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Università degli Studi “Roma Tre”

Napoli, Ottobre 2015

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 1 / 39



I §1 J I §2 J I §3 J I §4 J

§1. The genesis

This story starts around 1850. More precisely,
• in 1847, Gabriel Lamé in Paris, submits to the Académie des Sciences a
short note on a “new approach” to the problem of the solution of
Fermat’s Diophantine Equation :

(FLT) X p + Y p = Zp where p is a prime integer p ≥ 3 .

At that time G. Lamé was a well-known mathematician: among other
results, in 1839 he gave a positive solution to the Fermat’s equation in
case p = 7.

Note that
I The case of exponent 4 was solved by P. Fermat himself in 1637 (using the technique
of infinite descent), reconducting his general conjecture to the case of prime exponents;
I p = 3 was solved by Leonhard Euler in 1753;

I p = 5 was solved independently by Peter Gustav Lejeune Dirichlet and Adrien-Marie

Legendre in 1825.
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At that time G. Lamé was a well-known mathematician: among other
results, in 1839 he gave a positive solution to the Fermat’s equation in
case p = 7.

Note that
I The case of exponent 4 was solved by P. Fermat himself in 1637 (using the technique
of infinite descent), reconducting his general conjecture to the case of prime exponents;
I p = 3 was solved by Leonhard Euler in 1753;

I p = 5 was solved independently by Peter Gustav Lejeune Dirichlet and Adrien-Marie

Legendre in 1825.

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 2 / 39



I §1 J I §2 J I §3 J I §4 J

Lamé’s “new idea” was based on considering the equation X p + Y p = Zp

in a more general setting than that of the integer numbers Z.

This new setting is Z[ζp ] the ring of cyclotomic integers (of exponent p),
where ζp is a primitive p-th root of the unity, i.e., it is a nontrivial solution
of the polynomial equation:

X p − 1 = (X − 1)(X p−1 + X p−2 + · · ·+ X + 1) = 0 ,

and so, for instance, ζ := ζp := e2πi/p = cos(2π/p) + i sin(2π/p).

case p = 5, here z := ζ5
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The key fact of the “new idea” is that, when we are in the ring of
p–cyclotomic integers, instead of Z, we have:

in Z[ζp ], Fermat’s polynomial “factorizes” as follows:

X p+Y p = (X +Y )(X +ζY )(X +ζ2Y ) · · · (X +ζp−2Y )(X +ζp−1Y ) = Zp .

Assuming that Z[ζp ] is an UFD, after proving that the factors of the
previous factorization are coprime in Z[ζp ] (when evaluated in a non trivial
solution of the (FLT)), one deduces by basic properties of the unique
factorization that each of such factors is a p-th power of some element in
Z[ζp ].
Using this observation and some clever computation (but of elementary
nature), Lamé reaches a contradiction.
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At that time, Joseph Liouville was a member of the Académie des Sciences
and he raised immediately some doubts on the Lamé’s proof, and, in
particular, on the (implicit) assumption that the ring Z[ζp ] is an UFD for
each prime integer p, even if the evidence of the first few cases
(3 ≤ p � 20) seemed to confirm this assumption.

Few months later, Liouville was informed by Dirichlet, a friend of Liouville
from the times of his studies in Paris, that Ernst Kummer in Berlin proved
in 1843 that Z[ζ23 ] was not a UFD.

Ernst Kummer and Gabriel Lamé were working independently with a
similar approach to (FLT) and each one unaware of the work of the other.
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In order to show the previous fact, Kummer “pulled a very special element
of Z[ζ23 ] out of a hat”.
He considered the element:

µ := 1− ζ + ζ21 ∈ Z[ζ] , where ζ := ζ23 .

• µ is not a prime element of Z[ζ23 ],
since for its norm we have that N(µ) = 47 · 139 and so µ is not a power of a prime

integer (as each prime element in a ring of algebraic numbers must have).

• µ is an irreducible element of Z[ζ23 ].
He proved this second statement, by introducing a new important tool
that he called ideal-number factorization.

First he observed that
〈µ〉 = µZ[ζ23 ] = P ·Q

where P and Q are what we call now prime ideals in Z[ζ23 ], with N(P) = 47 and

N(Q) = 139. Since no element α ∈ Z[ζ23 ] is such that N(α) = 47, P is not a principal

ideal. Similarly for Q. Conclusion: µ is an irreducible element of Z[ζ23 ].
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After this result, Kummer obtained an important positive result on (FLT).
He introduced the notion of class group for rings of cyclotomic integers

Cl(Z[ζp ]) :=
F(Z[ζp ])

P(Z[ζp ])
,

proving that

this group is always a finite group with order denoted by hp, called the
class number of Z[ζp ].

This number hp misures the distance of Z[ζp ] from being UFD: more
precisely,

hp = 1 if and only if Z[ζp ] is UFD.

Kummer in 1851 proved that,

if p is a regular prime, i.e., if p - hp, the (FLT) holds for X p + Y p = Zp.
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The importance of this result resides in the fact that

all the prime integer p < 100, except three (i.e., 37, 59, and 67) are
regular primes.

In particular, all the primes p < 23 have hp = 1 (while h23 = 3).

Note also that h37 = 37, h59 = 3 · 59 · 233, and h67 = 67 · 12739.

In 1993-95 (FLT) has became Theorem of A. Wiles and R. Taylor and so
there is less interest in studying regular primes and their properties.

Note that one of the winner of the first edition (2015) of the (3-Million) Breakthrough

Prize in Mathematics (founding sponsors Sergey Brin, Anne Wojcicki, Mark Zuckerberg
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§2. Dedekind’s point of view: Ideals

Kummer’s work opened a new general way in factorization theory (at least
for the case of cyclotomic integers), passing from the element-wise
factorization to the prime ideal factorization, that might exist even if the
element-wise factorization fails.

Richard Dedekind, last Gauss’ student, started to collaborate around 1855
with Dirichlet in Göttingen, when Dirichlet moved from Berlin to
Göttingen to hold Gauss’ Chair.

As Dedekind said to his collaborators in that period, the goal of Number
Theory was to do for the general ring of integers of an algebraic number
field (i.e., a finite algebraic extension of Q) what Kummer did for the
particular case of cyclotomic integers.
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Dedekind completely succeeded in his program in 1871.

What we call now Dedekind theory appeared as XI Supplement to
“Vorlesungen über Zhalentheorie” (“Lectures in Number Theory”) by
Dirichlet (this volume appeared several years after Dirichlet’s death, 1859).

One of the main result of Dedekind’s theory can be stated as follows:

each proper ideal of the ring of integers of an algebraic number field can
be factorized in an essentially unique way as the product of prime ideals.
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At the beginning of the XX-th century, with the development of the
Modern (Abstract) Algebra, after David Hilbert, Amalie Emmy Noether
and their students, the ideal factorization was studied under an axiomatic
approach.

In this period, the rings satisfying the Dedekind’s factorization property
were characterized in full generality.

I collect in the following theorem several contributions to this problem
given by E. Noether and by several Japanese mathematicians.
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Theorem (E. Noether 1927, S. Mori, K. Kubo, K. Matusita ∼ 1940)

Let D be an integral domain (not a field) and I a proper ideal of D. The
following are equivalent.

(i) I = Me1
1 Me2

2 · · ·Mer
r , with Mi ∈ Max(D) and ei ≥ 1.

(ii) I = P f1
1 P f2

2 · · ·P fs
s , with Pj ∈ Spec(D) and fj ≥ 1.

(iii) I = Qg1
1 Qg2

2 · · ·Q
gt
t in a unique way, with Qk ∈ Spec(D) and gk ≥ 1.

(iv) (a) D is Noetherian.
(b) Every nonzero prime ideal is maximal, i.e., dim(D) = 1.
(c) D = D is integrally closed.

The properties in (iv) are called the Noether’s Axioms and they define
what are now called Dedekind domains.

Note that, from Noether’s Axioms, it follows that Dedekind domains form
a very large class of integral domains containing properly the rings of
integers of algebraic number fields and all the PIDs.
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A ring of integers of a quadratic number field which is a Dedekind
domain but not a PID

Let K := Q(
√
−5). In this case the ring of algebraic integers (i.e., the

integral closure of Z in Q(
√
−5)) is given by

Z[
√
−5] := {a + b

√
−5 | a, b ∈ Z}.

• Z[
√
−5] is not a UFD (nor a PID)

I It is not hard to show that the equalities

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

provide two different factorizations of 6 into irreducible elements of Z[
√
−5]

(since there is no element of Z[
√
−5] having norm equal to 2 or 3, after noting that

N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6).

Moreover,
I from the previous equalities, it follow also that the irreducible elements 2, 3,

1 +
√
−5 and 1−

√
−5 are not primes.

Therefore Z[
√
−5] is not a UFD (nor a PID).

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 13 / 39



I §1 J I §2 J I §3 J I §4 J

A ring of integers of a quadratic number field which is a Dedekind
domain but not a PID

Let K := Q(
√
−5). In this case the ring of algebraic integers (i.e., the

integral closure of Z in Q(
√
−5)) is given by

Z[
√
−5] := {a + b

√
−5 | a, b ∈ Z}.

• Z[
√
−5] is not a UFD (nor a PID)

I It is not hard to show that the equalities

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

provide two different factorizations of 6 into irreducible elements of Z[
√
−5]

(since there is no element of Z[
√
−5] having norm equal to 2 or 3, after noting that

N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6).

Moreover,
I from the previous equalities, it follow also that the irreducible elements 2, 3,

1 +
√
−5 and 1−

√
−5 are not primes.

Therefore Z[
√
−5] is not a UFD (nor a PID).

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 13 / 39



I §1 J I §2 J I §3 J I §4 J

A ring of integers of a quadratic number field which is a Dedekind
domain but not a PID

Let K := Q(
√
−5). In this case the ring of algebraic integers (i.e., the

integral closure of Z in Q(
√
−5)) is given by

Z[
√
−5] := {a + b

√
−5 | a, b ∈ Z}.

• Z[
√
−5] is not a UFD (nor a PID)

I It is not hard to show that the equalities

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

provide two different factorizations of 6 into irreducible elements of Z[
√
−5]

(since there is no element of Z[
√
−5] having norm equal to 2 or 3, after noting that

N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6).

Moreover,
I from the previous equalities, it follow also that the irreducible elements 2, 3,

1 +
√
−5 and 1−

√
−5 are not primes.

Therefore Z[
√
−5] is not a UFD (nor a PID).

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 13 / 39



I §1 J I §2 J I §3 J I §4 J

A ring of integers of a quadratic number field which is a Dedekind
domain but not a PID

Let K := Q(
√
−5). In this case the ring of algebraic integers (i.e., the

integral closure of Z in Q(
√
−5)) is given by

Z[
√
−5] := {a + b

√
−5 | a, b ∈ Z}.

• Z[
√
−5] is not a UFD (nor a PID)

I It is not hard to show that the equalities

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

provide two different factorizations of 6 into irreducible elements of Z[
√
−5]

(since there is no element of Z[
√
−5] having norm equal to 2 or 3, after noting that

N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6).

Moreover,
I from the previous equalities, it follow also that the irreducible elements 2, 3,

1 +
√
−5 and 1−

√
−5 are not primes.

Therefore Z[
√
−5] is not a UFD (nor a PID).

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 13 / 39



I §1 J I §2 J I §3 J I §4 J

A ring of integers of a quadratic number field which is a Dedekind
domain but not a PID

Let K := Q(
√
−5). In this case the ring of algebraic integers (i.e., the

integral closure of Z in Q(
√
−5)) is given by

Z[
√
−5] := {a + b

√
−5 | a, b ∈ Z}.

• Z[
√
−5] is not a UFD (nor a PID)

I It is not hard to show that the equalities

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

provide two different factorizations of 6 into irreducible elements of Z[
√
−5]

(since there is no element of Z[
√
−5] having norm equal to 2 or 3, after noting that

N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6).

Moreover,
I from the previous equalities, it follow also that the irreducible elements 2, 3,

1 +
√
−5 and 1−

√
−5 are not primes.

Therefore Z[
√
−5] is not a UFD (nor a PID).

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 13 / 39



I §1 J I §2 J I §3 J I §4 J

• Z[
√
−5] is a Dedekind domain (by Noeher’s Axioms).

We provide an explicit example of the fact that Z[
√
−5] is a Dedekind domain, by giving

a unique ideal-theoretic factorization of 〈6〉.
Let

P := 〈2, 1 +
√
−5〉 (= 〈2, 1−

√
−5〉)

Q ′ := 〈3, 1 +
√
−5〉 , Q ′′ := 〈3, 1−

√
−5〉 ,

then it is not hard to see that P,Q ′,Q ′′ ∈ Max(Z[
√
−5]).

Moreover, the factorizations into maximal (or, prime) ideals of the following principal
ideals are unique

〈2〉 = P2 , 〈3〉 = Q ′ · Q ′′ , 〈6〉 = P2 · Q ′ · Q ′′

.

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 14 / 39



I §1 J I §2 J I §3 J I §4 J

• Z[
√
−5] is a Dedekind domain (by Noeher’s Axioms).

We provide an explicit example of the fact that Z[
√
−5] is a Dedekind domain, by giving

a unique ideal-theoretic factorization of 〈6〉.
Let

P := 〈2, 1 +
√
−5〉 (= 〈2, 1−

√
−5〉)

Q ′ := 〈3, 1 +
√
−5〉 , Q ′′ := 〈3, 1−

√
−5〉 ,

then it is not hard to see that P,Q ′,Q ′′ ∈ Max(Z[
√
−5]).

Moreover, the factorizations into maximal (or, prime) ideals of the following principal
ideals are unique

〈2〉 = P2 , 〈3〉 = Q ′ · Q ′′ , 〈6〉 = P2 · Q ′ · Q ′′

.

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 14 / 39



I §1 J I §2 J I §3 J I §4 J

• Z[
√
−5] is a Dedekind domain (by Noeher’s Axioms).

We provide an explicit example of the fact that Z[
√
−5] is a Dedekind domain, by giving

a unique ideal-theoretic factorization of 〈6〉.
Let

P := 〈2, 1 +
√
−5〉 (= 〈2, 1−

√
−5〉)

Q ′ := 〈3, 1 +
√
−5〉 , Q ′′ := 〈3, 1−

√
−5〉 ,

then it is not hard to see that P,Q ′,Q ′′ ∈ Max(Z[
√
−5]).

Moreover, the factorizations into maximal (or, prime) ideals of the following principal
ideals are unique

〈2〉 = P2 , 〈3〉 = Q ′ · Q ′′ , 〈6〉 = P2 · Q ′ · Q ′′

.

Marco Fontana (“Roma Tre”) Multiplicative ideal theory 14 / 39



I §1 J I §2 J I §3 J I §4 J

If you are interested in recent developments of the ideal factorization, you
might like to look at the following recent volume:

• M. Fontana, E. Houston, and T. Lucas, Factoring Ideals in Integral
Domains, UMI Lecture Notes, Springer, Berlin 2013.
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§3. Kronecker’s point of view: Divisors

Leopold Kronecker was a Kummer’s student in high school (Gymnasium;
at that time, Kummer was very young).
Later, he received his PhD in Berlin in 1845, having as advisor Dirichlet.

He also was interested, like Dedekind in Göttingen, to recover a “good”
theory of divisibility, for integral domains for which the classical theory
fails.

He solved, around 1859, a more general problem than Dedekind’s problem,
providing a solution in a more general setting than the setting of algebraic
numbers. But, he did not published anything until 1880 (about 9 years
after Dedekind’s theory).
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Instead of recovering a “good” factorization theory (as Dedekind did), L.
Kronecker was interested in recovering a “good” theory of divisibility, in
order to obtain the existence of a GCD for each finite family of elements
and to express the GCD with a Bézout Identity.

Initially, immediately after the publication of his paper, which appeared in
the Proceedings of a Conference in Kummer’s honor (1880), Kronecker
theory was not very successful essentially and roughly speaking for two
reasons:

• The paper appeared many years after the very elegant Dedekind’s theory,
that was a very successful theory, widely adopted by Number Theorists.

• Kronecker’s style was very involved, often obscure and not easy to read
and the notation was very personal and often unclear.
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Kronecker’s theory was “rediscovered”, relaunched and revived in a more
modern language many years after the publication, by

• W. Krull in 1936;

• H. Weyl in 1940 (dedicated to this subject a Chapter of his“Algebraic
Theory of Numbers”, published by Princeton University Press);

• M. Nagata in 1956 and 1962 (in his book “Local Rings”);

• R. Gilmer in 1968 (in his book “Multiplicative Ideal Theory”);

• H.M. Edwards in 1990 (in his book “Divisor Theory”);

• F. Halter-Koch in 1998 (in his book “Ideal Systems”).
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Kronecker’s “divisors”, in a more modern approach might be represented
by equivalent classes of polynomials.
More precisely, Kronecker functions rings –whose elements represent the
Kronecker’s divisors– can be introduced in the following general setting:

• Let D0 be a PID (=Principal Ideal Domain) and let K0 be its field of
quotients (e.g., D0 = Z, K0 = Q).

• Let K be a finite (algebraic) extension of K0 and let D := D0 be the
integral closure of D0 in K (i.e., D = {α ∈ K | there exists a nonzero
monic polynomial f ∈ D0 [X ] such that f (α) = 0}).

For instance,
• if D0 = Z and K = Q(

√
−5), then D = Z[

√
−5].

• if D0 = Z and K = Q(
√

5), then D = Z[(1 +
√

5)/2].

• if D0 = Z and K = Q(ζp ), then D = Z[ζp ].
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With a modern terminology and notation, the Kronecker function ring of a
Dedekind domain D is given by:

Kr(D) :=
{

f
g | f , g ∈ D[X ] and c(f ) ⊆ c(g)

}
=

{
f ′

g ′ | f ′, g ′ ∈ D[X ] and c(g ′) = D
}
,

(where c(h) denotes the content of a polynomial h ∈ D[X ], i.e., the ideal
of D generated by the coefficients of h).

Note that the previous equality holds since we are assuming that D is a
Dedekind domain (since it is the integral closure of a PID D0 in a finite
field extension K of the quotient field K0 of D0).

In this case, for each nonzero polynomial g ∈ D[X ], c(g) is an invertible
ideal of D and, by choosing a polynomial u ∈ K [X ] such that
c(u) = (c(g))−1, then we have f /g = uf /ug = f ′/g ′, with
f ′ := uf , g ′ := ug ∈ D[X ] and, obviously, c(g ′) = D.
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The fundamental properties of the Kronecker function ring are the
following:

Theorem (L. Kronecker, 1880)

Let D the integral closure of a PID in a finite extension of its field of
fractions.

(1) Kr(D) is a Bézout domain (i.e., each finite set of elements has a GCD
and the GCD can be expressed as linear combination of these
elements) and D[X ] ⊆ Kr(D) ⊆ K (X ) (in particular, the field of
rational functions K (X ) is the quotient field of Kr(D)).

(2) Let a0 , a1 , . . ., an ∈ D and set f := a0 + a1X + . . .+ anX
n ∈ D[X ], then:

• (a0 , a1 , . . ., an)Kr(D) = f Kr(D) (thus, GCD Kr(D)(a0 , a1 , . . ., an)= f ) ,

• f Kr(D) ∩ K =(a0 , a1 , . . ., an)D = c(f )D (hence, Kr(D) ∩ K = D) .
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W. Krull starting in 1936 introduced the Kronecker function ring in a
much more general setting than the original one considered by Kronecker.

One of the difficulties encountered by Krull for extending Kronecker’s
theory is related to the problem of extending the Gauss’ content formula:

If D is a Dedekind domain (or, more generally, a Prüfer domain), and
f , g ∈ D[X ], then:

c(f ·g) = c(f )·c(g) .

Note that, in general, if f , g ∈ D[X ] and D is an arbitrary integral domain,
the following relation holds:

c(f ·g) ⊆ c(f )·c(g) .

An important “correction” to the failure of an equality in the previous

relation between content of polynomials was given –independently– by R.
Dedekind and F. Mertens.
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Dedekind-Mertens Formula, 1892

Let D be an integral domain, f , g ∈ D[X ], and let m := deg(g), then:

c(f )mc(f ·g) = c(f )m+1 ·c(g) .

Krull’s idea is based to the possibility of applying a “cancellative closure
operation” ∗, defined on finitely generated ideals, to the Dedekind-Mertens
Formula, in order to obtain a “weaker” form of the Gauss’ Content
Formula:

( c(f )mc(f ·g) )∗ = ( c(f )m+1 ·c(g) )∗ ⇒

c(f ·g)∗ = c(f )∗ ·c(g)∗ .
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Krull introduced an important class of algebraic “cancellative closure
operations”, that he called a.b.-operations (where a.b. stands for
arithmetisch brauchbar). An important example of this kind of operation
is the b-operation defined as follows:

Let D be an integral domain with quotient field K and let D be the
integral closure of D in K .
For each nonzero fractional ideal E of D, set:

Eb :=
⋂
{EV | V is a valuation overring of D} .

• Note that the b-operation (or, completion) coincides with the integral
closure of ideals (when restricted to the integer ideals, i.e., fractional ideals
inside D).

• Krull proved the following version of Gauss’ Content Formula

c(f ·g)b = c(f )b ·c(g)b .
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Let D be an integral domain with quotient field K and let D be its
integral closure in K .
[Krull, 1936] introduced on D the following extension of the classical
Kronecker function ring:

• the Kronecker function ring of D with respect to the b–operation is
defined as follows:

Kr(D, b) := {f /g ∈ K (X ) | f , g ∈ D[X ], c(f )b ⊆ c(g)b} .

Note that, using the properties of the b–operation, it can be shown that
Kr(D, b) is a ring.

Moreover, the principal properties of the classical Kronecker function ring
are preserved in this general setting.
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The fundamental properties of the Krull’s extension of the Kronecker
function ring are summarized in the following:

Theorem (W. Krull (1936) and R. Gilmer (1968))

(1) Kr(D, b) is a Bézout domain (i.e., each finite set of elements has a
GCD and the GCD can be expressed as linear combination of these
elements) and D[X ] ⊆ Kr(D, b) ⊆ K (X ) (in particular, the field of
rational functions K (X ) is the quotient field of Kr(D, b)).

(2) Let a0 , a1 , . . ., an ∈ D and set f := a0 + a1X + . . .+ anX
n ∈ D[X ], then:

• (a0 , a1 , . . ., an)Kr(D, b) = f Kr(D, b)
(thus, GCD Kr(D,b)(a0 , a1 , . . ., an)= f ) ,

• f Kr(D, b) ∩ K =(a0 , a1 , . . ., an)D)b = c(f )b

(hence, Kr(D, b) ∩ K = Db = D) .
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Further generalizations of the Kronecker function ring were introduced
independently and using different methods, by Fontana-Loper in two
papers published in 2001 and 2003 and by F. Halter-Koch in 2003.

In particular, Halter-Koch’s generalization is based on an axiomatic
approach.

Let K be a field, X an indeterminate over K , R a subring of K (X ) and
D := R ∩ K . If

• X ∈ U(R) (i.e., X is a unit in R );

• f (0) ∈ f ·R for each f ∈ K [X ] ;

then R is called a K–function ring of D.

It is not difficult to show that the following are examples of K–function
rings of D, after Halter-Koch:
• The Gaussian extension of a valuation D(X ) (= D[X ](X )), where D is a
valuation domain;
• Kr(D, b), when D is integrally closed and, in particular,
• Kr(D), when D is a Dedekind domain.
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Using only these two axioms, he proved that R (in K (X )) “behaves as a
classical Kronecker function ring” for D, i.e.,

Theorem, Halter-Koch 2003

Let R be a K -function ring of D = R ∩ K , then:

(1) R is a Bézout domain with quotient field K (X ).

(2) Let a0 , a1 , . . ., an ∈ D and set f := a0 + a1X + . . .+ anX
n ∈ D[X ], then:

• (a0 , a1 , . . ., an)R = fR
(thus, GCDR(a1 , . . ., an)= f ) ,

• fR ∩ K =((a0 , a1 , . . ., an)D)b(R) = c(f )b(R) ,

where b(R) is an a.b.-operation on D canonically associated to R
and defined by Eb(R) := ER ∩ K for each nonzero fractional ideal of
D.
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§4. Kronecker function rings and Riemann-Zariski spaces of valuation
domains

In the recent years, the Kronecker function rings have been used for
studying Riemann-Zariski Spaces of valuation domains.

For stating some of the results that show this surprising and effective
application of the Kronecker function rings, I need to recall briefly the
following notions:

• spectral spaces (after M. Hochster);

• valuation domains and topological spaces of valuation domains (called
by O. Zariski Abstract Riemann Surfaces and, nowadays, Riemann-Zariski
Spaces).
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• According to M. Hochster, a topological space X is called a spectral
space if there exists a ring R such that Spec(R), with the Zariski topology,
is homeomorphic to X .

Spectral spaces were characterized by Hochster in a purely topological
way:

a topological space X is spectral if and only if
• X is T0 (this means that for every pair of distinct points of X , at least
one of them has an open neighborhood not containing the other),
• quasi-compact,
• admits a basis of quasi-compact open subspaces that is closed under
finite intersections, and
• every irreducible closed subspace C of X has a (unique) generic point
(i.e., there exists one point xC ∈ C such that C coincides with the closure
of this point).
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• A valuation domain V of a field K , quotient field of V , is an integral
domain such that x ∈ K \ V implies x−1 ∈ V .

Examples of valuation domains,

• in Q, for each prime p,

Z(p) := {a/b ∈ Q | a, b ∈ Z, p - b} ;

• in C(X ), for each z ∈ C,

C[X ](X−z) := {f /g ∈ C(X ) | f , g ∈ C[X ], g(z) 6= 0} .
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The motivations for studying, from a topological point of view, spaces of
valuation domains come from various directions and, historically, mainly

• from Zariski’s work for the reduction of singularities of an algebraic
surface and, more generally, for establishing new foundations of algebraic
geometry by algebraic means
(see [Zariski, 1939], [Zariski, 1944] and [Zariski-Samuel, 1960]),

• from rigid algebraic geometry started by J. Tate [Tate, 1971]
(see [Fresnel-van der Put, 1981] and [Fujiwara-Kato, 2014]) and
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NOTATION

• Let K be a field and A a subring (possibly, a subfield) of K

• Let

Zar(K |A) := {V | V valuation domain with A ⊆ V ⊆ K = qf(V )} .

• In case A is the prime subring of K , then Zar(K |A) includes all valuation
domains with K as quotient field and we denote it by simply Zar(K ).

• In case A is an integral domain with quotient field K , A 6= K , then
Zar(K |A) is the set of all valuation overrings of A and we simply denote it
by Zar(A).
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• A first topological approach to the space Zar(K |A) is due to O.
Zariski who proved the quasi-compactness of this space, endowed with
what is now called Zariski topology
(see [Zariski, 1944] and [Zariski-Samuel, 1960]).

The topological structure on Z := Zar(K |A) is defined by taking, as a
basis for the open sets, the subsets UF := {V ∈ Z | V ⊇ F} for F
varying in the finite subsets of K , i.e., if F := {x1, x2, . . . , xn}, with
xi ∈ K , then

UF = Zar(K |A[x1, x2, . . . , xn]).

• The space Z = Zar(K |A), equipped with this topology, is usually
called the Riemann-Zariski space of K over A.
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From the collaboration with David Dobbs in 1986/87, we published two
papers (one of these, joint also with Rich Fedder) concerning the
topological and algebraic structure of the space Zar(K |A).
(see [Dobbs-Fedder-Fontana, 1987], [Dobbs-Fontana, 1986]).

• First we proved, using a purely topological approach that:
If K is the quotient field of A then Zar(A), endowed with the Zariski
topology, is a spectral space in the sense of [Hochster, 1969]
(see [Dobbs-Fedder-Fontana, 1987]).

This result was later re-proved by several authors with a variety of different
techniques:

• in [Kuhlmann, 2004, Appendix], using a model-theoretic approach;
• in [Finocchiaro, 2013, Corollary 3.3] using new topological methods (e.g., ultrafilter
topology);

• in [Schwartz, 2013], using the inverse spectrum of a lattice ordered abelian group (via

the Jaffard-Ohm Theorem).
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• Immediately after the first paper, in collaboration with David Dobbs,
we proved a more precise result, exhibiting explicitly an integral domain A
with a canonical map ϕ : Zar(A)→ Spec(A) realizing a topological
homeomorphism (with respect to the Zariski topologies).

Theorem [Dobbs-Fontana, 1986]

Let A be an integral domain with quotient field K , and let A := Kr(A, b).
The canonical map

ϕ : Zar(A)→ Spec(A) , (V ,M) 7→ M(X ) ∩A

is a homeomorphism (with respect to the Zariski topologies).
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Note that the previous theorem, stated for the space Zar(A), did not
include the more general space Zar(K |A).

Note, for instance, that if k is an algebraically closed field, then

Zar(k[X ]) := Zar(k(X )|k[X ]) = {k[X ](X−α) | α ∈ k} , and

Zar(k(X )|k) = Zar(k[X ]) ∪ {k[1/X ](1/X )} .

A result including the case of Zar(K |A) was possible many years later,
only after appropriate generalizations of the Kronecker function ring were
introduced and studied.
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Using Halter-Koch’s K–function rings, it was proven in
[Finocchiaro-Fontana-Loper, 2013b] as a particular case of a more general
result the following:

Theorem [Finocchiaro-Fontana-Loper, 2013b]

Let A be any subring of K , and let

Kr(K |A) :=
⋂
{V (X ) | V ∈ Zar(K |A)}.

• Then A := Kr(K |A) is a K−function ring (after Halter-Koch).

• The canonical map σ : Zar(K |A)→ Zar(K (X )|A) , V 7→ V (X ) is an
homeomorphism.

• The canonical map ϕ : Zar(K |A) ∼= Zar(K (X )|A)→ Spec(A) be the
map sending a valuation overring of A into its center on A, composed
with the homeomorphism σ, establishes a homeomorphism (with respect
to the Zariski topologies).
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With all good wishes to Francesco

and . . . thanks for your attention!
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