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History of the Krull-Schmidt-Remak Theorem
Ferdinand Georg Frobenius (Berlin, 1849-1917)

Frobenius and Stickelberger, “Über Gruppen von vertauschbaren
Elementen”, J. reine angew. Math. 86 (1879), 217–262:
any finite abelian group is a direct product of cyclic groups whose
orders are powers of primes, and this powers of primes are uniquely
determined by the group.

Joseph Henry Maclagan Wedderburn (Angus, Scotland 1882 -
Princeton 1948 – a Scottish mathematician, who taught at
Princeton University for most of his career.)
“On the Direct Product in the Theory of Finite Groups”, Ann. of
Math. 10 (1909), 173–176; Wedderburn mentions some credit is
due to G. A. Miller): if a finite group G has two direct-product
decompositions G = G1 ×G2 × · · · ×Gt = H1 ×H2 × · · · ×Hs into
indecomposables, then t = s and there is an automorphism ϕ of G
such that ϕ(Gi ) = Hσ(i) for all i ’s for some permutation σ of
1, 2, . . . , n.
The proof was not complete.
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Frobenius and Stickelberger, “Über Gruppen von vertauschbaren
Elementen”, J. reine angew. Math. 86 (1879), 217–262:
any finite abelian group is a direct product of cyclic groups whose
orders are powers of primes, and this powers of primes are uniquely
determined by the group.

Joseph Henry Maclagan Wedderburn (Angus, Scotland 1882 -
Princeton 1948 – a Scottish mathematician, who taught at
Princeton University for most of his career.)
“On the Direct Product in the Theory of Finite Groups”, Ann. of
Math. 10 (1909), 173–176; Wedderburn mentions some credit is
due to G. A. Miller):

if a finite group G has two direct-product
decompositions G = G1 ×G2 × · · · ×Gt = H1 ×H2 × · · · ×Hs into
indecomposables, then t = s and there is an automorphism ϕ of G
such that ϕ(Gi ) = Hσ(i) for all i ’s for some permutation σ of
1, 2, . . . , n.
The proof was not complete.



History of the Krull-Schmidt-Remak Theorem
Ferdinand Georg Frobenius (Berlin, 1849-1917)
Frobenius and Stickelberger, “Über Gruppen von vertauschbaren
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History of the Krull-Schmidt-Remak Theorem

Robert Erich Remak (Berlin 1888 - Auschwitz 1943), German
mathematician, of Jewish ancestry.

His dissertation, “Über die Zerlegung der endlichen Gruppen in
indirekte unzerlegbare Faktoren” (”On the decomposition of finite
groups into indirect indecomposable factors”, 1911) contained a
complete proof and established that if a finite group G has two
direct-product decompositions into indecomposables
G = G1 × G2 × · · · × Gt = H1 × H2 × · · · × Hs , then t = s and
there is a central automorphism ϕ of G such that ϕ(Gi ) = Hσ(i)

for all i ’s for some permutation σ of 1, 2, . . . , n.

central automorphism of G = automorphism of G that induces the
identity G/ζ(G )→ G/ζ(G ). Here ζ(G ) denotes the center of G .
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History of the Krull-Schmidt-Remak Theorem

Otto Yulyevich Schmidt (Otto �l~eviq Xmidt, Mogilëv,
Russian Empire (now Belarus) 1891 - Moscow 1956).

His father was a descendant of German settlers in Latvia, while his
mother was a Latvian.
Soviet mathematician, astronomer, geophysicist, statesman,
academician, celebrated explorer of the Arctic, Hero of the USSR
(1937), member of the Communist Party.

“Sur les produits directs”, Bull. Soc. Math. France 41 (1913),
161–164: a simplified proof of Remak’s main results.
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Russian Empire (now Belarus) 1891 - Moscow 1956).
His father was a descendant of German settlers in Latvia, while his
mother was a Latvian.
Soviet mathematician, astronomer, geophysicist, statesman,
academician, celebrated explorer of the Arctic, Hero of the USSR
(1937), member of the Communist Party.

“Sur les produits directs”, Bull. Soc. Math. France 41 (1913),
161–164: a simplified proof of Remak’s main results.



History of the Krull-Schmidt-Remak Theorem

Otto Yulyevich Schmidt (Otto �l~eviq Xmidt, Mogilëv,
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History of the Krull-Schmidt-Remak Theorem

Wolfgang Krull (Baden-Baden 1899, Bonn 1971)

“Über verallgemeinerte endliche Abelsche Gruppen”, Math.
Zeitschrift 23 (1925), 161–196:

Abelian operator groups with ascending and descending chain
conditions (operator groups = Ω-groups. Here Ω is a set and an
Ω-group is a pair (H, ϕ), where H is a group and ϕ : Ω→ End(H)
is a mapping).

Groups that satisfy ACC and DCC on normal subgroups ( = G
group, N (G ), partially ordered by ⊆, turns out to be a modular
lattice. If N (G ) is a partially ordered set that satisfies the ACC
and the DCC, then K-S holds for G ).



History of the Krull-Schmidt-Remak Theorem

Wolfgang Krull (Baden-Baden 1899, Bonn 1971)
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History of the Krull-Schmidt-Remak Theorem

Øystein Ore (Oslo, 1899-1968)

unified the proofs from various
categories: groups, abelian operator groups, rings and algebras, the
theorem of Wedderburn holds for modular lattices with descending
and ascending chain conditions.

Goro Azumaya (Yokohama 1920 - Bloomington, Indiana, 2010).
”Corrections and supplementaries to my paper concerning
Krull-Remak-Schmidt’s theorem”, Nagoya Math. J. 1 (1950),
117–124:
Let R be a ring, Mi (i ∈ I ) be a right R-module, EndR(Mi ) a
local ring, M =

⊕
i∈I Mi . Then any two direct sum decompositions

of M into indecomposable direct summands are isomorphic.
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An example that follows a different pattern

R any ring, MR any right R-module.

MR is uniform if it is 6= 0 and the intersection of any two non-zero
submodules of MR is non-zero (=the modular lattice L(M) of all
submodules of MR has Goldie dimension 1.)

MR is couniform if it is 6= 0 and the sum of any two proper
submodules of MR is a proper submodule of MR (=the lattice
L(M) has dual Goldie dimension 1.)

MR is biuniform if it is uniform and couniform (=L(M) has Goldie
dimension 1 and dual Goldie dimension 1.)

The endomorphism ring of a biuniform module has at most two
maximal right (left) ideals:
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Biuniform modules and their endomorphism rings

Theorem
[F., T.A.M.S. 1996] Let UR be a biuniform module over a ring R,

E := End(UR) its endomorphism ring, I := { f ∈ E | f is not
injective } and K := { f ∈ E | f is not surjective }. Then I and K
are two two-sided completely prime ideals of E , and every proper
right ideal of E and every proper left ideal of E is contained either
in I or in K . Moreover,
(a) either E is a local ring with maximal ideal I ∪ K , or
(b) E/I and E/K are division rings, and E/J(E ) ∼= E/I × E/K .
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Monogeny class, epigeny class

Two modules U and V are said to have

1. the same monogeny class, denoted [U]m = [V ]m, if there exist
a monomorphism U → V and a monomorphism V → U;

2. the same epigeny class, denoted [U]e = [V ]e , if there exist an
epimorphism U → V and an epimorphism V → U.
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Weak Krull-Schmidt Theorem

Theorem
[F., T.A.M.S. 1996] Let U1, . . . , Un, V1, . . . , Vt be n + t
biuniform right modules over a ring R. Then the direct sums
U1 ⊕ · · · ⊕ Un and V1 ⊕ · · · ⊕ Vt are isomorphic R-modules if and
only if n = t and there exist two permutations σ and τ of
{1, 2, . . . , n} such that [Ui ]m = [Vσ(i)]m and [Ui ]e = [Vτ(i)]e for
every i = 1, 2, . . . , n.



Several other classes of modules have the same behaviour:

Cyclically presented modules over local rings (Amini, Amini, F.).
Kernels of morphisms between indecomposable injective modules
(Ecevit, F., Koşan).
Couniformly presented modules (F., Girardi).
Auslander-Bridger modules (F., Girardi).
Also for direct products (Alahmadi, F., J. Algebra 2015).
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Other algebraic structures?

Other algebraic structures, not only modules, could have the same
behavior.

Groups, Lie algebras,. . .



Groups

[F.-Lucchini, The Krull-Schmidt Theorem holds for biuniform
groups, submitted for publication in 2015]

The normal subgroups of a group G form, under inclusion, a lattice
N (G ), which is a modular lattice. Therefore the lattice N (G ) may
have Goldie dimension one, or dual Goldie dimension one, or both
dimensions one. Accordingly, we will say that the group G is
uniform, couniform or biuniform.

For instance, the additive groups Z and Q are uniform, and
Z/pnZ, simple groups, the symmetric groups Sn and the Prüfer
groups Z(p∞) are biuniform. Uniform groups and couniform
groups are all clearly indecomposable groups as far as
direct-product decompositions are concerned.
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Biuniform groups

Lucchini and I have considered the behavior of biuniform groups G
with respect to direct products.

In our study, a predominant role is played by the normal
endomorphisms of the group G , that is, the endomorphisms that
commute with all inner automorphisms of G (ϕ ∈ End(G ) and
αgϕ = ϕαg for every g ∈ G ), and their generalizations to normal
homomorphisms between normal subgroups and homomorphic
images of G .
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Biuniform groups

Theorem
Let G1, . . . ,Gn,H1, . . . ,Hm be groups with H1, . . . ,Hm biuniform,
G1, . . . ,Gn indecomposable and G1 × · · · × Gn

∼= H1 × · · · × Hm.
Then:
(a) n ≤ m.
(b) n = m if and only if all the groups G1, . . . ,Gn are biuniform.
(c) If the groups G1, . . . ,Gn satisfy the maximal condition on
normal subgroups or have centers which are either divisible or not
torsion-free, then G1, . . . ,Gn are biuniform, n = m and there is a
permutation σ of {1, 2, . . . , n} such that Gi

∼= Hσ(i) for every
i = 1, 2, . . . , n.



Completely indecomposable groups

Another class of groups for which we have been able to determine
a uniqueness result for direct-product decompositions into
indecomposables, is the class of finite direct products of completely
indecomposable groups.

A group G is completely indecomposable
if it is 6= 1 and, for every pair ϕ,ϕ′ : G → G of normal
endomorphisms of G such that ϕ+ ϕ′ is defined and is the identity
of G , either ϕ or ϕ′ is an automorphism of G . Recall that ϕ+ ϕ′

is defined (i.e., it is an endomorphism of G ) if and only if
[ϕ(G ), ϕ′(G )] = 1.
Thus completely indecomposable groups are the groups for which
the partial ring of all normal endomorphisms is a sort of local
(partial) ring.



Completely indecomposable groups

Another class of groups for which we have been able to determine
a uniqueness result for direct-product decompositions into
indecomposables, is the class of finite direct products of completely
indecomposable groups. A group G is completely indecomposable
if it is 6= 1 and, for every pair ϕ,ϕ′ : G → G of normal
endomorphisms of G such that ϕ+ ϕ′ is defined and is the identity
of G , either ϕ or ϕ′ is an automorphism of G .

Recall that ϕ+ ϕ′

is defined (i.e., it is an endomorphism of G ) if and only if
[ϕ(G ), ϕ′(G )] = 1.
Thus completely indecomposable groups are the groups for which
the partial ring of all normal endomorphisms is a sort of local
(partial) ring.



Completely indecomposable groups

Another class of groups for which we have been able to determine
a uniqueness result for direct-product decompositions into
indecomposables, is the class of finite direct products of completely
indecomposable groups. A group G is completely indecomposable
if it is 6= 1 and, for every pair ϕ,ϕ′ : G → G of normal
endomorphisms of G such that ϕ+ ϕ′ is defined and is the identity
of G , either ϕ or ϕ′ is an automorphism of G . Recall that ϕ+ ϕ′

is defined (i.e., it is an endomorphism of G ) if and only if
[ϕ(G ), ϕ′(G )] = 1.
Thus completely indecomposable groups are the groups for which
the partial ring of all normal endomorphisms is a sort of local
(partial) ring.



For any group G , the set GG of all mappings G → G is a right
near ring

, and GG ⊇ End(G ) ⊇ NEnd(G ). Now End(G ) and
NEnd(G ) are partial subrings with identity, in the following sense.
Set S = { (α, β) ∈ End(G )× End(G ) | [α(G ), β(G )] = 1 }, so
that +: S → End(G ). Then End(G ) is a multiplicative submonoid
of GG , and End(G ) also has the partially defined operation +,
where the endomorphism α + β is an endomorphism of G defined
only when the subgroups α(G ) and β(G ) centralize each other,
that is, when (α, β) ∈ S . Moreover, the equality
0 + α = α + 0 = α always holds, and the identities
α + β = β + α, (α + β) + γ = α + (β + γ), α(β + γ) =
αβ + αγ, (α + β)γ = αγ + βγ hold, for α, β, γ ∈ End(G ),
whenever both members of the equalities are defined.
A group G is completely indecomposable ⇔ the partial ring
NEnd(G ) is a local partial ring.
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Completely indecomposable groups

Theorem
Let G1, . . . ,Gn be completely indecomposable groups.
(a) If G1 × · · · × Gn = H × L, then there is a partition IH ∪̇IL of the
set {1, 2, . . . , n} such that that H ∼=

∏
i∈IH Gi and L ∼=

∏
i∈IL Gi

(direct products).
(b) If G1 × · · · × Gn

∼= H1 × · · · × Hm, where the Hj are
indecomposable groups, then n = m and there is a permutation σ
of {1, 2, . . . , n} such that Gi

∼= Hσ(i) for every i = 1, 2, . . . , t.



The correct categorical setting: G -groups

From now on, joint work with M. J. Arroyo [Category of G -Groups
and its Spectral Category, submitted for publication in April 2015].

Let G be a group. A (left) G -group is a pair (H, ϕ), where H is a
group and ϕ : G → Aut(H) is a group homomorphism.
Equivalently, a G -group is a group H endowed with a mapping
· : G × H → H, (g , h) 7→ gh, called left scalar multiplication, such
that
(a) g(hh′) = (gh)(gh′)
(b) (gg ′)h = g(g ′h)
(c) 1Gh = h
for every g , g ′ ∈ G and every h, h′ ∈ H.
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The category G -Grp

Objects of G -Grp: all pairs (H, ϕ), where H is any group and
ϕ : G → Aut(H) is a group homomorphism.

The notion of G -group is classical, and sometimes G is called an
operator group on H [Suzuki, Group Theory I, 1982,
Definition 8.1].

Strict analogy with left modules over a ring R:
Objects of R-Mod: all pairs (H, ϕ), where H is any abelian group
and ϕ : R → End(H) is a ring homomorphism.
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The category G -Grp

A special object of G -Grp is the regular G -group (G , α). Here
α : G → Aut(G ), g 7→ αg , where αg (x) = gxg−1 for every
g , x ∈ G .

The regular G -group (G , α) plays, in the category G -Grp, a role
pretty similar to the role of the regular module RR in the category
R-Mod.
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The category G -Grp

Subobjects of the regular G -group G = normal subgroups of G

(Subobjects of the regular R-module RR = left ideals of R)

Quotient objects of the regular G -group G = factor groups G/M
(Quotient objects of the regular R-module RR = cyclic right
R-modules)

Normal homomorphisms are morphisms in the category G -Grp
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The category G -Grp

G -Grp is a semi-abelian category in the sense of Janelidze, Márki
and Tholen.

We determine free G -groups and show that the injective objects in
the category G -Grp are only the trivial groups, like in the case of
the category Grp of groups.

The category G -Set of G -sets is a Boolean topos (which does not
satisfy the Axiom of Choice), and the category of G -groups is the
category of groups of that topos (Janelidze).
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Spectral category

Construction of the spectral category of a Grothendieck category,
due to Gabriel and Oberst, and its dual.

It is also possible for the category G -Grp, or, better, for the full
subcategory CG of G -Grp consisting of all objects (H, ϕ) of G -Grp
for which the image of the group homomorphism ϕ : G → Aut(H)
contains the group Inn(H) of all inner automorphisms of H.

We thus get two categories Spec(G -Grp) and C′G and a canonical
functor CG → Spec(G -Grp)× C′G .

For further details, [Arroyo - F., Category of G -Groups and its
Spectral Category, 2015].
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Modules vs groups

module MR , E := End(MR) group H

idempotents in E idempotents in End(H)
l l

{ (A,B) | A,B ≤ MR , { (A,B) | A,B ≤ H,
MR = A⊕ B } H = Ao B }

normal idempotents in End(H)
l

{ (A,B) | A,B ≤ H,
H = A× B }



Modules vs groups

Ω-groups G -sets
\ /

E -Mod EE regular module G -groups

GG regular G -group
E -Mod is the category G -Grp is the category

in which it is natural to study in which it is natural to study
direct-sum decompositions direct-product decompositions

of EE of G
= direct-sum decompositions

of MR EndG -Grp(G ) =

={normal endomorphisms of G}
AutG -Grp(G ) =

={central automorphisms of G}


