g P G

is a projective representation associated to qϕ. The factor set α10 of P 10 satisfies

α10prz∆g, rz
1∆g1q “ β1pg, g1q “ βpg, g1qm “ α0prz∆g, rz

1∆g1q

for every g, g1 P G and z, z1 P rZ, where β1 denotes the factor set of Q1.
(Recall that β1pg, g1q “ βpg, g1qm since Q and Q1 satisfy Definition 5.12(b.1)).

Universitat de València Carolina Vallejo Rodŕıguez
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In the next step we extend P0 to a projective representations P of

p rN qGq ¸ Sm. Note that Sm has a natural action on the tensor space
Â

Fϕp1q by permuting the tensors. This induces a representation R : Sm Ñ

GLϕp1qmpF q. The map P : q∆NG¸Sm Ñ GLϕp1qmpF q given by

Ppxσq “ P0pxqRpσq for every x P rN qG and σ P Sm

is a projective representation of rN qG¸Sm “ rNp qG¸Smq. Note that PN oSm
is a representation, as defined in [Hup98, Thm. 25.6]. It is easy to check,
using the definition of R, that the factor set α of P satisfies

αprn∆gσ, rn1∆g1σ1q “ α0prn∆g, rn1∆g1q

for every g, g1 P G, rn, rn1 P rN and σ, σ1 P Sm.

In the next step we extend P 10 to a projective representation P 1 of qG¸Sm.
Note that r∆G,Sms “ 1. Hence rν and τ are Sm-invariant and the map

P 1 : qG ¸ Sm Ñ GLϕ1p1qpF q defined by P 1pgrzσq “ P 10pgqτprzq for every g P
qG, rz P rZ and σ P Sm is a projective representation whose factor set α1

satisfies
α1pgσ, g1σ1q “ α10pg, g

1q

for every g, g1 P qG and σ, σ1 P Sm. In particular, we see that the projective
representations P and P 1 that we have constructed satisfy the property
described in Definition 4.19(ii.1).

In the last step we compare Ppxq and P 1pxq for x P C
p rNǦq¸Sm

p rNq. We

have that
C
p rNǦq¸Sm

p rNq “ q∆ZCGpNq ď qG¸Sm.

Then x “ rz∆c for some rz P rZ and c P CGpNq. Recall that by Definition
5.12(b.2), Qpcq and Q1pcq are scalar matrices associated with some ζ and ζm.
Thus Pprz∆cq and P 1prz∆cq are scalar matrices associated with τprzqζm, by
the definition of P and P 1. This implies that P and P 1 satisfy the property
in Definition 4.19(ii.2).

This proves (a) implies (b), since we have already seen that the group
theory conditions of Definition 4.19 are satisfied.

We only sketch the steps to prove that (b) implies (a). We start by
choosing a projective representation Q of G associated to ϕ as in Lemma

4.34. Then one can construct a projective representation P of p rN qGq ¸Sm

associated to rϕ as in the first part of the proof. Let P 1 be the projective

representation of qG ¸ Sm associated to qϕ given by Lemma 4.21(a). Then
P 1|∆G defines via the natural isomorphism ∆G Ñ G a projective represen-
tation Q1 of G associated to ϕ1, because P 1|∆N affords ∆ϕ1. It is easy to

check that Q and Q1 give pG,N,ϕqpmq « pG,N,ϕ1q using Lemma 4.35. �

Corollary 5.15. Assume the notation and the situation of Theorem

5.14. Let H Ÿ G with H ď CGpNq and write qG1 “ q∆ZHG. Then

p rNp qG1 ¸Smq, rN, rϕq ąBr,c p qG1 ¸Sm, qN, qϕq.
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Proof. Note that rN qG1 “ q∆NHG and qG1 “ q∆HZG are well-defined.
The group q∆NHG¸Sm induces on rN the same automorphisms as q∆NG¸
Sm. Hence, the statement follows from Theorem 5.14 after applying Theo-
rem 4.26. �

Also as a consequence of Theorem 5.14, we obtain the analogue of Theo-
rem 4.26 for fake Galois conjugate modular character triples: pG,N,ϕqpmq «
pG,N,ϕ1q is a property that only depends on the characters ϕ and ϕ1 as well
as the automorphisms induced by G on N .

Corollary 5.16. Let pG,N,ϕq and pG,N,ϕ1q be modular character
triples. Suppose that for a positive integer m coprime to |N |,

pG,N,ϕqpmq « pG,N,ϕ1q.

Let G1 be a group such that N Ÿ G1 and G1{CG1pNq is equal to G{CGpNq
as a subgroup of AutpNq. Then

pG1, N, ϕq
pmq « pG1, N, ϕ

1q.

Proof. This follows from combining Theorem 5.14 and Theorem 4.26.
�

5.4. Coprime action on simple groups and their direct products

In this section we study the situation where a group A acts coprimely on
the direct product of isomorphic non-abelian simple groups (as well as on
the direct product of their universal covering groups). If a group A acts on
a set Λ, then we write AΛ0 to denote the stabilizer of Λ0 Ď Λ in A, so that

AΛ0 “ ta P A | Λa0 “ Λ0u.

We begin by studying coprime actions on finite simple non-abelian groups.
Let S be a non-abelian simple group and letX be its universal covering group
(unique up to isomorphism). We identify AutpSq and AutpXq as in [Asc00,
Ex. 6, Chapt. 11].

Theorem 5.17. Let S be a simple non-abelian group. Let B act on S
faithfully with p|S|, |B|q “ 1. Then B is cyclic, NAutpSqpBq “ CAutpSqpBq
and

ZpCXpBqq “ CXpBq X ZpXq,(5.1)

where X is the universal covering group of S and B acts on X via the
canonical identification AutpSq “ AutpXq.

Proof. We identify B with the corresponding subgroup of AutpSq. We
may assume B ‰ 1, otherwise the result is trivial. According to the classi-
fication of finite simple groups the group S has to be a simple group of Lie
type and B is AutpSq-conjugate to some group of field automorphisms of S,
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see for example Section 2 of [MNS15]. In particular, B is cyclic. The struc-
ture of AutpSq is described in Theorem 2.5.12 of [GLS03]. Straightforward
computations with AutpSq prove that NAutpSqpBq “ CAutpSqpBq.

Let X be the universal covering group of S. In order to prove that
ZpCXpBqq “ CXpBq X ZpXq we may assume that B ‰ 1. By the first
paragraph of this proof S is a simple group of Lie type. Arguing as in the
beginning of Section 2 of [MNS15] we see that the Schur multiplier of S is
generic or S “ 2B2p8q and B is a cyclic group of order 3.

Let us consider first the case where S “ 2B2p8q and that B is a cyclic
group of order 3. Then X “ 22.2B2p8q and CXpBq “

2B2p2q. The group
2B2p2q is a Frobenius group of order 5 ¨ 4 and has trivial centre. It follows
that ZpXq XCXpBq is also trivial.

Hence we can assume that X “ XF , for some simply-connected simple
algebraic group X and some Steinberg endomorphism F : X Ñ X. We can
assume that B is generated by some automorphism that is induced by some
Steinberg endomorphism F0 : X Ñ X. Without loss of generality we can
assume that some power of F0 coincides with F . From Theorem 24.15 of
[MT11] we deduce that

ZpCXpBqq “ ZpXF0q “ ZpXqF0pZpXqF qF0

“ pZpXF qqF0 “ ZpXq XCXpBq.

This is exactly Equation 5.1 �

Notation 5.18. Let S be a non-abelian finite simple group. Let X be
the universal covering group of S. Let r be a positive integer. Recall from
previous sections that Xr denotes the external direct product of r copies of

X. We write rX “ Xr. Note that rX is also the internal direct product of
X1, . . . , Xr, where the group Xi is defined by

Xi “ 1ˆ ¨ ¨ ¨ ˆX ˆ ¨ ¨ ¨ ˆ 1

with an X at the i-th position, for each i P t1, . . . , ru.

Recall we identify AutpSq and AutpXq. Also AutpXq oSr acts on rX via

px1, . . . , xrq
pα1,...,αrqσ “ ppxσ´1p1qq

α1 , . . . , pxσ´1prqq
αrq,

for every xi P X, αi P AutpXq and σ P Sr. It is easy to show that this

defines an isomorphism between AutpXq o Sr and Autp rXq. Hence we can

identify AutpSq oSr and Autp rXq.

Finally, for each i “ 1, . . . , r, the natural isomorphism pri : Xi Ñ X
induces the epimorphism

pri : Autp rXqXi Ñ AutpXq given by α ÞÑ pr´1
i ˝α|Xi ˝ pri,

where ˝ denotes the usual composition of maps.

Suppose A ď Autp rXq with p|X|, |A|q “ 1. Let rΓ ď Autp rXq be such that
rΓ ď C

Autp rXq
pAq. Suppose further that rΓA acts transitively on tX1, . . . , Xru.
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5. Coprime action and Brauer characters 89

Our objective is to control the structure of the groups A and rΓA. We need
two preliminary results.

Lemma 5.19. Assume the notation in Notation 5.18. Write Bi “ pripAXiq
for each i P t1, . . . , ru.

(a) The groups Bi are cyclic.

(b) If rΓA acts transitively on tX1, . . . , Xru, then Bi and B1 are AutpXq-
conjugate and the A-orbits on the set tX1, . . . , Xru all have the same
length.

Proof. Notice that Bi acts on X with p|X|, |Bi|q “ 1. By Theorem
5.17, we have that Bi is cyclic. This proves part (a).

Now, since rΓA acts transitively on tX1, . . . , Xru, there is some αi P rΓA
such that Xαi

1 “ Xi. It is easy to check that Bi “ prpAXiq “ prppAX1q
αiq “

Bβi
1 , where βi P AutpXq is given by βi ˝ pri “ pr1 ˝α

´1
i |Xi .

Furthermore rΓ permutes transitively theA-orbits on tX1, . . . , Xru. Hence
these A-orbits all have the same length. This concludes the proof of part
(b). �

According to the classification of finite simple groups Schreier’s con-
jecture holds, i.e., the outer automorphisms group OutpSq of every simple
non-abelian group S is solvable. In particular, if X is the universal covering
group of the non-abelian simple group S and π is the set of primes dividing
|X|, then AutpXq is π-separable, and hence there are Hall π1-subgroups in
AutpXq.

Using this fact one can determine a convenient group containing A.

Proposition 5.20. Assume the notation in Notation 5.18. Write Bi “
pripAXiq for each i P t1, . . . , ru. Suppose that rΓA acts transitively on
tX1, . . . , Xru. Let π be the set of prime divisors of |X|. Let H be a Hall π1-
subgroup of AutpXq. Then A is AutpXqr-conjugate to a subgroup of H oSr.
Also, Bi “ B1 for all i “ 1, . . . , r.

Proof. By the discussion preceding the statement of this proposition
AutpXq is π-separable. Hence AutpXqrA is also π-separable. Let K “

AutpXqrAXSr. Notice that K is a π1-subgroup of Sr. Moreover, Hr ¸Sr

is a Hall π1-subgroup of AutpXqrA. Since A is a π1-subgroup of AutpXqrA,
there exist a P A and α P AutpXqr, such that

Aaα “ Aα ď Hr ¸K ď H oSr.

For the latter part we may assume A ď H o Sr. Now, B1, Bi ď H are
AutpXq-conjugate by Lemma 5.19(b). In particular |Bi| “ |B1|. Since H is
cyclic, by Theorem 5.17, this implies Bi “ B1. �

The next two propositions describe the structure of A and rΓA in the
case where A acts transitively on tX1, . . . , Xru.
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Proposition 5.21. Assume the notation in Notation 5.18. Suppose that
A ď H oSr. Write B “ prpAX1q. Then A is Hr-conjugate to a subgroup of
B oSr.

Proof. It is enough to prove the statement in the case where A acts
transitively on tX1, ¨ ¨ ¨ , Xru by working on A-orbits.

If A ď H o Sr acts transitively on tX1, . . . , Xru, then for every i P
t1, . . . , ru, there exist ai P A such that

Xai
1 “ Xi,

and hi P H such that for every x P X

px, 1, . . . , 1qai “ p1, . . . , xhi , . . . , 1q P Xi.

Let h “ p1H , h
´1
2 , . . . , h´1

r q P H
r. We claim that Ah ď B oSr. First notice

that pr1ppA
hqX1q “ pr1ppA

h
X1
qq “ B. Now, write pai “ h´1aih P A

h ď H oSr

for each i P t1, . . . , ru. Then

px, 1, . . . , 1qpai “ p1, . . . , x, . . . , 1q P Xi

for every x P X.

Let y P Ah. Then y “ py1, . . . , yrqρ P H oSr. Let i P t1, . . . , ru. Write
j “ ρ´1piq, so that

Xy
i “ Xj .

Since

px, 1 . . . , 1qpaiypa
´1
j “ pxyi , 1 . . . , 1q P X1,

for every x P X, we have that paiypa
´1
j P pAhqX1 . Consequently yj P B. This

argument applies for every i P t1, . . . , ru, hence the claim follows. �

Recall the notation from the previous section: For H,K ď G, we denote
by Hm the direct product of m copies of H and we write ∆K ď Gm for

the diagonally embedded group K. We denote by q∆HK ď Gm the product
of Hm and ∆K, whenever K ď NGpHq. If we want to emphasize that
q∆HK “ Hm∆K is constructed in Gm we write q∆m

HK.

Proposition 5.22. Assume the notation in Proposition 5.20. Let B “
B1 and let Γ “ CAutpXqpBq. Suppose that A ď B o Sr and that A acts
transitively on tX1, . . . , Xru. Then

rΓA ď pq∆BΓq ¸Sr.

Proof. Let c P rΓ. Then c “ pc1, . . . , crqρ with ci P AutpXq and ρ P Sr.
Let a P AX1 . Then a “ pb1, . . . , brqσ with bi P B and σ P Sr. The equation
ac “ ca implies that

b1 “ c´1
1 bρ´1p1qc1 P B.

This holds for every a P AX1 . Hence c1 P NAutpXqpBq. By Theorem 5.17, we
have that NAutpXqpBq “ CAutpXqpBq “ Γ. Proceeding like this for elements

a P AXi , we conclude ci P Γ for every i P t1, . . . , ru. Hence rΓ ď Γ oSr.
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Now, for a P A with a “ pb1, . . . , brqσ P B o Sr and c P rΓ with c “
pc1, . . . , crqρ P Γ oSr the equation ac “ ca implies that

bicσ´1piq “ cibρ´1piq.

Hence cσ´1p1qc
´1
i P B for every i P t1, . . . , ru. Since A acts transitively on

tX1, . . . , Xru, we have that
cjc

´1
1 P B,

for every j P t1, . . . , ru. This proves that pc1, . . . , crq P B
r∆Γ “ q∆BΓ. This

proves that rΓ ď pq∆BΓq ¸Sr. �

We finally consider the case where rΓA acts transitively on tX1, . . . , Xru.

Proposition 5.23. Assume the notation in Proposition 5.20. Let B “

B1 and let Γ “ CAutpXqpBq. Suppose that A ď B oSr and that rΓA acts tran-
sitively on tX1, . . . , Xru. Let m be the length of an A-orbit in tX1, . . . , Xru.
Then for some τ P Sr we have that

Aτ ď pB oSmq
r{m and prΓAqτ ď ppq∆m

BΓq ¸Smq oS r
m
.

Proof. By Proposition 5.22 the statement holds when m “ r.

Let d “ r{m. We may assume that the A-orbits on tX1, . . . , Xru are

exactly tX1, . . . , Xmu, . . . , tXpd´1qm`1, . . . , Xdmu after conjugating rΓA by

some τ P Sr. (Notice that Aτ and rΓτ satisfy the same hypotheses as A and
rΓ.) This proves the first statement.

Let a “ pb1, . . . , brqσ P A
τ ď pB oSmq

d and c “ pc1, . . . , crqρ P rΓ
τ . Note

that σ P pSmq
d, hence we can write σ “ σ1 ¨ ¨ ¨σd where σl P Sm permutes

the set tpl ´ 1qm` 1, . . . , lmu. The equation ac “ ca implies that

bicσ´1piq “ cibρ´1piq and σρ “ σ.

Notice that σρ “ σ implies that for every l P t1, . . . , du, we have that σρl “ σk
for a unique k P t1, . . . , du. Proceeding as in the first paragraph of the proof
of Proposition 5.22 we can prove that ci P Γ. Also, arguing as in the second
paragraph of the proof of Proposition 5.22 we see that

cσ´1piqc
´1
i P B

for every i P t1, . . . , ru. We can proceed like this for every a P A. Since A is
transitive on each tpl ´ 1qm` 1, . . . , lmu we conclude that

cjc
´1
l P B

for every j P tpl ´ 1qm ` 1, . . . , lmu and for every l P t1, . . . , du. Hence

pc1, . . . , crq P pB
m∆Γqd “ pq∆m

BΓqd.
Finally, since σρ “ σ for every σ coming from an element a P A, we

conclude that ρ permutes the set ttpl ´ 1qm ` 1, . . . , lmu | l “ 1, . . . , du
and also permutes the elements of the set tpl ´ 1qm ` 1, . . . , lmu for each
l “ 1, . . . , d. Hence ρ P Sm o Sd. We conclude that c “ pc1, . . . , crqρ P

ppq∆m
BΓq ¸Smq oSd. �
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5.5. The inductive Brauer-Glauberman condition

We begin this section by defining the inductive Brauer-Glauberman condi-
tion (see Definition 5.24 below). After that, we study consequences of the
validity of the inductive Brauer-Glauberman condition for a simple non-
abelian group S. The main result of this section is Theorem 5.27.

Definition 5.24. Let S be a non-abelian simple group and let X be
the universal covering group of S. We say that S satisfies the inductive
Brauer-Glauberman condition for the prime p if for every B ď AutpXq
with p|X|, |B|q “ 1 the following conditions are satisfied:

(i) For Z “ ZpXq, Γ “ CAutpXqpBq, C0 “ CXpBq and C “ C0Z, there
exists a Γ-equivariant bijection

ΩB : IBrBpXq Ñ IBrBpCq,

such that for every θ P IBrBpXq

pX ¸ Γθ, X, θq ąBr,c pC ¸ Γθ, C,ΩBpθqq.

(ii) For every positive integer m with p|X|,mq “ 1, there exists a fake
m-th Galois action on IBrpC0q with respect to C0 ¸ Γ.

We can simplify a bit the verification of Definition 5.24 for all non-abelian
simple groups. First we only need to consider B up to AutpXq-conjugation.
Moreover condition (ii) is true for every B if (ii) is true for B “ 1. Part of
these simplifications is possible thanks to the fact that fake Galois actions
do exist in p-solvable groups.

Remark 5.25. Let S be a non-abelian simple group and X the universal
covering group of S.

(a) The group S satisfies the inductive Brauer-Glauberman condition,
if conditions (i) and (ii) in Definition 5.24 hold for some complete
set of representatives of classes of AutpXq-conjugate subgroups B
of AutpXq with p|X|, |B|q “ 1.

(b) Let B ď AutpXq with p|X|, |B|q “ 1 and |B| ‰ 1 and assume that
CXpBq is quasi-simple. Then condition (ii) in Definition 5.24 holds
for X and B, if for every integer m with p|X|,mq “ 1 there exists a
fake m-th Galois action on IBrpX1q with respect to X1 ¸AutpX1q,
where X1 is the universal covering group of the unique non-abelian
composition factor of CXpBq.

(c) Let B ď AutpXq with p|X|, |B|q “ 1 and |B| ‰ 1 and assume that
CXpBq is not quasi-simple. Then condition (ii) in Definition 5.24
holds for X and B.

Proof. For the proof of (a) we suppose that (i) and (ii) from Definition
5.24 are satisfied for the universal covering group X of some simple non-
abelian group and for some B ď AutpXq with p|X|, |B|q “ 1. Assume the
notation Definition 5.24(i) with respect to B. Let α P AutpXq. Define
ΩBαpχ

αq “ ΩBpχq
α for every χ P IBrBpXq. Then ΩBα is a Γα-equivariant
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bijection from IBrBαpXq onto IBrBαpC
αq. By Lemma 4.22 we have that

condition (i) in Definition 5.24 is satisfied for ΩBα . Let m be an integer
with p|X|,mq “ 1. Let fm : IBrpC0q Ñ IBrpC0q give the fake m-th Galois
action on IBrpC0q with respect to C0 ¸ Γ, as in Definition 4.37. Define
f 1mpϕ

αq “ fmpϕq
α for every ϕ P IBrpC0q. It is easy to prove an analogue of

Lemma 4.22 for m-th Galois conjugate modular character triples via Lemma
4.35. This implies that f 1m gives a fake m-th Galois action on IBrpCα0 q with
respect to Cα0 ¸ Γα.

Now we prove parts (b) and (c). Let X be the universal covering group
of some non-abelian simple group S. Let B ď AutpXq with p|B|, |X|q “ 1.
If B ‰ 1, then the group S is a simple group of Lie type and B is AutpXq-
conjugate to some subgroup of the field automorphisms of X, see for example
Section 2 of [MNS15]. By part (a) we may assume that B consists of field
automorphisms. By Theorem 2.2.7 of [GLS03], the group CXpBq is either
quasi-simple, solvable or CXpBq P tB2p2q,G2p2q,

2 F4p2q,
2 G2p3qu.

Suppose that CXpBq is not quasi-simple. Write C0 “ CXpBq. If C0 P

tB2p2q,G2p2q,
2 F4p2q,

2 G2p3qu, then OutpC0q is cyclic and ZpC0q is trivial.
Hence, it is easy to show that the identity yields a fake m-th Galois action
on IBrpC0q with respect to C0 ¸AutpC0q, for every positive integer m with
p|X|,mq “ 1. If C0 is a solvable group, then Theorem 4.39 guarantees that
for every m with p|X|,mq “ 1, there exists a fake m-th Galois action on
IBrpC0q with respect to any G in which C0 is normal. This proves part (c).

In all other cases CXpBq is quasi-simple and there exists some non-
abelian simple group S1 such that CXpBq is a central quotient of the univer-
sal covering group X1 of S1. By assumption for every m with p|X1|,mq “ 1,
there exists a fake m-th Galois action on IBrpX1q with respect to X1 ¸

AutpX1q. Since CAutpXqpBq ď AutpX1q this gives the required fake m-th
Galois action on IBrpCXpBqq according to an analogue of Lemma 4.23 for
fake Galois conjugate modular character triples. We use that if m is such
that p|CXpBq|,mq “ 1, then also p|X1|,mq “ 1 by [Asc00, 33.12]. This
proves (b). �

Notation 5.26. Let S be a non-abelian simple group andX its universal
covering. We write Z “ ZpXq. If B ď AutpXq, then we write C0 “ CXpBq,
C “ C0Z and Γ “ CAutpXqpBq. Recall Notation 5.13, and for a positive

integer r, write rX “ Xr, rZ “ Zr, rC “ Cr. Let ∆: X Ñ rX be the map

defined as in Notation 5.9. We also write qC “ q∆ZC0. For each i P t1, . . . , ru
let Xi and pri be defined as in Notation 5.18.

Our aim in this section is to prove the following result and study some
consequences of it.

Theorem 5.27. Let S be a non-abelian simple group satisfying the induc-
tive Brauer-Glauberman condition for the prime p. Let X be the universal

covering group of S, r a positive integer and A ď Autp rXq with p|A|, |X|q “ 1.
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Write rΓ “ C
Autp rXq

pAq. Suppose that rΓA acts transitively on the factors

tX1, . . . , Xru of rX. Then there exists a rΓ-equivariant bijection

rΩ
rX,A

: IBrAp rXq Ñ IBrApC
rX
pAq rZq,

such that for every χ P IBrAp rXq and χ1 “ rΩ
rX,A
pχq

p rX ¸ rΓχ, rX,χq ąBr,c pC
rX
pAq rZ ¸ rΓχ,C

rX
pAq rZ, χ1q.(5.2)

Remark 5.28. The above result illustrates why we need to require the
existence of fake Galois actions in Definition 5.24. Let X be the univer-
sal covering group of a simple non-abelian group S. Let r be a positive

integer. Let A ď Sr act on rX by transitively permuting tX1, . . . , Xru.

Then C
rX
pAq “ ∆X ď rX. Let χ “ ϕ ˆ ¨ ¨ ¨ ˆ ϕ P IBrAp rXq. In par-

ticular Theorem 5.27 requires the existence of χ1 P IBrp∆Xq such that

p rX, rX,χq ąBr,c p∆X,∆X,χ
1q. If we write χ1 “ ∆ϕ1 for ϕ1 P IBrpXq, then

ϕ1 must lie above λm, where λ P IBrpϕZpXqq. If one analyzes a little more
this example (namely the factor sets condition in this example), then it is
easy to see that ϕ1 needs to be a fake r-th Galois conjugate of ϕ.

We continue identifying Autp rXq “ AutpXq oSr as in Notation 5.18. For

A ď Autp rXq, write B “ pr1pAX1q ď AutpXq.

We prove Theorem 5.27 in a series of steps. We first prove a particular
case and after that we use this particular case to prove the general statement.

Now, we concentrate on proving Theorem 5.27 in the case where A acts
transitively on tX1, . . . , Xru and A ď B oSr. Among other things, we want
to define a bijection

rΩ
rX,A

: IBrAp rXq Ñ IBrApC
rX
pAq rZq

such that corresponding characters give centrally isomorphic character triples.

We first determine the group C
rX
pAq rZ and some character sets with which

we will work.
Recall Notation 5.26. If B ď AutpXq, then C0 “ CAutpXqpBq, C “ C0Z

and qC “ ∆ZC0.

Lemma 5.29. If A acts transitively on tX1, . . . , Xru and A ď B o Sr,
then

(a) C
rX
pAq “ ∆C0 “ C

rX
pB oSrq. In particular, C

rX
pAq rZ “ qC,

(b) IBrAp rXq “ tθ ˆ ¨ ¨ ¨ ˆ θ | θ P IBrBpXqu,

(c) IBrAp rZq “ tν ˆ ¨ ¨ ¨ ˆ ν | ν P IBrBpZqu,
(d) IBrBpCq “ tϕ ¨ ν | ϕ P IBrpC0q and ν P IBrBpZqu,

(e) IBrAp rCq “ tpϕ ˆ ¨ ¨ ¨ ˆ ϕq ¨ pν ˆ ¨ ¨ ¨ ˆ νq | ϕ P IBrpC0q and ν P
IBrBpZqu,

(f) IBrAp qCq “ tp∆ϕq ¨ µ | ϕ P IBrpC0q and µ P IBrAp rZqu.
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5. Coprime action and Brauer characters 95

Proof. The equalities C
rX
pAq “ ∆C0 “ C

rX
pB oSrq easily follow from

Lemma 2.2 of [IN96]. Then qC “ q∆ZC0 “ C
rX
pAq rZ, as wanted. The rest

easily follow from the definitions (use Lemma 4.27 for parts (d), (e) and
(f)). �

In the following proposition, we introduce a key bijection rfr : IBrAp rCq Ñ

IBrAp qCq that will help us to define the map rΩ
rX,A

.

Proposition 5.30. In the situation of Theorem 5.27, suppose that A

acts transitively on tX1, . . . , Xru and A ď B oSr. Let qΓ “ q∆BΓ and qY “

qC ¸ pqΓ¸Srq. Then there exists a ∆Γ-equivariant bijection

rfr : IBrAp rCq Ñ IBrAp qCq

such that for every rψ P IBrAp rCq and qψ “ rfrp rψq we have

p rC qY
rψ
, rC, rψq ąBr,c pqY

rψ
, qC, qψq.

Proof. Write Z0 “ ZpC0q, rZ0 “ Zr0 and rC0 “ Cr0 . Note that the
assumption that A acts transitively on tX1, . . . , Xru with p|X|, |A|q “ 1
implies pr, |X|q “ 1. Since S satisfies the inductive Brauer-Glauberman
condition, there exists a fake Galois r-th action on IBrpC0q with respect to
C0 ¸ Γ. Let fr give a fake r-th Galois action as in Definition 4.37.

Let rψ P IBrAp rCq. Recall rC “ rC0
rZ is the central product of rC0 and rZ.

By Theorem 5.17, rC0 X rZ “ rZ0. By Lemma 5.29(f), we have that rψ “ rϕ ¨ rν

for some rϕ “ ϕˆ ¨ ¨ ¨ ˆ ϕ P IBrAp rC0q and rν “ ν ˆ ¨ ¨ ¨ ˆ ν P IBrAp rZq where
ϕ and ν lie over the same λ P IBrpZ0q. We define

rfrp rψq “ ∆pfrpϕqq ¨ rν.

By Lemma 5.29, we have that rfr is a bijection. Note that rfr is ∆Γ-

equivariant as fr is Γ-equivariant. In particular, for qψ “ rfrp rψq we have

that qY
rψ
“ qY

qψ
.

Let ϕ1 “ frpϕq and write Y0 “ C0 ¸ Γϕ. Since fr yields a fake r-th
Galois action on IBrpC0q with respect to Y0, we have that

pY0, C0, ϕq
prq « pY0, C0, ϕ

1q.(5.3)

Let qC0 “ q∆Z0C0. Write rλ “ λ ˆ ¨ ¨ ¨ ˆ λ P IBrp rZ0q, where IBrpϕZ0q “

tλu “ IBrpνZ0q, and qϕ “ ∆ϕ1 ¨ rλ P IBrp qC0q. Write also qY0 “ q∆Z0BY0. Since
Z0B ď CY0pC0q, by Corollary 5.15 we have that Equation (5.3) yields

p rC0pqY0 ¸Srq, rC0, rϕq ąBr,c pqY0 ¸Sr, qC0, qϕq.(5.4)

We have that qC “ rZ qC0. Then Equation (5.4) together with Lemma 4.28
imply

p rC qY
rψ
, rC, rψq ąBr,c pqYψ̌,

qC, qψq. �
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Proposition 5.31. If A acts transitively on tX1, . . . , Xru and A ď B o
Sr, then Theorem 5.27 holds.

Proof. Let ΩB be the map given by Definition 5.24(i). For θ P IBrBpXq,

we write θ1 “ ΩBpθq. We define a map rΩ “ rΩ
rX,A

by

rΩ: IBrAp rXq Ñ IBrBp qCq

θ ˆ ¨ ¨ ¨ ˆ θ ÞÑ rfrpθ
1 ˆ ¨ ¨ ¨ ˆ θ1q

where rfr is given by Proposition 5.30. By Lemma 5.29, this map is well-

defined. In fact, since rfr is bijective, then rΩ is also bijective (see Lemma
5.29(f)).

Recall rΓ “ C
Autp rXq

pAq. Write Υ “ q∆BΓ ¸ Sr “ ∆ΓpB o Srq. By

Proposition 5.22
rΓ ď rΓA ď Υ.

In order to prove that rΩ is rΓ-equivariant we show that rΩ is actually Υ-

equivariant. In view of the description of IBrAp rXq and IBrAp rCq given in
Lemma 5.29, it follows that B o Sr acts trivially on these sets. Hence our

bijection rΩ is B oSr-equivariant. By definition, ΩB is Γ-equivariant and by

Proposition 5.30, rfr is ∆Γ-equivariant. Hence rΩ is also ∆Γ-equivariant (so
Υ-equivariant).

It remains to prove that for every χ P IBrAp rXq we have that

p rX ¸ rΓχ, rX,χq ąBr,c p rC ¸ rΓχ, rC, rΩpχqq.

Let χ P IBrAp rXq and θ P IBrBpXq with χ “ θ ˆ ¨ ¨ ¨ ˆ θ. By Definition
5.24(i), we have that θ and θ1 “ ΩBpθq satisfy

pX ¸ Γθ, X, θq ąBr,c pC ¸ Γθ, C, θ
1q.

Let rψ “ θ1 ˆ ¨ ¨ ¨ ˆ θ1 P IBrp rCq. The equation above together with Corollary
4.25 imply that

p rX ¸ pΓθ oSrq, rX,χq ąBr,c p rC ¸ pΓθ oSrq, rC, rψq.

Using Υ ď Γ oSr and Υχ ď Γθ oSr we deduce that

p rX ¸Υχ, rX,χq ąBr,c p rC ¸Υχ, rC, rψq.(5.5)

Let qY “ qC ¸ Υ and qψ “ rfrp rψq. Then qψ “ rΩpχq. By Proposition 5.30 we
know that

p rC qY
rψ
, rC, rψq ąBr,c pqY

rψ
, qC, qψq.

Because of rC ¸Υχ “ rC qY
rψ

and qC ¸Υ
qψ
“ qY

qψ
, the equation above is exactly

p rC ¸Υχ, rC, rψq ąBr,c p qC ¸Υ
rψ
, qC, qψq.(5.6)
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Since ąBr,c is transitive, Equations (5.5) and (5.6) imply that

p rX ¸Υχ, rX,χq ąBr,c p qC ¸Υ
rψ
, qC, qψq.

Since rΓχ ď Υχ “ Υ
rψ

and qψ “ rΩpχq this proves the statement. �

Remark 5.32. Assume the situation described in Proposition 5.31 as
well as the notation of Theorem 5.27. The proof of Proposition 5.31 actually

shows that the conclusions of Theorem 5.27 also hold with Υ “ q∆BΓ¸Sr Ě
rΓ in place of rΓ.

Our next step is to prove Theorem 5.27 in the case where A no longer acts
transitively on tX1, . . . , Xru but the structure of A is somehow controlled,

namely A ď pB oSrq
r{m for some divisor m of r.

Proposition 5.33. Let m be the length of some A-orbit on tX1, . . . , Xru.

If rΓA acts transitively on tX1, . . . , Xru and A ď pB oSmq
r{m, then Theorem

5.27 holds.

Proof. Let Λ “ tX1, . . . , Xru and Λ1, . . . ,Λd be the A-orbits on Λ.

Notice that rΓ permutes the A-orbits transitively so that d “ r{m. The

assumption A ď pB o Smq
r
m implies that Λj “ tXpj´1qm`1, . . . , Xjmu for

every 1 ď j ď d. By Proposition 5.23 we have that

AC
Autp rXq

pAq “ ArΓ ď Υ,

where Υ “ pq∆m
BΓ ¸ Smq o Sd (because in this case we can take τ “ 1 in

Proposition 5.23).

For every j P t1, . . . , du, let

XΛj “
ź

Y PΛj

Y and ZΛj “
ź

Y PΛj

ZpY q.

Clearly A acts on XΛj with p|A|, |XΛj |q “ 1. Let Υj be the projection of
StabΥpXΛj q into AutpXΛj q. Then, it is easy to show that Υj is isomorphic

to q∆m
BΓ ¸ Sm. By Lemma 5.31 (and using Remark 5.32), there is a Υ1-

equivariant bijection

rΩΛ1,A : IBrApXΛ1q Ñ IBrAp qCΛ1q,

where qCΛj “ CXΛj
pAqZΛ1 . Furthermore for every χ1 P IBrApXΛ1q and

qχ1 “ rΩΛ1,Apχ1q we have

pXΛ1 ¸ pΥ1qχ1 , XΛ1 , χ1q ąBr,c p qCΛ1 ¸ pΥ1qχ1 ,
qCΛ1 , qχ1q.(5.7)

For j P t2, . . . , du, we define Υj-equivariant bijections

rΩΛj ,A : IBrApXΛj q Ñ IBrAp qCΛj q
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from rΩXΛ1
,A via the permutation action of Sd on tXΛ1 , . . . , XΛdu. For every

χj P IBrApXΛj q and qχj “ rΩΛj ,Apχjq we have

pXΛj ¸ pΥjqχj , XΛj , χjq ąBr,c p qCΛj ¸ pΥjqχj ,
qCΛj , qχjq(5.8)

by a transfer of Equation (5.7) via Lemma 4.22.

Note that rX “ XΛ1 ˆ ¨ ¨ ¨ ˆ XΛd is an internal direct product and

A stabilizes each XΛj . Hence IBrAp rXq is in natural correspondence with

IBrApXΛ1qˆ ¨ ¨ ¨ˆ IBrApXΛdq. Analogously C
rX
pAq rZ “ qC “ qCΛ1ˆ¨ ¨ ¨ˆ

qCΛd

is an internal direct product, so that IBrApC
rX
pAqq “ IBrAp qCΛ1q ˆ ¨ ¨ ¨ ˆ

IBrAp qCΛdq.

Define rΩ
rX,A

: IBrAp rXq Ñ IBrp qCq by

χ1 ˆ ¨ ¨ ¨ ˆ χd ÞÑ rΩΛ1,Apχ1q ˆ ¨ ¨ ¨ ˆ rΩΛd,Apχdq.

We see that rΩ
rX,A

is a well-defined pΥ1ˆ¨ ¨ ¨ˆΥdq-equivariant bijection. By

definition rΩ
rX,A

is Sd-equivariant, where Sd is identified with the subgroup

of Υ acting on the groups XΛi by permutation. Hence rΩ
rX,A

is Υ-equivariant.

It is easy to prove that every character in IBrAp rXq is pΥ1 ˆ ¨ ¨ ¨ ˆ Υdq-
conjugate to some χ “ χ1ˆ¨ ¨ ¨ˆχd where either χi and χj are Sd-conjugate
or χi and χj are not Υ-conjugate (again Sd is identified with the subgroup
of Υ acting on the XΛj groups by permutation). In particular, the stabilizer
Υχ of χ in Υ satisfies

Υχ “ ppΥ1qχ1 ˆ ¨ ¨ ¨ pΥdqχdq ¸ pSdqχ.

The Equation (5.8) for each j P t1, . . . , du together with Corollary 4.25 imply
that the character χ satisfies

p rX ¸Υχ, rX,χq ąBr,c p qC ¸Υχ, qC,χ
1q,

where χ1 “ rΩpχq “ qχ1 ˆ ¨ ¨ ¨ ˆ qχd. Of course, since rΓ ď Υ, we deduce

p rX ¸ rΓχ, rX,χq ąBr,c p qC ¸ rΓχ, qC,χ
1q.

By Lemma 4.22 this finishes the proof. �

Proof of Theorem 5.27 . By Proposition 5.20 there exists some α P
AutpXqr such that Aα ď B o Sr, where B is the projection of AX1 on

AutpXq. Let m be the length of an A-orbit on tX1, . . . , Xru. Since rΓ acts
transitively on the A-orbits, d “ r{m is the number of A-orbits. Let τ P Sd

be as given in Proposition 5.22. Then Aατ ď pB o Smq
d. Let rΩ

rX,Aατ
be

the rΓατ -equivariant bijection given by Proposition 5.33. Define rΩ
rX,A

by

χ ÞÑ rΩ
rX,Aατ

pχατ q for every χ P IBrAp rXq. It is easy to check that rΩ
rX,A

is

a rΓ-equivariant bijection. Use Lemma 4.22 to check the central character

triple isomorphism condition with respect to rΩ
rX,A

. �
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The importance of Theorem 5.27 for us is illustrated in the following
two results, which are consequences of it.

Theorem 5.34. Suppose that A acts coprimely on a finite group G. Let
K Ÿ G be an A-invariant perfect subgroup. Suppose that G “ KCGpAq.
Write C “ CGpAq and M “ K X C. Suppose further that A acts trivially
on N “ ZpGq ď K, K{N “ S1 ˆ ¨ ¨ ¨ ˆ Sr – Sr, where S is a non-abelian
simple group, and CA permutes transitively tS1, . . . , Sru. If S satisfies the
inductive Brauer-Glauberman condition, then there exists a C-equivariant
bijection

Ω1 : IBrApKq Ñ IBrpMq,

such that

pGχ,K, χq ąBr,c pCχ,M, χ1q

for every χ P IBrApKq and χ1 “ Ω1pχq.

Proof. Since G “ KCGpAq, then CApKq “ CApGq and we may as-

sume that A acts faithfully on K, i.e., A ď AutpKq. Let rS “ Sr. Let X be

the universal covering group of S. Then, rX “ Xr is the universal covering

group of rS. Write rZ “ Zp rXq. Since K is a covering of rS, there exists an

epimorphism ε : rX Ñ K with L “ kerpεq ď rZ. In fact, rX is the universal
covering of K.

The map ε induces an isomorphism Autp rXqL Ñ AutpKq. Hence, the
groups A and C “ CCGpKq{CGpKq can be seen as groups of automorphisms

of rX. In fact, under this identification, the group AC ď AC
Autp rXq

pAq acts

transitively on the factors of rX. Since p|A|, |K|q “ 1, we have p|A|, | rX|q “ 1

by [Asc00, 33.12]. Write rΓ “ C
Autp rXq

pAq and qC “ C
rX
pAq rZ. By Theorem

5.27, there exists a rΓ-equivariant bijection

rΩ “ rΩ
rX,A

: IBrAp rXq Ñ IBrAp qCq

such that

p rX ¸ rΓχ, rX,χq ąBr,c p qC ¸ rΓχ, qC, rΩpχqq

for every χ P IBrAp rXq. Since C ď rΓ, we have that rΩ is C-equivariant and

p rX ¸ Cχ, rX,χq ąBr,c p qC ¸ Cχ, qC,χ
1q(5.9)

for every χ P IBrAp rXq and χ1 “ rΩpχq. By Definition 4.19(ii), we have that

for every χ P IBrAp rXq, the characters χ and χ1 “ rΩpχq lie over the same

character λ P rZ. We deduce easily that

rΩpIBrAp rX | 1Lqq “ IBrAp qC | 1Lq.

Note that εp qCq “ εpC
rX
pAq rZq “ CKpAq “ M and IBrApMq “ IBrpMq.

Hence rΩ defines, via ε, a C-equivariant bijection

Ω1 : IBrApKq Ñ IBrpMq.
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Notice that C
rX¸C

p rXq “ rZ, εp rZ{Lq “ N “ ZpKq “ CK¸CpKq and L ď

kerpχq X kerpχ1q for every χ P IBrAp rX{Lq and χ1 “ rΩpχq P IBrAp qC{Lq. By
Lemma 4.23, Equation (5.9) implies that

pK ¸ Cχ,K, χq ąBr,c pM ¸ Cχ,M, χ1q

for every χ P IBrApKq and χ1 “ Ω1pχq. Finally, a direct application of
Theorem 4.26 yields

pGχ,K, χq ąBr,c pCχ,M, χ1q. �

Corollary 5.35. Suppose A that acts coprimely on G. Let KŸG be A-
invariant. Suppose that G “ KCGpAq. Write C “ CGpAq and M “ KXC.
Suppose further that A acts trivially on N “ ZpGq ď K, K{N “ S1 ˆ

¨ ¨ ¨ ˆ Sr – Sr, where S is a non-abelian simple group, and CA permutes
transitively tS1, . . . , Sru. If S satisfies the inductive Brauer-Glauberman
condition for the prime p, then there exists a bijection

Ω1 : IBrApKq Ñ IBrpMq,

such that

pGχ,K, χq ąBr,c pCχ,M, χ1q

for every χ P IBrApKq and χ1 “ Ω1pχq.

Proof. Let K1 “ rK,Ks. Since K{N is a direct product of simple
non-abelian groups, it follows that K1 is perfect and K “ K1N . Let N1 “

N XK1. Notice that CGpK1q “ CGpKq. Also K is the central product of
K1 and N . Write M1 “M XK1.

Let Ω11 : IBrApK1q Ñ IBrpM1q be the bijection given by Theorem 5.34.
Every χ P IBrApKq has the form χ1 ¨ µ, where χ1 P IBrApK1q, µ P IBrpNq
and both characters lie over the same Brauer character of N1. Define

Ω1 : IBrApKq Ñ IBrpMq

χ1 ¨ µ ÞÑ Ω11pχ1q ¨ µ.

It is clear that Ω1 is a C-equivariant bijection. Let χ “ χ1 ¨ µ P IBrApKq.
By Theorem 5.34 we have pGχ1 ,K1, χ1q ąBr,c pCχ1 ,M1,Ω

1
1pχ1qq. A direct

application of Lemma 4.28 implies

pGχ,K, χq ąBr,c pCχ,M,Ω1pχqq. �

5.6. A reduction theorem

We are finally ready to prove Theorem G. Since we need to use a strong
inductive argument, we first prove a relative to normal subgroups version of
Theorem G below.

Theorem 5.36. Let A act coprimely on G. Let N Ÿ G be stabilized by
A and write C “ CGpAq. Let θ P IBrApNq. Suppose that the non-abelian
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simple groups involved in G{N satisfy the inductive Brauer-Glauberman con-
dition. Then

|IBrApG|θq| “ |IBrpCN |θq|.

Proof. We proceed by induction on |G : N |.

Step 1. We may assume θ is G-invariant.
Let T “ Gθ. Then CN X T “ pCNqθ. By the Clifford correspondence for
Brauer characters (see Theorem 4.7) we have that

|IBrApG|θq| “ |IBrApT |θq| and |IBrpCN |θq| “ |IBrpCN X T |θq|.

If T ă G, then by induction hypothesis with respect to |T : N | ă |G : N |,
we have that

|IBrApT |θq| “ |IBrpCT pAqN |θq| “ |IBrpCN X T |θq|.

Step 2. We may assume that N ď ZpGAq is a p1-group.
By Theorem 8.28 of [Nav98], there exists a strong isomorphism of modular
character triples

pσ, τq : pGA,N, θq Ñ pΓ,M, ϕq

such that M ď ZpΓq is a p1-group. Whenever N ď H ď GA, we write
Hτ to denote the subgroup of Γ such that τpH{Nq “ Hτ {M . Then A –

τpAN{Nq “ pANqτ {M , so that pANqτ {M acts on Gτ {M as A acts on G{N
and pANqτ {M acts trivially on M . Therefore

pCNqτ {M “ τpCN{Nq “ CGτ {M ppANq
τ {Mq “ CGτ ppANq

τ q{M.

By Theorem 4.12(a), θ extends to AN , and hence ϕ extends to pANqτ .
Recall that ϕ is a linear character since M ď ZpΓq. Let π be the set
of primes dividing |A|. Write ϕ “ ϕπϕπ1 . Recall that ϕπ and ϕπ1 , the
π-part and π1-part of ϕ, are powers of ϕ. In particular, ϕπ extends to
pANqτ . If q R π, then by Theorem 4.12(b) we have that ϕπ extends to Q
for every Q{M P SylqpΓ{Mq. Thus ϕπ extends to Γ by Theorem 4.11. By
parts pdq and pbq of Lemma 4.17, the modular character triple pΓ,M, ϕq is
strongly isomorphic to pΓ,M, ϕπ1q and we may assume that ϕπ1 is faithful.
Write ϕ1 “ ϕπ1 . We have that |M | “ opϕ1q is a π1-number. Hence M
has a complement B in pANqτ by Schur-Zassenhaus’ theorem [Isa08, Thm.
3.5]. Thus B acts coprimely on Gτ and pCNqτ {M “ CGτ pBq{M . Since
pGA,N, θq is strongly isomorphic to pΓ,M, ϕ1q we have that

|IBrApG|θq| “ |IBrBpG
τ |ϕ1q| and |IBrpCN |θq| “ |IBrpCGτ pBq|ϕ

1q|.

Moreover, since G{N – Gτ {M , then the simple groups involved in Gτ {M
satisfy the inductive Brauer-Glauberman condition for the prime p. Hence,
the claim follows if it follows for Gτ , M , B and ϕ.

Step 3. We may assume G “ KC for every A-invariant K with N ă

K Ÿ G.
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Let N ă KŸG be A-invariant. We have that C acts on IBrApK|θq. Let B be
a complete set of representatives of C-orbits on IBrApK|θq. Let K ď H ď G
and ψ P IBrApH|θq. By Theorem 4.6, we have that H{K acts transitively on
IBrpψKq. Also A acts on IBrpψKq. Since p|A|, |H{K|q “ 1, by Glauberman’s
Lemma [Isa76, Lem. 13.8] and [Isa76, Cor. 13.9] there is some A-invariant
character in IBrpψKq and any two of them are C-conjugate. This proves
that every ψ P IBrApH|θq lies over a unique element of B. By the previous
argument for H “ G and H “ CK we have that

|IBrApG|θq| “
ÿ

ηPB
|IBrApG|ηq| and |IBrApCK|θq| “

ÿ

ηPB
|IBrApCK|ηq|.

By the inductive hypothesis |IBrApG|ηq| “ |IBrpCK|ηq| for every η P B.
Since A acts coprimely on CK{K and CCK{KpAq “ CK{K, we have that
IBrApCK|ηq “ IBrpCK|ηq by Lemma 5.3. Hence |IBrApG|θq| “ |IBrApCK|θq|.
If CK ă G, then by induction |IBrApCK|θq| “ |IBrpC|θq|, and the claim
follows.

Step 4. We may assume OppGq “ 1.
Write O “ OppGq. If O ą 1, then |G{O : NO{O| ă |G : N |. By Lemma 4.4,
O ď kerpϕq for every ϕ P IBrpGq. To prove the claim use that CG{OpAq “
CO{O by coprime action and the inductive hypothesis.

Step 5. Every chief factor K{N of GA with K ď G is a direct product
of isomorphic non-abelian simple groups and N “ ZpGq.
Let K{N be a chief factor of GA with K ď G. We may assume that G “ KC
by Step 3 and that K{N is not a p-group by Step 4. If K{N is a p1-group,
then |IBrApG|θq| “ |IBrpC|θq| by Corollary 5.8. Hence we can assume that
GA has no abelian chief factor of the form K{N with K ď G. In particular
N “ ZpGq.

Final Step. Let K{N be a chief factor of GA with K ď G. By Step 4 we
may assume G “ KC. By Step 5 we have that K{N – S1ˆ ¨ ¨ ¨ ˆSr, where
the Si are simple non-abelian groups. Notice that CA permutes transitively
the groups Si in K{N and hence they are all isomorphic. Since S “ S1 is in-
volved in G{N , then S satisfies the inductive Brauer-Glauberman condition.
Write M “ C XK. By Corollary 5.35 there is a C-equivariant bijection

Ω1 : IBrApKq Ñ IBrpMq,

such that pGη,K, ηq ąBr,c pCη,M,Ω1pηqq for every η P IBrApKq. We write
η1 “ Ω1pηq for every η P IBrApKq. Since N ď CGpKq, then Ω1 actually
yields a bijection IBrApK|θq Ñ IBrpM |θq. Let B be a set of representatives
of C-orbits on IBrApK|θq. Every element of IBrApG|θq lies over a unique
element of B as in Step 3. Since Ω1 is C-equivariant, we have that the set
tη1 | η P Bu is a complete set of representatives of C-orbits on IBrpM |θq.
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Hence

|IBrApG|θq| “
ÿ

ηPB
|IBrApG|ηq| and |IBrpC|θq| “

ÿ

ηPB
|IBrpC|η1q|.

For every η P B, we have IBrApG|ηq “ IBrpG|ηq by Lemma 5.3 and

pGη,K, ηq ąBr,c pCη,M, η1q

by Corollary 5.35. In particular, |IBrpGη|ηq| “ |IBrpCη|η
1q| for every η P B.

The result follows then by using Theorem 4.7. �

Corollary 5.37. Let A be a group that acts coprimely on a group G.
Suppose that every simple non-abelian group involved in G satisfies the in-
ductive Brauer-Glauberman condition with respect to the prime p. Then the
actions of A on the irreducible Brauer characters of G and on the p-regular
classes of G are permutation isomorphic

Proof. For every B ď A, Theorem 5.36 with N “ 1 and B playing
the role of A guarantees that |IBrBpGq| “ |IBrpCGpBqq|. The map K ÞÑ

K X CGpBq is a well-defined bijection between the set of B-invariant p-
regular classes of G and the set of p-regular conjugacy classes of CGpBq.
Hence the number of B-invariant irreducible Brauer characters of G equals
the number of B-invariant p-regular conjugacy classes of G. By Lemma
13.23 of [Isa76], this proves the statement. �

5.7. Some examples

In this final section, we try to answer some questions naturally related to
our topic. Recall that if A acts coprimely on G and p is a prime, then we
are studying if

|IBrApGq| “ |IBrpCq|,

where C “ CGpAq (with respect to p-Brauer characters). If G is p-solvable,
then we have already mentioned that K. Uno [Uno83] proved the above
equality. In fact, he established a canonical bijection

˚ : IBrApGq Ñ IBrpCGpAqq

which behaves exactly as the Glauberman correspondence. In particular, if
A is a q-group for some prime q and ϕ P IBrApGq, then

ϕC “ eϕ˚ ` q∆,

where q does not divide e, and ∆ is zero or a Brauer character of C. It
is natural to ask if the equation above holds without restrictions on the
structure of G. Unfortunately, the next example shows that the answer is
negative.

We let G be the simple group 2B2p2q of order 26 ¨ 5 ¨ 7 ¨ 13. It is well
known that G has an automorphism σ of order 3. Call A “ xσy. Then

C “ CGpAq “ C5 : C4
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is a Frobenius group of order 22 ¨5. Let us set p “ 13. The irreducible charac-
ters of G can be written as tχ1, α14, β14, α35, β35, γ35, χ64, α65, β65, γ65, χ91u,
where the subscript in each case denotes the degree of the character. Fur-
thermore, every irreducible character lifts an ordinary p-Brauer character,
except the character of degree 64. We can write

IBrpGq “ tϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8u,

where ϕ1 “ pχ1q
0, ϕ2 “ pα14q

0, ϕ3 “ pβ14q
0, ϕ4 “ pα35q

0 “ pβ35q
0 “ pγ35q

0,
ϕ5 “ pα65q

0, ϕ6 “ pβ65q
0, ϕ7 “ pγ65q

0, ϕ8 “ pχ91q
0. Also

pχ64q
0 “ ϕ1 ` ϕ2 ` ϕ3 ` ϕ4.

We have checked that

IBrApGq “ tϕ1, ϕ2, ϕ3, ϕ4, ϕ8u.

The centralizer C is a p1-group, and IrrpCq “ t1, λ, ε, ε̄, δu, where ε is a
linear character of order 4, λ “ ε2 and δp1q “ 4. We have computed the
restrictions of the A-invariant Brauer characters to C.

pϕ1qC “ 1C0

pϕ2qC “ 2ε` 3δ

pϕ3qC “ 2ε̄` 3δ

pϕ4qC “ 2 ¨ 1C0 ` 3λ` ε` ε̄` 7δ

pϕ8qC “ 3 ¨ 1C0 ` 4λ` 6ε` 6ε̄` 18δ .

Hence, we see that all the restrictions have a unique irreducible constituent
with multiplicity not divisible by 3, except for ϕ4 whose restriction has 4
irreducible constituents with multiplicity not divisible by 3. This fact is not
surprising in this case where C is a p1-group, since every ϕ P IBrApGq differ-
ent from ϕ4 lifts to a unique χ P IrrpGq, that is, therefore, A-invariant. Hence
ϕC “ χC has the desired decomposition by Glauberman’s correspondence.
Also, we see that ϕ4 does not lift to an A-invariant ordinary irreducible
character. This raises a natural question on the Glauberman-Isaacs corre-
spondence: if χ P IrrApGq lifts ϕ P IBrpGq, is it true that the Glauberman-
Isaacs correspondent χ˚ P IrrpCGpAqq lifts an irreducible Brauer character
of CGpAq? This is the case for p-solvable groups, as shown in [SG94].

We come back to our example. If we were asked to establish a natural
bijection between IBrApGq and IBrpCq, we would give

ϕ1 ÞÑ 1C0

ϕ2 ÞÑ ε

ϕ3 ÞÑ ε̄

ϕ4 ÞÑ δ

ϕ8 ÞÑ λ .
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As a curiosity, we remark that the fields of values between character corre-
spondents under this bijection are the same.

Qpϕ2q “ Qpiq “ Qpεq
Qpϕ3q “ Qpiq “ Qpεq
Qpϕ4q “ Q “ Qpδq
Qpϕ8q “ Q “ Qpλq .

It is not totally reasonable to expect that something like this is going to
happen in general, since as we know by now GalpQ|G|{Qq does not act on
IBrpGq. (Moreover, for every ϕ P IBrApGq, we see that there exists some
g P C0 such that opgq “ fϕ. In the ordinary case, since the Glauberman-
Isaacs correspondence preserves fields of values, Feit’s conjecture implies
that if χ P IrrApGq, then there exists some c P CGpAq such that opcq “ fχ.)

We come back for a moment to ordinary character theory. Let q be a
prime. It is well-known that the proof of the McKay conjecture in the q-
solvable case heavily depends on the Glauberman correspondence. In fact,
in groups with a normal q-complement, the McKay conjecture is essentially
the Glauberman count. Namely, if G “ K ¸ Q, where Q P SylqpGq, then
N “ NGpQq “ CKpQq ˆQ, by elementary group theory. Therefore

|Irrq1pNq| “ |IrrpCKpQqq||Q{Q
1|.

Also, every χ P Irrq1pGq restricts to θ “ χK P IrrQpKq (by Theorem 1.10).

Conversely, every θ P IrrKpQq extends canonically to θ̂ P Irrq1pGq (by Theo-
rem 1.13). Hence, by Gallagher’s theory (see Theorem 1.12, we have that

Irrq1pGq “ tβθ̂ | for θ P IrrQpKq and β P IrrpQ{Q1qu,

where we identify the characters of Q{Q1 with the characters of G{KQ1) it
follows that

|Irrq1pGq| “ |Q : Q1||IrrKpQq|.

Therefore, the McKay conjecture in this case reduces to the Glauberman
count |IrrQpKq| “ |IrrpCKpQqq|.

Now, we slightly change the notation that we have used throughout this
chapter. Recall that we have been studying whether or not the equality

|IBrQpKq| “ |IBrpCKpQqq|

holds whenever a group Q acts coprimely on K (with respect to p-Brauer
characters, where p is any prime). Suppose that Q is a q-group and let
G “ K ¸Q. In view of the previous discussion it makes sense to ask if

|IBrq1pGq| “ |IBrq1pNGpQqq|.

(Notice that this is a version of McKay for (p)-Brauer characters in the
simplest case in which the group has a normal q-complement.) The answer
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is negative, as pointed out to us by P. H. Tiep. If K “ SL3p32q, q “ 5,
Q “ C5, G “ K ¸Q and p “ 31, then

|IBrq1pGq| ‰ |IBrq1pNGpQqq|.

Since Q is cyclic, in this case, we do have that |IBrQpKq| “ |IBrpCKpQqq|.
The problem is that degrees of irreducible Brauer characters do not divide
the order of the group. In some sense, this example explains why the McKay
and the coprime counting conjectures, need separate reductions. Although
closely related, there does not seem a simultaneous generalization of both
of them.
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Bibliography

[AC86] G. Amit, D. Chillag. On a question of Feit concerning character values of finite
solvable groups. Pacific J. Math. 122 (1986), 257–261.

[Asc00] M. Aschbacher. Finite group theory, Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, second edition, 2000.
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