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Background

Let G be a group, x,y € G.
The commutator of x and y is the element

[x,y] = x"ty Ixy = x71xv.

1896

Julius Wilhelm Richard Dedekind Ferdinand Georg Frobenius
1831 - 1916 1849 - 1917
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Results proved by Dedekind in 1880

The conjugate of a commutator is again a commutator.

Therefore the commutator subgroup generated by the commutators of
a group is a normal subgroup of the group.

Any normal subgroup with abelian quotient contains the commutator

subgroup.

The commutator subgroup is trivial if and only if the group is abelian.
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Results proved by Dedekind in 1880

The conjugate of a commutator is again a commutator.

Therefore the commutator subgroup generated by the commutators of
a group is a normal subgroup of the group.

Any normal subgroup with abelian quotient contains the commutator

subgroup.
The commutator subgroup is trivial if and only if the group is abelian.

First published by G.A. Miller in 1896
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G.A. Miller, The regular substitution groups whose order is less than 48,
Quarterly Journal of Mathematics 28 (1896), 232-284.
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G.A. Miller, The regular substitution groups whose order is less than 48,
Quarterly Journal of Mathematics 28 (1896), 232-284.

Dedekind had studied normal extensions of the rational field with all
subfields normal. Some years later these investigations suggested to him
the related problem:

Characterize those groups with the property that all subgroups are
normal.

R. Dedekind, Uber Gruppen, deren simtliche Teiler Normalteiler sind,
Math. Ann. 48 (1897), 548-561.

George Abram Miller Heinrich Martin Weber
1863 - 1951 1842 -1913
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Some history

In his 1896 paper G.A. Miller call the section about commutators:

"On the operation sts—1¢t—1"
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In his 1896 paper G.A. Miller call the section about commutators:

"On the operation sts—1¢t—1"

The label commutator is used in

G.A. Miller, On the commutator groups, Bull. Amer. Math. Soc. 4
(1898), 135-139,

(where the author expands the basic properties of the commutator
subgroup and introduces the derived series of a group; he also shows that
the derived series is finite and ends with 1 if and only if the group is
solvable)

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



In his 1896 paper G.A. Miller call the section about commutators:

"On the operation sts—1¢t—1"

The label commutator is used in

G.A. Miller, On the commutator groups, Bull. Amer. Math. Soc. 4
(1898), 135-139,

(where the author expands the basic properties of the commutator
subgroup and introduces the derived series of a group; he also shows that
the derived series is finite and ends with 1 if and only if the group is
solvable)

and in

G.A. Miller, On the commutators of a given group, Bull. Amer. Math.
Soc. 6 (1899), 105-109,
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In his 1896 paper G.A. Miller call the section about commutators:

"On the operation sts—1¢t—1"

The label commutator is used in

G.A. Miller, On the commutator groups, Bull. Amer. Math. Soc. 4
(1898), 135-139,

(where the author expands the basic properties of the commutator
subgroup and introduces the derived series of a group; he also shows that
the derived series is finite and ends with 1 if and only if the group is
solvable)

and in

G.A. Miller, On the commutators of a given group, Bull. Amer. Math.
Soc. 6 (1899), 105-109,

and attributed to Dedekind.
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The first textbook to introduce commutators and the commutator
subgroup is Weber's 1899 Lehrbuch der Algebra

Heinrich Martin Weber Lehrbuch der Algebra
1842 - 1913 1895 - 1896

the last important textbook on algebra published in the nineteenth
century.
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Some history

The first explicit statement of the

Is the set of all commutators a subgroup?
i.e. Does the commutator subgroup consist entirely of commutators?

is found in Weber's 1899 textbook.

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Some history

The first explicit statement of the

Is the set of all commutators a subgroup?
i.e. Does the commutator subgroup consist entirely of commutators?

is found in Weber's 1899 textbook.
He states that

the set of commutators is not necessarily a subgroup.

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Some history

The first explicit statement of the

Question

Is the set of all commutators a subgroup?
i.e. Does the commutator subgroup consist entirely of commutators?

is found in Weber's 1899 textbook.
He states that

the set of commutators is not necessarily a subgroup.

In Miller's 1899 paper it is proved that the answer to the question is
YES in the alternating group on n letters, n > 5, and in the holomorph
of a finite cyclic group.
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The first example of a group in which the set of commutators in not
equal to the commutator subgroup appears in

W.B. Fite, On metabelian groups, Trans. Amer. Math. Soc. 3 no. 3
(1902), 331-353.

Metabelian = Nilpotent of class < 2
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The first example of a group in which the set of commutators in not
equal to the commutator subgroup appears in

W.B. Fite, On metabelian groups, Trans. Amer. Math. Soc. 3 no. 3
(1902), 331-353.

Metabelian = Nilpotent of class < 2

Fite constructs an example G of order 1024, attributed to Miller, then
provides a homomorphic image H of order 256 of G which is again an
example.
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The first example of a group in which the set of commutators in not
equal to the commutator subgroup appears in

W.B. Fite, On metabelian groups, Trans. Amer. Math. Soc. 3 no. 3
(1902), 331-353.

Metabelian = Nilpotent of class < 2

Fite constructs an example G of order 1024, attributed to Miller, then
provides a homomorphic image H of order 256 of G which is again an
example.

H is the subgroup of Si6:

H =< (1,3)(5,7)(9,11),(1,2)(3,4)(13,15),

(5,6)(7,8)(13,14)(15,16), (9, 10)(11, 12) >
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In

W. Burnside, On the arithmetical theorem connected with roots of unity
and its application to group characteristics, Proc. LMS 1 (1903), 112-116

Burnside uses characters to obtain a criterion for when an element of the
commutator subgroup is the product of two or more commutators.

William Benjamin Fite William Burnside
1869 - 1932 1852 - 1927
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The first occurence of the commutator notation probably is in

F.W. Levi, B.L. van der Waerden, Uber eine besondere Klasse von

Gruppen, Abh. Math. Seminar der Universitat Hamburg 9 (1933),
154-158,

where the commutator of two group elements 7, j is denoted by

(i,j) =i~

Friedrich Wilhelm Levi Bartel Leendert van der Waerden
1888 - 1966 1903 - 1996
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Hans Julius Zassenhaus Lehrbuch der Gruppentheorie
1912 - 1991 1937
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Hans Julius Zassenhaus Lehrbuch der Gruppentheorie
1912 - 1991 1937

Philip Hall A contribution to the theory of
1904 - 1982 groups of prime power order, 1934
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Some Francesco’ papers

[@ F. de Giovanni, D.J.S. Robinson, Groups with finitely many
derived subgroups, J. London Math. Soc. 71 (2005), 658-668.

[d F. De Mari, F. de Giovanni, Groups with finitely many derived
subgroups of non-normal subgroups, Arch. Math. (Basel) 86 (2006),
310-316.

[ M. De Falco, F. de Giovanni, C. Musella, Groups whose
non-normal subgroups have small commutator subgroup, Algebra

Discrete Math. 1 (2007), 46-58.

[1 M. De Falco, F. de Giovanni, C. Musella, Groups with
finiteness conditions on commutators, Algebra Collog. 19 (2012),

1197-1204.

[3 F. de Giovanni, M. Trombetti, Groups with minimax
commutator subgroup, International J. Group Theory 3 (2014), 9-16.
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Background

Let G be a group and put
K(G) = {lg. g, h e GY.
Then

G' =< K(G) >.
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Background

Let G be a group and put

K(G) :={lg. hllg, h € G}.

Then
G' =< K(G) >.
Is G' = K(G)?
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Background

Let G be a group and put

K(G) :={lg. hllg, h € G}.

Then
G' =< K(G) >.
Is G' = K(G)?

When is G' = K(G)?
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Background

Let G be a group and put

K(G) :={[g,hllg,h € G}.

Then
G' =< K(G) >.
Is G' = K(G)?

When is G' = K(G)?

Which is the minimal order of a counterexample?
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R.M. Guralnick, Expressing group elements as products of
commutators, PhD Thesis, UCLA, 1977.
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R.M. Guralnick, Expressing group elements as products of
commutators, PhD Thesis, UCLA, 1977.

There are exactly two nonisomorphic groups G of order 96 such that
K(G) # G'. In both cases G’ is nonabelian of order 32 and |K(G)| = 29.

e G=Hx<y> where H=<a>x<b>x<ij>a=b=
y3:1,<i7j > Q8aay:baby:abviy:j7jy:[j;

e G=Hx<y> where H=Nx <c>N=<a>x<b>a=
b*=c*=1,a=a,b° =ab,y3 =1,a" = c?b? b’ = cha,c” = ba.
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R.M. Guralnick, Expressing group elements as products of
commutators, PhD Thesis, UCLA, 1977.

There are exactly two nonisomorphic groups G of order 96 such that
K(G) # G'. In both cases G’ is nonabelian of order 32 and |K(G)| = 29.

e G=Hx<y> where H=<a>x<b>x<ij>a=b=
y3:1,<i7j > Q8aay:baby:abviy:j7jy:[j;

e G=Hx<y> where H=Nx <c>N=<a>x<b>a=
b*=c*=1,a=a,b° =ab,y3 =1,a" = c?b? b’ = cha,c” = ba.

R.M. Guralnick, Expressing group elements as commutators, Rocky
Mountain J. Math. 10 no. 3 (1980), 651-654.
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R.M. Guralnick, On groups with decomposable commutator subgroups,
Glasgow Math. J. 19 no. 2 (1978), 159-162.

R.M. Guralnick, On a result of Schur, J. Algebra 59 no. 2 (1979),
302-310.

R.M. Guralnick, On cyclic commutator subgroups, Aequationes Math.
21 no. 1 (1980), 33-38.

R.M. Guralnick, Commutators and commutator subgroups, Adv. in
Math. 45 no. 3 (1982), 319-330.
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R.M. Guralnick, On groups with decomposable commutator subgroups,
Glasgow Math. J. 19 no. 2 (1978), 159-162.

R.M. Guralnick, On a result of Schur, J. Algebra 59 no. 2 (1979),
302-310.

R.M. Guralnick, On cyclic commutator subgroups, Aequationes Math.
21 no. 1 (1980), 33-38.

R.M. Guralnick, Commutators and commutator subgroups, Adv. in
Math. 45 no. 3 (1982), 319-330.

A. Caranti, C.M. Scoppola, Central commutators, Bull. Austral. Math.
Soc. 30 no. 1 (1984), 67-71.

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



"On commutators in groups"

Groups St. Andrews 2005, Vol. 2, 531-558, London Math. Soc. Lecture
Notes Ser., 340 , Cambridge University Press, 2007,

R.F. Morse
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Background

Many authors have considered subsets of a group G related to
commutators asking if they are subgroups.
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Background

Many authors have considered subsets of a group G related to
commutators asking if they are subgroups.

For instance, W.P. Kappe proved in 1961 that the set

R2(G) = {x € G|[x,g,8] = 1,Vg € G} of all right 2-Engel elements of a
group G is always a subgroup.

W.P. Kappe, Die A-Norm einer Gruppe, /llinois J. Math. 5 no. 2
(1961), 187-197.
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Background

Many authors have considered subsets of a group G related to
commutators asking if they are subgroups.

For instance, W.P. Kappe proved in 1961 that the set

R2(G) = {x € G|[x,g,8] = 1,Vg € G} of all right 2-Engel elements of a
group G is always a subgroup.

W.P. Kappe, Die A-Norm einer Gruppe, /llinois J. Math. 5 no. 2
(1961), 187-197.

Some generalizations appear in

W.P. Kappe, Some subgroups defined by identities, /llinois J. Math. 47
no. 1-2 (2003), 317-326.
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Basic definitions
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Basic definitions

Let G be a group, g € G and ¢ € Aut(G). The autocommutator of g

and ¢ is the element

1

g, ¢] =g " &".
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Basic definitions

Let G be a group, g € G and ¢ € Aut(G). The autocommutator of g

and ¢ is the element

lg.¢] =g 'g".

We denote by
K*(G) :={lg.¢l | g € G, € Aut(G)}

the set of all autocommutators of G and,

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Basic definitions

Let G be a group, g € G and ¢ € Aut(G). The autocommutator of g

and ¢ is the element

lg.¢] =g 'g".

We denote by
K*(G) :={lg.¢l | g € G, € Aut(G)}

the set of all autocommutators of G and, following P.V. Hegarty, we write

G* = (K*(G)).
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A new problem
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A new problem

Is G* = K*(G)? Does it hold if G is abelian?
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A new problem

Is G* = K*(G)? Does it hold if G is abelian?

At "Groups in Galway 2003" Desmond MacHale brought this problem to
the attention of L-C. Kappe.
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A new problem

Question

Is G* = K*(G)? Does it hold if G is abelian?

At "Groups in Galway 2003" Desmond MacHale brought this problem to
the attention of L-C. Kappe. He added that there might be an abelian
counterexample and
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A new problem

Question

Is G* = K*(G)? Does it hold if G is abelian?

At "Groups in Galway 2003" Desmond MacHale brought this problem to
the attention of L-C. Kappe. He added that there might be an abelian
counterexample and that perhaps the two groups of order 96 given by
Guralnick as the minimal counterexamples to the conjecture G’ = K(G)
might also be counterexamples.
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Results in the finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Results in the finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Then the set of autocommutators
always forms a subgroup.
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Results in the finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Then the set of autocommutators
always forms a subgroup.

Furthermore there exists a finite nilpotent group of class 2 and of
order 64 in which the set of all autocommutators does not form a
subgroup.
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Results in the finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Then the set of autocommutators
always forms a subgroup.

Furthermore there exists a finite nilpotent group of class 2 and of
order 64 in which the set of all autocommutators does not form a
subgroup. And this example is of minimal order.
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Results in the finite abelian case

D. Garrison, L-C. Kappe, D. Yull, Autocommutators and the
Autocommutator Subgroup, Contemporary Mathematics 421 (2006),
137-146.
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Results in the finite abelian case

D. Garrison, L-C. Kappe, D. Yull, Autocommutators and the
Autocommutator Subgroup, Contemporary Mathematics 421 (2006),
137-146.

Esempio
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Results in the finite abelian case

D. Garrison, L-C. Kappe, D. Yull, Autocommutators and the
Autocommutator Subgroup, Contemporary Mathematics 421 (2006),
137-146.

Esempio

G =<a,bc,dela®=b=c>=d>=e*=1,[a,b] = [a,c] = [a,d] =
[b,c] = [b,d] = [c,d] = €2, [a,e] = [b,e] = [c,e] = [d,e] =1 >

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Results in the finite abelian case

D. Garrison, L-C. Kappe, D. Yull, Autocommutators and the
Autocommutator Subgroup, Contemporary Mathematics 421 (2006),
137-146.

Esempio

G =<a,bc,dela®=b=c>=d>=e*=1,[a,b] = [a,c] = [a,d] =
[b,c] = [b,d] = [c,d] = €2, [a,e] = [b,e] = [c,e] = [d,e] =1 >

Obviously G has order 64 and < > >= G’ C Z(G) =< e >. Hence G
has nilpotency class 2.
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Results in the finite abelian case

D. Garrison, L-C. Kappe, D. Yull, Autocommutators and the
Autocommutator Subgroup, Contemporary Mathematics 421 (2006),
137-146.

Esempio

G =<a,bc,dela®=b=c>=d>=e*=1,[a,b] = [a,c] = [a,d] =

[b,c] = [b,d] = [c,d] = €2, [a,e] = [b,e] = [c,e] = [d,e] =1 >

Obviously G has order 64 and < > >= G’ C Z(G) =< e >. Hence G
has nilpotency class 2. It is possible to show that e~! is not an
autocommutator.
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Results in the finite abelian case

D. Garrison, L-C. Kappe, D. Yull, Autocommutators and the
Autocommutator Subgroup, Contemporary Mathematics 421 (2006),
137-146.

Esempio
G =<a,bc,dela®=b=c>=d>=e*=1,[a,b] = [a,c] = [a,d] =

[b,c] = [b,d] = [c,d] = €2, [a,e] = [b,e] = [c,e] = [d,e] =1 >

Obviously G has order 64 and < > >= G’ C Z(G) =< e >. Hence G
has nilpotency class 2. It is possible to show that e~! is not an
autocommutator. We have (cd)(cde) = e~ ! but there exist
automorphims p and 7 of G such that [c, p] = cd and [a, 7] = cde.
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The abelian case
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The abelian case

Let (G, +) be an abelian group, g € G and ¢ € Aut(G). Then the
autocommutator of g and ¢ is the element

[g,¢] == —g +g*.
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The abelian case

Let (G, +) be an abelian group, g € G and ¢ € Aut(G). Then the
autocommutator of g and ¢ is the element

[g,¢] == —g +g*.

Proposition

Let G be an abelian torsion group without elements of even order. Then

K*(G)=G*=G.
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The abelian case

Let (G, +) be an abelian group, g € G and ¢ € Aut(G). Then the
autocommutator of g and ¢ is the element

[g,¢] == —g +g*.

Proposition

Let G be an abelian torsion group without elements of even order. Then

K*(G)=G*=G.

The mapping 7: g € G — 2g € G is an automorphism of G and
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The abelian case

Let (G, +) be an abelian group, g € G and ¢ € Aut(G). Then the
autocommutator of g and ¢ is the element

[g,¢] == —g +g*.

Proposition

Let G be an abelian torsion group without elements of even order. Then

K*(G)=G*=G.

The mapping 7: g € G — 2g € G is an automorphism of G and
lg.7]=-g+g" =¢. O
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The finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



The finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Write
G=B® O,

where O is of odd order, B is a 2-group.
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The finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Write
G=B® O,

where O is of odd order, B is a 2-group. Then we have:

o Ifeither B=1or B= (b)) ® (ba) ® H, with |b1| = |ba| = 2",
expH < 2", then K*(G) = G* = G.
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The finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Write
G=B® O,

where O is of odd order, B is a 2-group. Then we have:
o Ifeither B=1or B= (b)) ® (ba) ® H, with |b1| = |ba| = 2",
expH < 2", then K*(G) = G* = G.

o If B= (by) ® H, with |by| = 2", expH < 2", then
K*(G) = Gons = {x € G | 2"~1x = O}.
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The finite abelian case

Theorem (D. Garrison, L-C. Kappe and D. Yull, 2006)

Let G be a finite abelian group. Write
G=B® O,

where O is of odd order, B is a 2-group. Then we have:

o Ifeither B=1or B= (b)) ® (ba) ® H, with |b1| = |ba| = 2",
expH < 2", then K*(G) = G* = G.

o If B= (by) ® H, with |by| = 2", expH < 2", then
K*(G) = Gons = {x € G | 2"~1x = O}.

In any case, K*(G) is a subgroup of G.
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Luise-C. Kappe, P. L., Mercede Maj
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Luise-C. Kappe, P. L., Mercede Maj

On Autocommutators and the Autocommutator Subgroup

in Infinite Abelian Groups

in preparation.
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First remarks

Remark (1)
In any abelian group G the map

p_1:XEGr— —x€G

is in Aut(G), thus [—x, p_

1] = —(=x) + (—=x)?-* = 2x € K*(G), for
any x € G, hence 2G C K*(G).
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Remark (1)

In any abelian group G the map
p_1:XEGr— —x€G

is in Aut(G), thus [—x,p_1] = —(—x) + (—x)¥-* = 2x € K*(G), for
any x € G, hence 2G C K*(G).

Remark (2)

If G = 2G, i.e. G is 2-divisible,
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Remark (1)

In any abelian group G the map
p_1:XEGr— —x€G

is in Aut(G), thus [—x, p_

1] = —(=x) + (—=x)?-* = 2x € K*(G), for
any x € G, hence 2G C K*(G).

Remark (2)
If G =2G, i.e. G is?2-divisible, then the map

pr:x€G—2x€ G

is in Aut(G), thus [—x, 2] = —x + x¥* = x € K*(G) and G = K*(G)
in this case.
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The infinite abelian case
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The infinite abelian case

Let G = (a) @ (c), where (a) is infinite cyclic and |c| = 2. Then K*(G)
is not a subgroup of G.

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



The infinite abelian case

Let G = (a) @ (c), where (a) is infinite cyclic and |c| = 2. Then K*(G)
is not a subgroup of G.

Proof.

Let ¢ € Aut(G), then ¢(c) = ¢, and p(a) = va + dc, where v € {1, -1}
and ¢ € {0,1}.

Therefore we have: Aut(G) = {1, 1,92, 3},

where 1 =idg, pi(a)=—-a, ¢i(c)=c,

p2(a) =a+c, @ac)=c  p3(a=-a+c, @3(c)=c
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The infinite abelian case

Let G = (a) @ (c), where (a) is infinite cyclic and |c| = 2. Then K*(G)
is not a subgroup of G.

Proof.

Let ¢ € Aut(G), then ¢(c) = ¢, and p(a) = va + dc, where v € {1, -1}
and ¢ € {0,1}.

Therefore we have: Aut(G) = {1, 1,92, 3},

where 1 =idg, pi(a)=—-a, ¢i(c)=c,

p(a)=a+c, ¢ac)=c, v3(a) = —a+c, p3(c)=c.
We have, for any g = aa+ ¢ € G,
—g+g% =(—a)a+ (—f)c+ (—w)a+ fc = (—2a)a;
—g+ g% =(—a)a+ (—B)c+ aa+ ac+ fc = ac;
—g+ g% =(—a)a+ (—f)c+ —aa+ ac+ fc = (—2a)a+ ac.
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The infinite abelian case

Let G = (a) @ (c), where (a) is infinite cyclic and |c| = 2. Then K*(G)
is not a subgroup of G.

Proof.

Let ¢ € Aut(G), then ¢(c) = ¢, and p(a) = va + dc, where v € {1, -1}
and ¢ € {0,1}.

Therefore we have: Aut(G) = {1, 1,92, 3},

where 1 =idg, pi(a)=—-a, ¢i(c)=c,

p2(a) =a+c, @ac)=c  p3(a=-a+c, @3(c)=c
We have, for any g = aa+ ¢ € G,
—g+8% =(—a)a+(-f)c+ (—a)a+ fc = (-2a)3;
—g+ g% =(—a)a+ (—B)c+ aa+ ac+ fc = ac;
—g+ g% =(—a)a+ (—f)c+ —aa+ ac+ fc = (—2a)a+ ac.
In particular, 2a € K*(G), 2a+ c € K*(G), but 4a + ¢ # (—27v)a + ¢,
for any integer 7.

OJ
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Finitely generated infinite abelian groups
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Finitely generated infinite abelian groups

Theorem (L-C. Kappe, P.L., M. Maj)

Let G be a finitely generated infinite abelian group. Write
G=(a)® - ®(a;) ®BD O,

where a1, - -+ ,as are aperiodic, O is a finite group of odd order, B is a
finite 2-group.
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Finitely generated infinite abelian groups

Theorem (L-C. Kappe, P.L., M. Maj)

Let G be a finitely generated infinite abelian group. Write
G=(a)® - ®(a;) ®BD O,

where a1, - -+ ,as are aperiodic, O is a finite group of odd order, B is a
finite 2-group. Then we have:
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Finitely generated infinite abelian groups

Theorem (L-C. Kappe, P.L., M. Maj)

Let G be a finitely generated infinite abelian group. Write
G=(a)® - ®(a;) ®BD O,

where a1, - -+ ,as are aperiodic, O is a finite group of odd order, B is a
finite 2-group. Then we have:
(i) If s > 1, then K*(G) = G* = G.
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Finitely generated infinite abelian groups

Theorem (L-C. Kappe, P.L., M. Maj)

Let G be a finitely generated infinite abelian group. Write
G=(a)® - ®(a;) ®BD O,

where a1, - -+ ,as are aperiodic, O is a finite group of odd order, B is a
finite 2-group. Then we have:

(i) If s > 1, then K*(G) = G* = G.

(ii) If s =1 and either B=1 or B = (b)) & (b2) ® H, with

|b1| = |bo| =27, expH < 2", then K*(G) = G* =2((a1)) ®B® O is a
subgroup of G.
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Finitely generated infinite abelian groups

Theorem (L-C. Kappe, P.L., M. Maj)

Let G be a finitely generated infinite abelian group. Write
G=(a)® - ®(a;) ®BD O,

where a1, - -+ ,as are aperiodic, O is a finite group of odd order, B is a
finite 2-group. Then we have:

(i) If s > 1, then K*(G) = G* = G.

(ii) If s =1 and either B=1 or B = (b)) & (b2) ® H, with

|b1| = |bo| =27, expH < 2", then K*(G) = G* =2((a1)) ®B® O is a
subgroup of G.

(iii) If s =1 and B = (b1) ® H, with |b;| = 2", expH < 2", then
K*(G) is not a subgroup of G.
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Finitely generated abelian groups

Let G be a finitely generated abelian group. Write

G=(a)®  ®(a)®BO,

where ay,--- , as are aperiodic, O is a finite group of odd order, B is a
finite 2-group. Then we have:

(i) If s > 1, then K*(G) = G* = G.

(ii) If s =1 and either B=1 or B = (b1) & (b2) ® H, with |b| =

|ba| = 2", then K*(G) = G* = 2({a1)) ® B® O is a subgroup of G.
(iii) If s =1 and B = (b1) ® H, with |b;| = 2", expH < 2", then
K*(G) is not a subgroup of G.

(iv) If s =0 and either B=1 or B = (b1) ® (b2) ® H, with

|b1| = |b2| = 2", expH < 2", then K*(G) = G* = G. If s =0 and

B = (b)) @ H, with |by| = 2", expH < 2"~1, then

K*(G) = Gyn-1 = {x € G | 2" 1x = 0}. In any case, if s =0, K*(G) is
a subgroup of G.
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Periodic abelian groups
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Periodic abelian groups

Theorem

Let G be a periodic abelian group.

Write G = O & D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order.
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Periodic abelian groups

Theorem

Let G be a periodic abelian group.

Write G = O & D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) = 0@ D & K*(R),
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Periodic abelian groups

Theorem

Let G be a periodic abelian group.

Write G = O & D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) = 0@ D & K*(R),

where K*(R) = R if either R is of infinite exponent
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Periodic abelian groups

Theorem

Let G be a periodic abelian group.
Write G = O & D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) = 0@ D & K*(R),

where K*(R) = R if either R is of infinite exponent or R is of finite
exponent 2", and R = (a) & (b) & H, with |a| = |b| = 2",

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Periodic abelian groups

Theorem

Let G be a periodic abelian group.
Write G = O & D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) = 0@ D & K*(R),

where K*(R) = R if either R is of infinite exponent or R is of finite
exponent 2", and R = (a) ® (b) & H, with |a| = |b| = 2", and
K*(R) = Ryn—1 otherwise.
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Periodic abelian groups

Theorem

Let G be a periodic abelian group.
Write G = O & D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) = 0@ D & K*(R),

where K*(R) = R if either R is of infinite exponent or R is of finite
exponent 2", and R = (a) ® (b) & H, with |a| = |b| = 2", and
K*(R) = Ryn—1 otherwise.

In particular K*(G) is a subgroup of G.
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Periodic abelian groups

Let G be a periodic abelian group.
Write G = O % D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) 2 0@ D ® K*(R).
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Periodic abelian groups

Let G be a periodic abelian group.
Write G = O % D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) 2 0@ D ® K*(R).

For, let a€ O,b € D,c € K*(R), and let ¢ € Aut(R) such that
c = —t+ t?, for some t € R.
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Periodic abelian groups

Let G be a periodic abelian group.
Write G = O % D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) 2 0@ D ® K*(R).

For, let a€ O,b € D,c € K*(R), and let ¢ € Aut(R) such that
c = —t+t?, for some t € R. Consider the automorphism 7 of G defined
by putting x™ = 2x for any x € O ® D, r™ = r?, for any r € R.
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Periodic abelian groups

Let G be a periodic abelian group.
Write G = O % D & R, where D is a divisible 2-group, R is a reduced
2-group and every element of O has odd order. Then

K*(G) 2 0@ D ® K*(R).

For, let a€ O,b € D,c € K*(R), and let ¢ € Aut(R) such that

c = —t+t?, for some t € R. Consider the automorphism 7 of G defined
by putting x™ = 2x for any x € O ® D, r™ = r?, for any r € R.

Then [a+ b+ t,7]=—a—b—t+(a+b+t)"=a+b+c.
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent.
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

K*(R) = R.
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

K*(R) = R.

Proof - Sketch.
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

K*(R) = R.

Proof - Sketch.

Let g € R, and write |g| = 2".
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

K*(R) = R.

Proof - Sketch.

Let g € R, and write |g| = 2".Then there exists ¢ € R such that
lc| =21 and R =< ¢ > @ H, for some subgroup H of R.
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

Proof - Sketch.

Let g € R, and write |g| = 2".Then there exists ¢ € R such that
|c| =2t and R =< ¢ > @ H, for some subgroup H of R. It is possible
to show that R =< c+ g > & H.

X
o,
2

I

2
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Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

X
o,
2

I

2

Proof - Sketch.

Let g € R, and write |g| = 2".Then there exists ¢ € R such that

|c| =2t and R =< ¢ > @ H, for some subgroup H of R. It is possible
to show that R =< ¢ + g > @ H. Therefore there exixts an
automorphism ¢ of R such that ¢c¥ = c+ g,y¥ =y forany y € H.

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Periodic abelian groups

Let R be a reduced abelian 2-group of infinite exponent. Then

X
o,
2

I

2

Proof - Sketch.

Let g € R, and write |g| = 2".Then there exists ¢ € R such that

|c| =2t and R =< ¢ > @ H, for some subgroup H of R. It is possible
to show that R =< ¢ + g > @ H. Therefore there exixts an
automorphism ¢ of R such that ¢c¥ = c+ g,y¥ =y forany y € H.
Then [c,¢] = —c+ ¢c¥ = g, and g € K*(R), as required.
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Mixed abelian groups

Generalizing the previous example it is easy to construct examples of
mixed abelian groups G in which K*(G) is not a subgroup. In fact, we
have:
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Mixed abelian groups

Generalizing the previous example it is easy to construct examples of
mixed abelian groups G in which K*(G) is not a subgroup. In fact, we
have:

Example

Let T be a periodic abelian group with K*(T) C T and consider the
group G = T @ (a), where (a) is an infinite cyclic group. Then K*(G) is
not a subgroup.

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Mixed abelian groups

In the group G of the example the torsion subgroup T(G) =T is
contained in K*(G), but K*(T) C T. Thus it is not true that
TNK*(G) C K*T).
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Mixed abelian groups

In the group G of the example the torsion subgroup T(G) =T is
contained in K*(G), but K*(T) C T. Thus it is not true that

T NK*(G) C K*(T). Surprising, the reverse inclusion holds, in fact we
have:
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Mixed abelian groups

In the group G of the example the torsion subgroup T(G) =T is
contained in K*(G), but K*(T) C T. Thus it is not true that

T NK*(G) C K*(T). Surprising, the reverse inclusion holds, in fact we
have:

Theorem
Let G be a mixed abelian group and write T = T(G) the torsion
subgroup of G. Then

K*(T) C K*(G).

Patrizia Longobardi - University of Salerno Autocommutators in infinite groups



Torsion-free abelian groups
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Torsion-free abelian groups

Now consider torsion-free abelian groups.
Torsion-free abelian groups with a finite automorphim group have been
studied by de Vries and de Miranda in 1958 and by Hallett and Hirsch in

1965 and 1970.

Autocommutators in infinite groups
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Torsion-free abelian groups

Now consider torsion-free abelian groups.

Torsion-free abelian groups with a finite automorphim group have been
studied by de Vries and de Miranda in 1958 and by Hallett and Hirsch in
1965 and 1970.

Theorem (J.T. Hallett, K.A. Hirsch)

If the finite group T is the automorphism group of a torsion-free abelian
group A, then I is isomorphic to a subgroup of a finite direct product of
groups of the following types:
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Torsion-free abelian groups

Now consider torsion-free abelian groups.

Torsion-free abelian groups with a finite automorphim group have been
studied by de Vries and de Miranda in 1958 and by Hallett and Hirsch in
1965 and 1970.

Theorem (J.T. Hallett, K.A. Hirsch)

If the finite group T is the automorphism group of a torsion-free abelian
group A, then I is isomorphic to a subgroup of a finite direct product of
groups of the following types:

(a) cyclic groups of orders 2, 4, or 6;
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Torsion-free abelian groups

Now consider torsion-free abelian groups.

Torsion-free abelian groups with a finite automorphim group have been
studied by de Vries and de Miranda in 1958 and by Hallett and Hirsch in
1965 and 1970.

Theorem (J.T. Hallett, K.A. Hirsch)

If the finite group T is the automorphism group of a torsion-free abelian
group A, then I is isomorphic to a subgroup of a finite direct product of
groups of the following types:

(a) cyclic groups of orders 2, 4, or 6;
(b) the quaternion group Qs of order 8;
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Torsion-free abelian groups

Now consider torsion-free abelian groups.

Torsion-free abelian groups with a finite automorphim group have been
studied by de Vries and de Miranda in 1958 and by Hallett and Hirsch in
1965 and 1970.

Theorem (J.T. Hallett, K.A. Hirsch)

If the finite group T is the automorphism group of a torsion-free abelian
group A, then I is isomorphic to a subgroup of a finite direct product of
groups of the following types:

(a) cyclic groups of orders 2, 4, or 6;
(b) the quaternion group Qs of order 8;
(c) the dicyclic group DCi» =< a, b|a®> = b? = (ab)? > of order 12;
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Torsion-free abelian groups

Now consider torsion-free abelian groups.

Torsion-free abelian groups with a finite automorphim group have been
studied by de Vries and de Miranda in 1958 and by Hallett and Hirsch in
1965 and 1970.

Theorem (J.T. Hallett, K.A. Hirsch)

If the finite group T is the automorphism group of a torsion-free abelian
group A, then I is isomorphic to a subgroup of a finite direct product of

groups of the following types:
(a) cyclic groups of orders 2, 4, or 6;

(b) the quaternion group Qs of order 8;

(c) the dicyclic group DCi» =< a, b|a®> = b? = (ab)? > of order 12;

(d) the binary tetrahedral group BT,, =< a, bla® = b = (ab)? > of
order 24.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Imf C K*(G).
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a

subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Imf C K*(G). We show that K*(G) = Im0
and then it is a subgroup of G.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a

subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = (p) and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Imf C K*(G). We show that K*(G) = Im0
and then it is a subgroup of G. Let s € K*(G).
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a

subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Im) C K*(G). We show that K*(G) = Imf)
and then it is a subgroup of G. Let s € K*(G). Then s = —x + x¥', for
some j € {1,---,n— 1} and some x € G.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof.

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Im) C K*(G). We show that K*(G) = Imf)
and then it is a subgroup of G. Let s € K*(G). Then s = —x + x¥', for
some j € {1,---,n— 1} and some x € G. We have

—X + x%, —x¥ + x‘f’z7 e ,—x*”i71 +x¥ € Im#,
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Im) C K*(G). We show that K*(G) = Imf)
and then it is a subgroup of G. Let s € K*(G). Then s = —x + x¥, for

some i € {1, - n—l} and some x € G. We have
—X + x?, —x“0—|—x‘f’ o ,—x*”li —|—X‘F € Imf, thus
X XP—xP A xP x4 x? = x4+ x¥ =5 € Imd.
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Torsion-free abelian groups

Let G be a group with cyclic automorphism group. Then K*(G) is a
subgroup of G.

Proof

From G/Z(G) ~ Inn(G) < Aut(G), we get that G is abelian. If |G| # 1
the map x € G — —x € G € Aut(G) has order 2, therefore Aut(G) is
also finite. Write Aut(G) = () and put |Aut(G)| = n. The map

f:x€ Gr— —x+x¥ € G isahomomorphism of G. Therefore Imf is a
subgroup of G. Obviously Im) C K*(G). We show that K*(G) = Imf)
and then it is a subgroup of G. Let s € K*(G). Then s = —x + x¥, for
some i € {1,---,n—1} and some x € G. We have

—X + x?, —x“0—|—x‘f’ o ,—x*”li —|—X‘F € Imf, thus

x4 xP —xP X X T 4 x = x4 x¥ =5 € Imd.
Therefore K*(G) = /m0, as required. O
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Torsion-free abelian groups
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Torsion-free abelian groups

There exist torsion-free abelian groups G of any rank with Aut(G) of
order 2, for them K*(G) = 2G is a subgroup of G.
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Torsion-free abelian groups

There exist torsion-free abelian groups G of any rank with Aut(G) of
order 2, for them K*(G) = 2G is a subgroup of G.

If G is a torsion-free abelian group of rank 1, then G/2G has order at
most 2, thus for any x € G and ¢ € Aut(G) we have x? +2G = x + 2G,
therefore —x + x¥ € 2G and K*(G) = 2G is a subgroup of G.
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Torsion-free abelian groups

There exist torsion-free abelian groups G of any rank with Aut(G) of
order 2, for them K*(G) = 2G is a subgroup of G.

If G is a torsion-free abelian group of rank 1, then G/2G has order at
most 2, thus for any x € G and ¢ € Aut(G) we have x? +2G = x + 2G,
therefore —x + x¥ € 2G and K*(G) = 2G is a subgroup of G.

de Vries and de Miranda and Hallett and Hirsch constructed many
examples of abelian groups G, indecomposable or not, of rank > 2, with
Aut(G) =~ Vjy. In their examples K*(G) = 2G is a subgroup of G.
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Torsion-free abelian groups

There exist torsion-free abelian groups G of any rank with Aut(G) of
order 2, for them K*(G) = 2G is a subgroup of G.

If G is a torsion-free abelian group of rank 1, then G/2G has order at
most 2, thus for any x € G and ¢ € Aut(G) we have x? +2G = x + 2G,
therefore —x + x¥ € 2G and K*(G) = 2G is a subgroup of G.

de Vries and de Miranda and Hallett and Hirsch constructed many
examples of abelian groups G, indecomposable or not, of rank > 2, with
Aut(G) =~ Vjy. In their examples K*(G) = 2G is a subgroup of G.

But
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Torsion-free abelian groups

There exists a torsion-free abelian group of rank 2 such that
Aut(G) ~ Vi and K*(G) is not a subgroup of G.
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Torsion-free abelian groups

There exists a torsion-free abelian group of rank 2 such that
Aut(G) ~ Vi and K*(G) is not a subgroup of G.

Proposition
Let G be a torsion-free abelian group such that Aut(G) ~ Qg. If G/2G
has rank at most 4, then K*(G) is a subgroup of G.
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Torsion-free abelian groups

There exists a torsion-free abelian group of rank 2 such that
Aut(G) ~ Vi and K*(G) is not a subgroup of G.

Proposition

Let G be a torsion-free abelian group such that Aut(G) ~ Qg. If G/2G
has rank at most 4, then K*(G) is a subgroup of G.

There exists a torsion-free abelian group with Aut(G) ~ Qs such that
K*(G) is not a subgroup of G.
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Thank you for the attention !




P. Longobardi
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