Notation Growth of the codimensions

Growth and Polynomial Identities

Antonio Giambruno

Universitá di Palermo

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation

F is a field of characteristic zero *A* is an *F*-algebra $F\langle X \rangle$ is the free associative algebra on a countable set $X = \{x_1, x_2, \ldots\}$ over *F* $Id(A) = \{f \in F\langle X \rangle \mid f \equiv 0 \text{ on } A\}$ is the ideal of polynomial identities of *A*

 $A \sim_{PI} F\langle X \rangle / Id(A)$

Notation

F is a field of characteristic zero *A* is an *F*-algebra $F\langle X \rangle$ is the free associative algebra on a countable set $X = \{x_1, x_2, \ldots\}$ over *F* $Id(A) = \{f \in F\langle X \rangle \mid f \equiv 0 \text{ on } A\}$ is the ideal of polynomial identities of *A* $A \sim_{PL} F\langle X \rangle / Id(A)$

Let

$${\sf P}_n({\sf A}) = {\sf span}_{\sf F}\{ar x_{\sigma(1)}\cdots x_{\sigma(n)}\mid \sigma\in {\sf S}_n\}$$

Notation

F is a field of characteristic zero *A* is an *F*-algebra $F\langle X \rangle$ is the free associative algebra on a countable set $X = \{x_1, x_2, ...\}$ over *F* $Id(A) = \{f \in F\langle X \rangle \mid f \equiv 0 \text{ on } A\}$ is the ideal of polynomial identities of *A* $A \sim_{PI} F\langle X \rangle / Id(A)$ Let

$${\sf P}_n({\sf A}) = {\sf span}_{\sf F}\{ar x_{\sigma(1)}\cdots x_{\sigma(n)}\mid \sigma\in {\sf S}_n\}$$

The sequence of non-negative integers

$$c_n(A) = \dim_F P_n(A), \ n \ge 1,$$

is called the sequence of codimensions of A

Theorem (Regev, 1972)

If A satisfies an ordinary polynomial identity (PI-algebra), then the sequence $c_n(A)$, n = 1, 2, ..., is exponentially bounded.

Theorem (Regev, 1972)

If A satisfies an ordinary polynomial identity (PI-algebra), then the sequence $c_n(A)$, n = 1, 2, ..., is exponentially bounded.

Theorem (G., Zaicev, 1999)

If A is a PI-algebra, then the limit $\lim_{n\to\infty} \sqrt[n]{c_n(A)} = exp(A)$ exists and is a non negative integer, called the PI-exponent of A.

Theorem (Regev, 1972)

If A satisfies an ordinary polynomial identity (PI-algebra), then the sequence $c_n(A)$, n = 1, 2, ..., is exponentially bounded.

Theorem (G., Zaicev, 1999)

If A is a PI-algebra, then the limit $\lim_{n\to\infty} \sqrt[n]{c_n(A)} = exp(A)$ exists and is a non negative integer, called the PI-exponent of A.

More is true:

$$C_1 n^t \exp(A)^n \leq c_n(A) \leq C_2 n^t \exp(A)^n$$
,

for some constants $C_1 > 0, C_2, t$, and $t \in \frac{1}{2}\mathbb{Z}$.

Property: The sequence $c_n(A)$, n = 1, 2, ... is eventually non decreasing.

Let A and B be simple PI-algebras.

 $A \simeq B$ if and only if Id(A) = Id(B).

Let A and B be simple PI-algebras.

 $A \simeq B$ if and only if Id(A) = Id(B). $A \simeq B$ if and only if exp(A) = exp(B)

Kemer theory (80's): main result:

Kemer

If A is a finitely generated PI-algebra, then $A \sim_{PI} B$, for some finite dimensional algebra B.

Kemer theory (80's): main result:

Kemer

If A is a finitely generated PI-algebra, then $A \sim_{PI} B$, for some finite dimensional algebra B.

Kemer index of a finitely generated PI-algebra:

 $ind(A) = (\alpha(A), \beta(A))$

where

Kemer theory (80's): main result:

Kemer

If A is a finitely generated PI-algebra, then $A \sim_{PI} B$, for some finite dimensional algebra B.

Kemer index of a finitely generated PI-algebra:

$$ind(A) = (\alpha(A), \beta(A))$$

where

 $\alpha(A) = \max k$ such that for $n \ge 1$, there exists

 $f(X_1,\ldots,X_n,Y) \not\in Id(A),$

where $|X_i| = k$, $i \ge 1$, and f is alternating on each set X_i .

 $\beta(A) = \max I$ such that for $n \ge 1$, there exists

$$f(X_1,\ldots,X_n,Y_1,\ldots,Y_l,Z) \notin Id(A),$$

where $|X_i| = \alpha(A)$, $|Y_j| = \alpha(A) + 1$ and f alternating on each set X_i and Y_j .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\beta(A) = \max I$ such that for $n \ge 1$, there exists

$$f(X_1,\ldots,X_n,Y_1,\ldots,Y_l,Z) \notin Id(A),$$

where $|X_i| = \alpha(A)$, $|Y_j| = \alpha(A) + 1$ and f alternating on each set X_i and Y_j .

Remark

If A is a finitely generated PI-algebra, then $exp(A) = \alpha(A)$, where $(ind(A) = (\alpha(A), \beta(A))$.

Wedderburn-Malcev

If A is a finite dimensional algebra over $F = \overline{F}$, then A = B + J, where $B = \max$ semisimple subalgebra and J = J(A), the Jacobson radical of A. Also $B = B_1 \oplus \cdots \oplus B_t$, with the B_i 's simple.

For A as above, let q be such that $J^q \neq 0$ and $J^{q+1} = 0$.

Remark. $ind(A) = (\alpha(A), \beta(A)) \leq (\dim B, q)$, in the lexicographic order.

Wedderburn-Malcev

If A is a finite dimensional algebra over $F = \overline{F}$, then A = B + J, where $B = \max$ semisimple subalgebra and J = J(A), the Jacobson radical of A. Also $B = B_1 \oplus \cdots \oplus B_t$, with the B_i 's simple.

For A as above, let q be such that $J^q \neq 0$ and $J^{q+1} = 0$.

Remark. $ind(A) = (\alpha(A), \beta(A)) \leq (\dim B, q)$, in the lexicographic order.

Definition

A is fundamental if $ind(A) = (\alpha(A), \beta(A)) = (\dim B, q)$.

Wedderburn-Malcev

If A is a finite dimensional algebra over $F = \overline{F}$, then A = B + J, where $B = \max$ semisimple subalgebra and J = J(A), the Jacobson radical of A. Also $B = B_1 \oplus \cdots \oplus B_t$, with the B_i 's simple.

For A as above, let q be such that $J^q \neq 0$ and $J^{q+1} = 0$.

Remark. $ind(A) = (\alpha(A), \beta(A)) \leq (\dim B, q)$, in the lexicographic order.

Definition

A is fundamental if
$$ind(A) = (\alpha(A), \beta(A)) = (\dim B, q)$$
.

A finite dimensional algebra is a direct sum of fundamental algebras.

Upper block triangular matrix algebras are fundamental.

$$A = egin{pmatrix} B_1 & & * \ & B_2 & & \ & & \ddots & \ & & & \ddots & \ & & & & B_t \end{pmatrix},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$B_{i} = M_{d_{i}}(F),$$

$$Id(B_{1}) = P_{1}, \dots, Id(B_{t}) = P_{t}, \text{ and }$$

$$exp(A) = exp(P_{1}) + \dots + exp(P_{t}).$$

$$ind(A) = (\sum_{i=1}^{t} d_{i}^{2}, \sum_{i=1}^{t} d_{i} - 1).$$

Consider the algebra A whose elements are the matrices of the type

$$\begin{pmatrix} a & & * \\ & C & & \\ & & C & \\ 0 & & & a \end{pmatrix},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $a \in F$, $C \in M_2(F)$. ind(A) = (5, 3).

Consider the algebra A whose elements are the matrices of the type

$$\begin{pmatrix} a & & * \\ & C & & \\ & & C & \\ 0 & & & a \end{pmatrix},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $a \in F$, $C \in M_2(F)$. ind(A) = (5, 3). *A* is fundamental

Consider the algebra A whose elements are the matrices of the type

$$\begin{pmatrix} \mathsf{a} & & * \\ & \mathsf{C} & & \\ & & \mathsf{C} & \\ 0 & & & \mathsf{a} \end{pmatrix},$$

where $a \in F$, $C \in M_2(F)$. ind(A) = (5, 3).

A is fundamental

Question. Describe explicitly the fundamental algebras. Can one embed a fundamental algebra into upper block triangular matrices?

Question. Can one extend the Kemer index to arbitrary PI-algebras?

Question. Can one extend the Kemer index to arbitrary PI-algebras?

Theorem (Kemer)

If A is a PI-algebra, $A \sim_{PI} G(B)$, where $B = B_0 \oplus B_1$ is a finite dimensional superalgebra, $G = G_0 \oplus G_1$ is the Grassmann algebra and $G(B) = A_0 \otimes G_0 \oplus A_1 \otimes G_1$.