Sylow Permutability in Infinite Soluble Groups

Derek J.S. Robinson

University of Illinois at Urbana-Champaign

Derek J.S. Robinson (University of Illinois at Sylow Permutability in Infinite Soluble Groups

(i) A subgroup H of a group G is *permutable* if HK = KH for all subgroups K of G. In symbols H per G.

(ii) A subgroup H of a group G is Sylow-permutable, or S-permutable, if HP = PH for all Sylow subgroups P of G. Write

H S-per G.

The following result is fundamental.

Theorem 1. (O. Kegel) Let H be an S-permutable subgroup of a finite group G. Then H is subnormal in G.

Proof. By induction on the group order, we can assume H is a maximal proper S-permutable subgroup and prove that $H \triangleleft G$. Assume this is false; then $H \neq H^P$ for some Sylow *p*-subgroup *P*. Now H^P is S-permutable in *G*, so $H^P = G$ by maximality of *H*. Hence $G = \langle H, P \rangle = HP$, so that |G:H| is a power of *p*.

Next let $q \neq p$ be a prime and Q a Sylow q-subgroup of G; then $G_0 = HQ = QH$ and $|G_0 : H|$ is a power of q.

But $|G_0 : H|$ divides |G : H|, which is a power of p; hence $Q \le H$ and all p'-elements of G belong to H. Therefore H is subnormal in G. But $H^P = G$, so H = G.

Permutability in infinite groups.

Theorem 2. (S. Stonehewer) If H per G, then H is ascendant in G. If G is finitely generated, then H is subnormal.

Open question. If $H \ge -per G$ where G is a locally finite group, is H serial in G?

Definitions

(i) A group G is a PT-group if H per K and K per G imply that H per G.

(ii) A group G is a *PST-group* if H S-per K and K S-per G imply that H S-per G.

Also recall:

(iii) A group G is a T-group if $H \triangleleft K$ and $K \triangleleft G$ imply that $H \triangleleft G$.

Note the following consequences of Kegel's theorem.

Transitivity

Corollary 1. Let G be a finite group. Then:

(i) G is a PT-group if and only if every subnormal subgroup of G is permutable in G.

(ii) G is a PST-group if and only if every subnormal subgroup of G is S-permutable in

Hence

$T \Rightarrow PT \Rightarrow PST.$

Recently there has been lots of interest in T-groups, PT-groups and PST-groups, especially in the finite soluble

case.

Theorem 3. (Gaschütz). A finite group G is a soluble T-group if and only if it has an abelian Hall subgroup A of odd order such that G/A is a Dedekind group and elements of G induce power automorphisms in A.

Theorem 4. (Zacher). A finite group G is a soluble PT-group if and only if it has an abelian Hall subgroup A of odd order such that G/A is a nilpotent modular group and elements of G induce power automorphisms in A.

Theorem 5. (Agrawal). A finite group G is a soluble PST-group if and only if it has an abelian Hall subgroup A of odd order such that G/A is nilpotent and elements of G induce power automorphisms in A.

Notice that in all three theorems A = [A, G], so that

$$\mathsf{A}=\gamma_{\infty}(\mathsf{G})$$

is the limit of the lower central series of G.

Many other characterizations are known of T-groups, PT-groups and PST-groups.

Recall the theorem of Mal'cev that if H is a subgroup of a polycyclic group G, then H is closed in the profinite topology, i.e.,

$$H=\bigcap_{|G/N|<\infty}HN.$$

The finite quotients of a polycyclic group can pass on information about the permutability of subgroups.

Examples.

(i) If every finite quotient of a polycylic group G is a T-group, then G is a T-group. (Hence G is finite or abelian).

Proof. Let *H* be subnormal in *G* and let *N* be a normal subgroup of finite index. Then HN/N is subnormal in G/N, so $HN/N \triangleleft G/N$ and $HN \triangleleft G$. But $H = \bigcap_N HN$, so $H \triangleleft G$. Hence *G* is a T-group.

Examples

(ii) If every finite quotient of a polycylic group G is a PT-group, then G is a PT-group. (Hence G is finite or nilpotent modular).

Proof. Here we need the result of Lennox and Wilson that for any subgroups H and K of a polycyclic group G,

$$HK = \bigcap_{|G/N| < \infty} (HKN).$$

Let *H* be a subnormal subgroup of *G*. Let *N* be a normal subgroup of finite index in *G* and let *K* be any subgroup. Since G/N is a PT-group, HKN = KHN. Hence $\bigcap_N (HKN) = \bigcap_N (KHN)$ and HK = KH. Is there an analogue of (i) and (ii) for PST-groups? What can be said of a polycyclic group G if every finite quotient is a PST-group?

Comments

1. The answer cannot be just that G is a PST-group, for this says nothing if G is torsion-free.

2. Let G be an infinite dihedral group. Then every finite quotient of G, but not G itself, is a PST-group.

The key to the solution is a generalization of the infinite dihedral group.

First recall that the *dihedral group on an abelian group A* is

$$\mathrm{Dih}(\mathcal{A}) = \langle t
angle
times \mathcal{A},$$

where $a^t = a^{-1}$ for $a \in \mathcal{A}$ and $t^2 = 1$.

Definition.

A group G is of infinite dihedral type if and only if the hypercentre $\overline{Z}(G)$ is a finite 2-group and $G/\overline{Z}(G) \simeq \text{Dih}(A)$ where A is a finitely generated, infinite abelian group without involutions.

There is an alternative definition which is often useful.

- **Lemma 1.** A group G is of infinite dihedral type if and only if it has a normal subgroup A such that:
- (i) A is a finitely generated, infinite abelian group containing no involutions;
- (ii) G/A is a finite 2-group and $|G : C_G(A)| = 2$; (iii) elements in $G \setminus C_G(A)$ induce inversion in A.

The key property of these groups appears next.

Lemma 2. Let G be a group of infinite dihedral type. Then G is not a PST-group, but all its finite quotients are PST-groups.

Sketch of proof. By Lemma 1 there a finitely generated, infinite abelian normal subgroup A, without involutions, such that G/A is a finite 2-group, $|G : C_G(A)| = 2$ and $t \in G \setminus C_G(A)$ induces inversion in A. We show that G is not a PST-group. Write

$$A = F \times D$$

where $F \neq 1$ is free abelian and D has finite odd order.

Groups of infinite dihedral type

Choose $a \in F \setminus F^2$; then $(ta)^2 = t^2$, so t and ta are 2-elements of equal order. Let P be a Sylow 2-subgroup containing ta and put $|P| = 2^k$. Set

$$H=\langle t,A^{2^{k+1}}\rangle,$$

noting that H is subnormal in G.

Now suppose that G is is a PST-group. Since H is subnormal in G, transitivity shows that H S-per G and HP = PH = J, say. Notice that $a \in J$ since $t \in H$ and $ta \in P$. Now

$$|J:H| = |P:H \cap P| \le |P| = 2^k.$$

On the other hand,

$$\begin{aligned} |J:H| &= |\langle t \rangle \langle a \rangle A^{2^{k+1}} P : \langle t \rangle A^{2^{k+1}}| \ge |\langle t \rangle \langle a \rangle A^{2^{k+1}} : \langle t \rangle A^{2^{k+1}}|.\\ \text{Since } \langle a \rangle \cap (\langle t \rangle A^{2^{k+1}}) &= \langle a \rangle \cap A^{2^{k+1}} = \langle a^{2^{k+1}} \rangle,\\ |J:H| \ge |\langle a \rangle : \langle a \rangle \cap \langle t \rangle A^{2^{k+1}}| = |\langle a \rangle : \langle a^{2^{k+1}} \rangle| = 2^{k+1}, \end{aligned}$$

a contradiction which shows that G is not a PST-group.

Theorem. Let G be a finitely generated soluble group. Every finite quotient of G is a PST-group if and only if G is one of the following:

- (i) a finite PST-group;
- (ii) a nilpotent group;
- (iii) a group of infinite dihedral type.

Since a group of infinite dihedral type contains involutions, there follows:

Corollary 2. A finitely generated, torsion-free soluble group whose finite quotients are PST-groups is nilpotent.

By Lemma 2 and the main theorem:

Corollary 3. If G is a finitely generated soluble group such that G and all its finite quotients are PST-groups, then G is finite or nilpotent.

The main task is to establish the theorem for polycyclic groups. Let G be a polycyclic group all of whose finite quotients are PST-groups. Argue by induction on the Hirsch number h(G) > 0.

Every finite quotient of G is a finite soluble PST-group and hence is supersoluble by Agrawal's theorem. According to a theorem of Baer, a polycyclic group whose finite quotients are supersoluble is itself supersoluble. Hence G is supersoluble and it has an infinite cyclic normal subgroup $N = \langle z \rangle$. By induction hypothesis G/N is finite or nilpotent or a group of infinite dihedral type. The three cases must be discussed separately.

Consider the case where G/N is infinite nilpotent. We can assume that $N \not\leq Z(G)$, since otherwise G is nilpotent. Set $C = C_G(N)$; then |G : C| = 2, and $G = \langle t, C \rangle$ where t inverts in N. Note that C is nilpotent.

Let *p* be an odd prime and define $\overline{G} = G/C^p$ and $\overline{C} = C/C^p$; then \overline{G} is finite and hence is a soluble PST-group.

Suppose that $\gamma_{\infty}(\bar{G}) \neq 1$ for some p > 2. Now $1 < \gamma_{\infty}(\bar{G}) \leq \bar{C}$ and \bar{C} is a *p*-group, so *p* divides $|\gamma_{\infty}(\bar{G})|$. Hence *p* does not divide $|\bar{G} : \gamma_{\infty}(\bar{G})|$ by Agrawal's theorem. Since G/N is nilpotent,

$$1 < \gamma_{\infty}(\bar{G}) \leq \bar{N} \leq \bar{C}$$

and \overline{C} is a *p*-group, so it follows that $\overline{N} = \overline{C}$ and $C = C^p N$. But C/N is finitely generated and nilpotent, so it is finite, and therefore G/N is finite, a contradiction.

It follows that $\gamma_{\infty}(\bar{G}) = 1$, i.e., \bar{G} is nilpotent for all p > 2. Since t inverts in N and p is odd, it follows that $\bar{N} = 1$. i.e. $N \leq C^{p}$. Thus

$$N\leq \bigcap_{p>2} C^p=D.$$

Since C is finitely generated and nilpotent, D is finite and hence N = 1, a final contradiction.