Coarse Structures on Infinite Groups

Dikran Dikranjan

Naples 2015 Conference in Group Theory and its Applications Napoli 8.10.2015

BUON COMPLEANNO, FRACESCO !!!

Dikran Dikranjan Coarse Structures on Infinite Groups

- ₹ 🖬 🕨

 joint work with Nicolò Zava University of Udine

문 🛌 문

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

- Background from Coarse Spaces
 - John Roe's approach (entourages)
 - Ukraine school appproach (balleans)
 - the asymptotic dimension asdim
- The coarse cateogry **PreCoarse** and its quotient **Coarse**
- Coarse structures on groups first steps
- The coarse classification of countable abelian-like groups
- Linear coarse structures and zero-dimensionality
- Some functorial coarse structures on groups
- Application to a problem of Banakh, Chervak, Lyaskovska
- Asymptotic dimension of LCA groups

According to Roe [Memoirs AMS, 2003], a coarse space is a pair (X, \mathcal{E}) , where X is a set and $\mathcal{E} \subseteq \mathcal{P}(X \times X)$ a coarse structure on it, which means that

(D) $\Delta_X := \{(x,x) \mid x \in X\} \in \mathcal{E};$

(1) \mathcal{E} is closed under passage to subsets;

(12) \mathcal{E} is closed under finite unions;

(U1) if $E \in \mathcal{E}$, then $E^{-1} := \{(y, x) \in X \times X \mid (x, y) \in E\} \in \mathcal{E};$ (U2) if $E, F \in \mathcal{E}$, then

 $E \circ F := \{(x, y) \in X \times X \mid \exists z \in X \text{ s.t. } (x, z) \in E, (z, y) \in F\}.$ (11) and (12) say that \mathcal{E} is an ideal of $X \times X$. Replacing (11) and (12) with their dual properties (F1) and (F2) (saying that \mathcal{E} is a filter of $X \times X$) the four properties (F1), (F2), (U1) and (U2) describe precisely a uniformity on X.

A uniformity can be equivalently described by means of uniform covers, i.e., the families $\{E[x] : x \in X\}$, $E \in \mathcal{E}$, where $E[x] = \{y \in Y : (x, y) \in E\}$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X_{P} \leftarrow P \leftarrow P$

According to Roe [Memoirs AMS, 2003], a coarse space is a pair (X, \mathcal{E}) , where X is a set and $\mathcal{E} \subseteq \mathcal{P}(X \times X)$ a coarse structure on it, which means that

(D)
$$\Delta_X := \{(x,x) \mid x \in X\} \in \mathcal{E};$$

(1) \mathcal{E} is closed under passage to subsets;

(12) \mathcal{E} is closed under finite unions;

(U1) if $E \in \mathcal{E}$, then $E^{-1} := \{(y, x) \in X \times X \mid (x, y) \in E\} \in \mathcal{E};$ (U2) if $E, F \in \mathcal{E}$, then

 $E \circ F := \{(x, y) \in X \times X \mid \exists z \in X \text{ s.t. } (x, z) \in E, (z, y) \in F\}.$ (11) and (12) say that \mathcal{E} is an ideal of $X \times X$. Replacing (11) and (12) with their dual properties (F1) and (F2) (saying that \mathcal{E} is a filter of $X \times X$) the four properties (F1), (F2), (U1) and (U2) describe precisely a uniformity on X.

A uniformity can be equivalently described by means of uniform covers, i.e., the families $\{E[x] : x \in X\}$, $E \in \mathcal{E}$, where $E[x] = \{y \in Y : (x, y) \in E\}$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X_{P} \leftarrow P \leftarrow P$

According to Roe [Memoirs AMS, 2003], a coarse space is a pair (X, \mathcal{E}) , where X is a set and $\mathcal{E} \subseteq \mathcal{P}(X \times X)$ a coarse structure on it, which means that

(D)
$$\Delta_X := \{(x,x) \mid x \in X\} \in \mathcal{E};$$

(1) \mathcal{E} is closed under passage to subsets;

(12) \mathcal{E} is closed under finite unions;

(U1) if $E \in \mathcal{E}$, then $E^{-1} := \{(y, x) \in X \times X \mid (x, y) \in E\} \in \mathcal{E};$ (U2) if $E, F \in \mathcal{E}$, then

 $E \circ F := \{(x, y) \in X \times X \mid \exists z \in X \text{ s.t. } (x, z) \in E, (z, y) \in F\}.$ (11) and (12) say that \mathcal{E} is an ideal of $X \times X$. Replacing (11) and (12) with their dual properties (F1) and (F2) (saying that \mathcal{E} is a filter of $X \times X$) the four properties (F1), (F2), (U1) and (U2) describe precisely a uniformity on X.

A uniformity can be equivalently described by means of uniform covers, i.e., the families $\{E[x] : x \in X\}$, $E \in \mathcal{E}$, where $E[x] = \{y \in Y : (x, y) \in E\}$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X_{P} \land P \land P \land P \land P$

According to Roe [Memoirs AMS, 2003], a coarse space is a pair (X, \mathcal{E}) , where X is a set and $\mathcal{E} \subseteq \mathcal{P}(X \times X)$ a coarse structure on it, which means that

(D)
$$\Delta_X := \{(x,x) \mid x \in X\} \in \mathcal{E};$$

(1) \mathcal{E} is closed under passage to subsets;

(12) \mathcal{E} is closed under finite unions;

(U1) if $E \in \mathcal{E}$, then $E^{-1} := \{(y, x) \in X \times X \mid (x, y) \in E\} \in \mathcal{E};$ (U2) if $E, F \in \mathcal{E}$, then

 $E \circ F := \{(x, y) \in X \times X \mid \exists z \in X \text{ s.t. } (x, z) \in E, (z, y) \in F\}.$ (11) and (12) say that \mathcal{E} is an ideal of $X \times X$. Replacing (11) and (12) with their dual properties (F1) and (F2) (saying that \mathcal{E} is a filter of $X \times X$) the four properties (F1), (F2), (U1) and (U2) describe precisely a uniformity on X.

A uniformity can be equivalently described by means of uniform covers, i.e., the families $\{E[x] : x \in X\}$, $E \in \mathcal{E}$, where $E[x] = \{y \in Y : (x, y) \in E\}$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X_{P} \leftarrow P \leftarrow P$

According to Roe [Memoirs AMS, 2003], a coarse space is a pair (X, \mathcal{E}) , where X is a set and $\mathcal{E} \subseteq \mathcal{P}(X \times X)$ a coarse structure on it, which means that

(D)
$$\Delta_X := \{(x,x) \mid x \in X\} \in \mathcal{E};$$

(1) \mathcal{E} is closed under passage to subsets;

(12) \mathcal{E} is closed under finite unions;

(U1) if
$$E \in \mathcal{E}$$
, then $E^{-1} := \{(y, x) \in X \times X \mid (x, y) \in E\} \in \mathcal{E};$
(U2) if $E \in \mathcal{E}$ then

 $E \circ F := \{(x, y) \in X \times X \mid \exists z \in X \text{ s.t. } (x, z) \in E, (z, y) \in F\}.$ (11) and (12) say that \mathcal{E} is an ideal of $X \times X$. Replacing (11) and (12) with their dual properties (F1) and (F2) (saying that \mathcal{E} is a filter of $X \times X$) the four properties (F1), (F2), (U1) and (U2) describe precisely a uniformity on X.

According to Roe [Memoirs AMS, 2003], a coarse space is a pair (X, \mathcal{E}) , where X is a set and $\mathcal{E} \subseteq \mathcal{P}(X \times X)$ a coarse structure on it, which means that

(D)
$$\Delta_X := \{(x,x) \mid x \in X\} \in \mathcal{E};$$

(1) \mathcal{E} is closed under passage to subsets;

(12) \mathcal{E} is closed under finite unions;

(U1) if
$$E \in \mathcal{E}$$
, then $E^{-1} := \{(y, x) \in X \times X \mid (x, y) \in E\} \in \mathcal{E};$
(U2) if $E, F \in \mathcal{E}$, then

 $E \circ F := \{(x, y) \in X \times X \mid \exists z \in X \text{ s.t. } (x, z) \in E, (z, y) \in F\}.$ (11) and (12) say that \mathcal{E} is an ideal of $X \times X$. Replacing (11) and (12) with their dual properties (F1) and (F2) (saying that \mathcal{E} is a filter of $X \times X$) the four properties (F1), (F2), (U1) and (U2) describe precisely a uniformity on X.

A uniformity can be equivalently described by means of uniform covers, i.e., the families $\{E[x] : x \in X\}$, $E \in \mathcal{E}$, where $E[x] = \{y \in Y : (x, y) \in E\}$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and $E[A] = \{y \in Y : x \in A, (x, y) \in E\}$ for $A \subseteq X$ and E[A] for $A \subseteq X$ and

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{ y \in X \mid x \in B(y,\alpha) \} \qquad B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{ y \in X \mid x \in B(y,\alpha) \} \qquad B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{y \in X \mid x \in B(y,\alpha)\}$$
 $B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{y \in X \mid x \in B(y,\alpha)\}$$
 $B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{y \in X \mid x \in B(y,\alpha)\}$$
 $B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{y \in X \mid x \in B(y,\alpha)\}$$
 $B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

A ball structure is a triple $\mathcal{B} = (X, P, B)$ where X and P are non-empty sets (called support and set of radii respectively) of the ball structure, and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X containing x, called ball of center x and radius α .

For a ball structure (X, P, B), $x \in X$, $\alpha \in P$ and $A \subseteq X$, we put

$$B^*(x,\alpha) := \{y \in X \mid x \in B(y,\alpha)\}$$
 $B(A,\alpha) := \bigcup_{x \in A} B(x,\alpha).$

A ball structure (X, P, B) is said to be

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$, $B(x, \alpha) \subseteq B^*(x, \alpha')$ and $B^*(x, \beta) \subseteq B(x, \beta')$;
- upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P such that for every x ∈ X, B(B(x, α), β) ⊆ B(x, γ).

Remark

Let X be a non-empty set.

• If \mathcal{E} is a coarse structure on X, then $\mathcal{B}_{\mathcal{E}} = (X, \mathcal{E}, B_{\mathcal{E}})$, where $B_{\mathcal{E}}(x, E) := \{x\} \cup E[x]$ for every $x \in E$ and $E \in \mathcal{E}$, is a ballean.

• If (X, P, B) is a ballean, consider the family $\mathcal{E}_{\mathcal{B}}$ of all subsets E of $X \times X$ such that there exists an $\alpha \in P$ with $E \subseteq E_{\alpha} = \bigcup_{x \in X} \{(x, y) \mid y \in B(x, \alpha)\}$. Then $(X, \mathcal{E}_{\mathcal{B}})$ is a coarse structure.

This correspondence defines a bijection between coarse spaces ballean structures and ballean structures on X.

A ballean $\mathcal{B} = (X, P, B)$ is said to be connected if for all $x, y \in X$ there exists an $\alpha \in P$ such that $y \in B(x, \alpha)$, i.e., $X \times X = \bigcup_{E \in \mathcal{E}} E$. A coarse structure \mathcal{E} on a set X is said to be large scale connected if there is an entourage $E \in \mathcal{E}$ such that $X \times X_{a} = \bigcup_{E \in \mathcal{E}} E \subseteq \mathcal{E}$.

Remark

Let X be a non-empty set.

- If \mathcal{E} is a coarse structure on X, then $\mathcal{B}_{\mathcal{E}} = (X, \mathcal{E}, B_{\mathcal{E}})$, where $B_{\mathcal{E}}(x, E) := \{x\} \cup E[x]$ for every $x \in E$ and $E \in \mathcal{E}$, is a ballean.
- If (X, P, B) is a ballean, consider the family *E*_B of all subsets E of X × X such that there exists an α ∈ P with E ⊆ E_α = ⋃_{x∈X}{(x, y) | y ∈ B(x, α)}. Then (X, E_B) is a coarse structure.

This correspondence defines a bijection between coarse spaces ballean structures and ballean structures on X.

A ballean $\mathcal{B} = (X, P, B)$ is said to be connected if for all $x, y \in X$ there exists an $\alpha \in P$ such that $y \in B(x, \alpha)$, i.e., $X \times X = \bigcup_{E \in \mathcal{E}} E$. A coarse structure \mathcal{E} on a set X is said to be large scale connected if there is an entourage $E \in \mathcal{E}$ such that $X \times X_{a} = \bigcup_{E \in \mathcal{E}} E \subseteq \mathcal{E}$.

Remark

Let X be a non-empty set.

- If \mathcal{E} is a coarse structure on X, then $\mathcal{B}_{\mathcal{E}} = (X, \mathcal{E}, B_{\mathcal{E}})$, where $B_{\mathcal{E}}(x, E) := \{x\} \cup E[x]$ for every $x \in E$ and $E \in \mathcal{E}$, is a ballean.
- If (X, P, B) is a ballean, consider the family *E*_B of all subsets E of X × X such that there exists an α ∈ P with E ⊆ E_α = ⋃_{x∈X}{(x, y) | y ∈ B(x, α)}. Then (X, E_B) is a coarse structure.

This correspondence defines a bijection between coarse spaces ballean structures and ballean structures on X.

A ballean $\mathcal{B} = (X, P, B)$ is said to be connected if for all $x, y \in X$ there exists an $\alpha \in P$ such that $y \in B(x, \alpha)$, i.e., $X \times X = \bigcup_{E \in \mathcal{E}} E$. A coarse structure \mathcal{E} on a set X is said to be large scale connected if there is an entourage $E \in \mathcal{E}$ such that $X \times X_{a} = \bigcup_{E \in \mathcal{E}} E$.

Remark

Let X be a non-empty set.

- If \mathcal{E} is a coarse structure on X, then $\mathcal{B}_{\mathcal{E}} = (X, \mathcal{E}, B_{\mathcal{E}})$, where $B_{\mathcal{E}}(x, E) := \{x\} \cup E[x]$ for every $x \in E$ and $E \in \mathcal{E}$, is a ballean.
- If (X, P, B) is a ballean, consider the family *E*_B of all subsets E of X × X such that there exists an α ∈ P with E ⊆ E_α = ⋃_{x∈X}{(x, y) | y ∈ B(x, α)}. Then (X, E_B) is a coarse structure.

This correspondence defines a bijection between coarse spaces ballean structures and ballean structures on X.

A ballean $\mathcal{B} = (X, P, B)$ is said to be connected if for all $x, y \in X$ there exists an $\alpha \in P$ such that $y \in B(x, \alpha)$, i.e., $X \times X = \bigcup_{E \in \mathcal{E}} E$. A coarse structure \mathcal{E} on a set X is said to be large scale connected if there is an entourage $E \in \mathcal{E}$ such that $X \times X_{a} = \bigcup_{E \in \mathcal{E}} E \subseteq \mathbb{E}$.

Remark

Let X be a non-empty set.

- If \mathcal{E} is a coarse structure on X, then $\mathcal{B}_{\mathcal{E}} = (X, \mathcal{E}, B_{\mathcal{E}})$, where $B_{\mathcal{E}}(x, E) := \{x\} \cup E[x]$ for every $x \in E$ and $E \in \mathcal{E}$, is a ballean.
- If (X, P, B) is a ballean, consider the family *E*_B of all subsets E of X × X such that there exists an α ∈ P with E ⊆ E_α = ⋃_{x∈X}{(x, y) | y ∈ B(x, α)}. Then (X, E_B) is a coarse structure.

This correspondence defines a bijection between coarse spaces ballean structures and ballean structures on X.

A ballean $\mathcal{B} = (X, P, B)$ is said to be connected if for all $x, y \in X$ there exists an $\alpha \in P$ such that $y \in B(x, \alpha)$, i.e., $X \times X = \bigcup_{E \in \mathcal{E}} E$. A coarse structure \mathcal{E} on a set X is said to be large scale connected if there is an entourage $E \in \mathcal{E}$ such that $X \times X = \bigcup_n E \odot \dots \odot E$.

1) Let X be a set and \mathcal{J} be a base of an ideal on X (i.e., if $l_1, l_1 \in \mathcal{J}$ then $l_1 \cup l_2 \subseteq I$ for some $I \in \mathcal{J}$). If $x \in X$ and $I \in \mathcal{J}$, we define the ball $B_{\mathcal{J}}(x, I)$ of center x and radius I to be

$$B_{\mathcal{J}}(x,I):= egin{cases} I & ext{if } x\in I, \ \{x\} & ext{otherwise}. \end{cases}$$

 $(X, \mathcal{J}, B_{\mathcal{J}})$ is a ballean.

The complements of the elements of \mathcal{J} form a filter base φ on X. This is why the ballean $(X, \mathcal{J}, B_{\mathcal{J}})$ was defined as filter ballean and widely studied by the Ukraine School. It is connected iff the filter φ is not fixed.

2) Let (X, τ) be a topological space. The family $\mathcal{C}(X)$ of all compact subsets of X is a base of an ideal. The ballean $(X, \mathcal{C}(X), B_{\mathcal{C}(X)})$ is called compact ballean. It is always connected. 3) For a metric space (X, d) the metric ballean is defined by $(X, \mathbb{R}_+, B(x, r))$, where B(x, r) is the usual d-ball for $r \in \mathbb{R}_+$.

1) Let X be a set and \mathcal{J} be a base of an ideal on X (i.e., if $l_1, l_1 \in \mathcal{J}$ then $l_1 \cup l_2 \subseteq l$ for some $l \in \mathcal{J}$). If $x \in X$ and $l \in \mathcal{J}$, we define the ball $B_{\mathcal{J}}(x, l)$ of center x and radius l to be

$$B_{\mathcal{J}}(x,I):= egin{cases} I & ext{if } x\in I, \ \{x\} & ext{otherwise}. \end{cases}$$

 $(X, \mathcal{J}, B_{\mathcal{J}})$ is a ballean.

The complements of the elements of \mathcal{J} form a filter base φ on X. This is why the ballean $(X, \mathcal{J}, B_{\mathcal{J}})$ was defined as filter ballean and widely studied by the Ukraine School. It is connected iff the filter φ is not fixed.

2) Let (X, τ) be a topological space. The family $\mathcal{C}(X)$ of all compact subsets of X is a base of an ideal. The ballean $(X, \mathcal{C}(X), B_{\mathcal{C}(X)})$ is called **compact ballean**. It is always connected. 3) For a metric space (X, d) the **metric ballean** is defined by $(X, \mathbb{R}_+, B(x, r))$, where B(x, r) is the usual d-ball for $r \in \mathbb{R}_+$.

1) Let X be a set and \mathcal{J} be a base of an ideal on X (i.e., if $l_1, l_1 \in \mathcal{J}$ then $l_1 \cup l_2 \subseteq I$ for some $I \in \mathcal{J}$). If $x \in X$ and $I \in \mathcal{J}$, we define the ball $B_{\mathcal{J}}(x, I)$ of center x and radius I to be

$$\mathcal{B}_\mathcal{J}(x,I):= egin{cases} I & ext{if } x\in I,\ \{x\} & ext{otherwise}. \end{cases}$$

$(X, \mathcal{J}, B_{\mathcal{J}})$ is a ballean.

The complements of the elements of \mathcal{J} form a filter base φ on X. This is why the ballean $(X, \mathcal{J}, B_{\mathcal{J}})$ was defined as filter ballean and widely studied by the Ukraine School. It is connected iff the filter φ is not fixed.

2) Let (X, τ) be a topological space. The family $\mathcal{C}(X)$ of all compact subsets of X is a base of an ideal. The ballean $(X, \mathcal{C}(X), B_{\mathcal{C}(X)})$ is called compact ballean. It is always connected. 3) For a metric space (X, d) the metric ballean is defined by $(X, \mathbb{R}_+, B(x, r))$, where B(x, r) is the usual d-ball for $r \in \mathbb{R}_+$.

1) Let X be a set and \mathcal{J} be a base of an ideal on X (i.e., if $l_1, l_1 \in \mathcal{J}$ then $l_1 \cup l_2 \subseteq I$ for some $I \in \mathcal{J}$). If $x \in X$ and $I \in \mathcal{J}$, we define the ball $B_{\mathcal{J}}(x, I)$ of center x and radius I to be

$$\mathcal{B}_\mathcal{J}(x,I):= egin{cases} I & ext{if } x\in I,\ \{x\} & ext{otherwise}. \end{cases}$$

 $(X, \mathcal{J}, B_{\mathcal{J}})$ is a ballean.

The complements of the elements of \mathcal{J} form a filter base φ on X. This is why the ballean $(X, \mathcal{J}, B_{\mathcal{J}})$ was defined as filter ballean and widely studied by the Ukraine School. It is connected iff the filter φ is not fixed.

2) Let (X, τ) be a topological space. The family $\mathcal{C}(X)$ of all compact subsets of X is a base of an ideal. The ballean $(X, \mathcal{C}(X), B_{\mathcal{C}(X)})$ is called **compact ballean**. It is always connected. 3) For a metric space (X, d) the **metric ballean** is defined by $(X, \mathbb{R}_+, B(x, r))$, where B(x, r) is the usual d-ball for $r \in \mathbb{R}_+$.
Example

1) Let X be a set and \mathcal{J} be a base of an ideal on X (i.e., if $l_1, l_1 \in \mathcal{J}$ then $l_1 \cup l_2 \subseteq I$ for some $I \in \mathcal{J}$). If $x \in X$ and $I \in \mathcal{J}$, we define the ball $B_{\mathcal{J}}(x, I)$ of center x and radius I to be

$$\mathcal{B}_\mathcal{J}(x,I):= egin{cases} I & ext{if } x\in I,\ \{x\} & ext{otherwise}. \end{cases}$$

 $(X, \mathcal{J}, B_{\mathcal{J}})$ is a ballean.

The complements of the elements of \mathcal{J} form a filter base φ on X. This is why the ballean $(X, \mathcal{J}, B_{\mathcal{J}})$ was defined as filter ballean and widely studied by the Ukraine School. It is connected iff the filter φ is not fixed.

2) Let (X, τ) be a topological space. The family $\mathcal{C}(X)$ of all compact subsets of X is a base of an ideal. The ballean $(X, \mathcal{C}(X), B_{\mathcal{C}(X)})$ is called compact ballean. It is always connected. 3) For a metric space (X, d) the metric ballean is defined by $(X, \mathbb{R}_+, B(x, r))$, where B(x, r) is the usual d-ball for $r \in \mathbb{R}_+$.

Example

1) Let X be a set and \mathcal{J} be a base of an ideal on X (i.e., if $l_1, l_1 \in \mathcal{J}$ then $l_1 \cup l_2 \subseteq I$ for some $I \in \mathcal{J}$). If $x \in X$ and $I \in \mathcal{J}$, we define the ball $B_{\mathcal{J}}(x, I)$ of center x and radius I to be

$$\mathcal{B}_\mathcal{J}(x,I):= egin{cases} I & ext{if } x\in I,\ \{x\} & ext{otherwise}. \end{cases}$$

 $(X, \mathcal{J}, B_{\mathcal{J}})$ is a ballean.

The complements of the elements of \mathcal{J} form a filter base φ on X. This is why the ballean $(X, \mathcal{J}, B_{\mathcal{J}})$ was defined as filter ballean and widely studied by the Ukraine School. It is connected iff the filter φ is not fixed.

2) Let (X, τ) be a topological space. The family $\mathcal{C}(X)$ of all compact subsets of X is a base of an ideal. The ballean $(X, \mathcal{C}(X), B_{\mathcal{C}(X)})$ is called compact ballean. It is always connected. 3) For a metric space (X, d) the metric ballean is defined by $(X, \mathbb{R}_+, B(x, r))$, where B(x, r) is the usual d-ball for $r \in \mathbb{R}_+$.

For a group $G = \langle S \rangle$, with a finite set of generators $S = S^{-1}$, the Cayley graph $\Gamma = \Gamma(G, S)$ has as vertex sets the elements of a group G and as edges all pairs (g, gg_1) , with $g \in G$ and $g_1 \in S$. Given an element g of G, its word norm |g| with respect to the generating set S is the shortest length of a word over S whose evaluation is equal to g. The word metric with respect to S is defined by $d_S(g, h) = |g^{-1}h|$. This gives a left invariant metric d_S on Γ with finite balls (i.e., the metric d_S is proper)

 $B(g,R) = \{h \in G : d_S(g,h) \leq R\}, g \in G, R \in \mathbb{R}_+.$

The growth of their size is one of the main topics in of the geometric group theory (Milnor's problems, Gromov's theorem).

For a group $G = \langle S \rangle$, with a finite set of generators $S = S^{-1}$, the Cayley graph $\Gamma = \Gamma(G, S)$ has as vertex sets the elements of a group G and as edges all pairs (g, gg_1) , with $g \in G$ and $g_1 \in S$. Given an element g of G, its word norm |g| with respect to the generating set S is the shortest length of a word over S whose evaluation is equal to g. The word metric with respect to S is defined by $d_S(g, h) = |g^{-1}h|$. This gives a left invariant metric d_S on Γ with finite balls (i.e., the metric d_S is proper)

 $B(g,R) = \{h \in G : d_S(g,h) \leq R\}, g \in G, R \in \mathbb{R}_+.$

The growth of their size is one of the main topics in of the geometric group theory (Milnor's problems, Gromov's theorem).

For a group $G = \langle S \rangle$, with a finite set of generators $S = S^{-1}$, the Cayley graph $\Gamma = \Gamma(G, S)$ has as vertex sets the elements of a group G and as edges all pairs (g, gg_1) , with $g \in G$ and $g_1 \in S$. Given an element g of G, its word norm |g| with respect to the generating set S is the shortest length of a word over S whose evaluation is equal to g. The word metric with respect to S is defined by $d_S(g, h) = |g^{-1}h|$. This gives a left invariant metric d_S on Γ with finite balls (i.e., the metric d_S is proper)

$B(g,R) = \{h \in G : d_S(g,h) \leq R\}, g \in G, R \in \mathbb{R}_+.$

The growth of their size is one of the main topics in of the geometric group theory (Milnor's problems, Gromov's theorem).

For a group $G = \langle S \rangle$, with a finite set of generators $S = S^{-1}$, the Cayley graph $\Gamma = \Gamma(G, S)$ has as vertex sets the elements of a group G and as edges all pairs (g, gg_1) , with $g \in G$ and $g_1 \in S$. Given an element g of G, its word norm |g| with respect to the generating set S is the shortest length of a word over S whose evaluation is equal to g. The word metric with respect to S is defined by $d_S(g, h) = |g^{-1}h|$. This gives a left invariant metric d_S on Γ with finite balls (i.e., the metric d_S is proper)

 $B(g,R) = \{h \in G : d_S(g,h) \leq R\}, g \in G, R \in \mathbb{R}_+.$

The growth of their size is one of the main topics in of the geometric group theory (Milnor's problems, Gromov's theorem).

For a group $G = \langle S \rangle$, with a finite set of generators $S = S^{-1}$, the Cayley graph $\Gamma = \Gamma(G, S)$ has as vertex sets the elements of a group G and as edges all pairs (g, gg_1) , with $g \in G$ and $g_1 \in S$. Given an element g of G, its word norm |g| with respect to the generating set S is the shortest length of a word over S whose evaluation is equal to g. The word metric with respect to S is defined by $d_S(g, h) = |g^{-1}h|$. This gives a left invariant metric d_S on Γ with finite balls (i.e., the metric d_S is proper)

$$B(g,R) = \{h \in G : d_S(g,h) \leq R\}, g \in G, R \in \mathbb{R}_+.$$

The growth of their size is one of the main topics in of the geometric group theory (Milnor's problems, Gromov's theorem).

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

 $L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

 $L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f : X \to Y$ a map. Then f is :

(a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$;

(b) a coarse embedding if f is bornological and

 $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$;

(c) a coarse equivalence if f is bornological and there exists a bornological map $\pi: X \to X$ such that $\pi \circ f \circ id_X$ and

 $f \circ g \sim id_Y$; g is called a coarse inverse of f.

$L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

$L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

$L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

$L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

 $L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

We say that two maps $f, g: S \to (X, \mathcal{E})$ from a set to a coarse space are close $(f \sim g)$ if $\{(f(x), g(x)) \mid x \in S\} \in \mathcal{E}$.

Definition

Let (X, \mathcal{E}_X) and (Y, \mathcal{E}_Y) be two coarse spaces and $f: X \to Y$ a map. Then f is : (a) bornological if $(f \times f)(E) \in \mathcal{E}_Y$ for all $E \in \mathcal{E}_X$; (b) a coarse embedding if f is bornological and $(f^{-1} \times f^{-1})(E) \in \mathcal{E}_X$ for all $E \in \mathcal{E}_Y$; (c) a coarse equivalence if f is bornological and there exists a bornological map $g: Y \to X$ such that $g \circ f \sim id_X$ and $f \circ g \sim id_Y$; g is called a coarse inverse of f.

 $L \subseteq (X, \mathcal{E})$ is large if R[L] = X for some $R \in \mathcal{E}$.

Proposition

A map $f: (X, P, B) \to (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x, R)) \subseteq B(f(x), S)$. In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that $d'(f(x), f(y)) \leq \rho(d(x, y))$ for all $x, y \in X$. In case $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian. Similarly, f is a coarse embedding if there exists also an increasing function $\rho_-: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho_-(x) = \infty$

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \rightarrow (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x, R)) \subseteq B(f(x), S)$.

In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that $d'(f(x), f(y)) \le \rho(d(x, y))$ for all $x, y \in X$. In case $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian. Similarly, f is a coarse embedding if there exists also an increasing function $\rho_- : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho_-(x) = \infty$

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \rightarrow (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x,R)) \subseteq B(f(x),S).$ In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that $d'(f(x), f(y)) \leq \rho(d(x, y))$ for all $x, y \in X$. In case

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \rightarrow (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x,R)) \subseteq B(f(x),S).$ In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that $d'(f(x), f(y)) \leq \rho(d(x, y))$ for all $x, y \in X$. In case $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian.

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \rightarrow (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x,R)) \subseteq B(f(x),S).$ In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that $d'(f(x), f(y)) \leq \rho(d(x, y))$ for all $x, y \in X$. In case $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian. Similarly, f is a coarse embedding if there exists also an increasing function $\rho_{-}: \mathbb{R}_{+} \to \mathbb{R}_{+}$ with $\lim_{x \to \infty} \rho_{-}(x) = \infty$

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \to (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x, R)) \subseteq B(f(x), S)$. In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that $d'(f(x), f(y)) \leq \rho(d(x, y))$ for all $x, y \in X$. In case $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian. Similarly, f is a coarse embedding if there exists also an increasing function $\rho_-: \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho_-(x) = \infty$

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \rightarrow (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x, R)) \subseteq B(f(x), S)$.

In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that

 $d'(f(x), f(y)) \leq
ho(d(x, y))$ for all $x, y \in X$. In case

 $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian.

Similarly, f is a coarse embedding if there exists also an increasing function $\rho_- : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x \to \infty} \rho_-(x) = \infty$

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

A map $f: (X, P, B) \rightarrow (Y, P', B')$ between two balleans is bornological when for every $R \in P$ there exists $S \in P'$ such that $f(B(x, R)) \subseteq B(f(x), S)$.

In case of metric balleans, i.e., when (X, d) and (Y, d') are metric spaces, this means that there exists an increasing function $\rho : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x\to\infty} \rho(x) = \infty$, such that

 $d'(f(x), f(y)) \le
ho(d(x, y))$ for all $x, y \in X$. In case

 $\rho(x) = Cx + A$ is linear, f is called generalized Lipschitzian.

Similarly, f is a coarse embedding if there exists also an increasing function $\rho_- : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{x \to \infty} \rho_-(x) = \infty$

 $\rho_{-}(d(x,y)) \leq d'(f(x),f(y))) \leq \rho(d(x,y)).$

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma: \mathbb{N} \to \mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma: \mathbb{N} \to \mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

For two maps $\gamma, \gamma' : \mathbb{N} \to \mathbb{N}$ let:

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma : \mathbb{N} \to \mathbb{N}$

- (a) polynomial if $\gamma(n) \leq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma: \mathbb{N} \to \mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

• $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$

•
$$\gamma \sim \gamma'$$
 if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma : \mathbb{N} \to \mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.
- Call (the equivalence class of) $\gamma:\mathbb{N}\to\mathbb{N}$
 - (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
 - (b) exponential if $\gamma(n) \sim 2^n$;
 - (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma:\mathbb{N}\to\mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma:\mathbb{N}\to\mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma:\mathbb{N}\to\mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

- $\gamma \preceq \gamma'$ if there exist $n_0, C \in \mathbb{N}_+$ with $\gamma(n) \leq \gamma'(Cn)$ for all $n \geq n_0$
- $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

Call (the equivalence class of) $\gamma:\mathbb{N}\to\mathbb{N}$

- (a) polynomial if $\gamma(n) \preceq n^d$ for some $d \in \mathbb{N}_+$;
- (b) exponential if $\gamma(n) \sim 2^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec 2^n$.

The coarse category

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** $/ \sim$.

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f,g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f,g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f, g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.

The coarse category

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse**/ \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f, g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f, g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f, g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.

The coarse category

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f, g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f, g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f, g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.
The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent:

1) f(X) is large in Y;

2) for every pair of bornological maps $f,g\colon X o Y$, if

- $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f, g are close.
- 3) h is a epimorphism in Coarse.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f,g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse. 23.0

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) f(X) is large in Y;
2) for every pair of bornological maps f,g: X → Y, if f [f(X) ~ g [f(X) then f,g are close.
3) h is a enimorphism in Coarse

Fheorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f,g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f, g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f, g are close.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f, g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f,g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f,g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f,g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f, g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f, g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and $h: X \rightarrow Y$ a bornological map. Then the following are equivalent:

1) h is a coarse embedding;

2) for every pair of bornological maps f,g:Z o X, if

 $h \circ f \sim h \circ g$, then $f \sim g$; i.e., h is a monomorphism in **Coarse**.

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** / \sim .

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f, g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f, g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f,g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse. page

The objects of the coarse category **PreCoarse** are coarse spaces and its morphisms are the bornological maps. We consider also the quotient category **Coarse** := **PreCoarse** $/ \sim$.

Theorem (epimorphisms in **Coarse**)

Let X and Y be two coarse spaces and $h: X \to Y$ a bornological map. Then the following are equivalent: 1) f(X) is large in Y; 2) for every pair of bornological maps $f,g: X \to Y$, if $f \upharpoonright_{f(X)} \sim g \upharpoonright_{f(X)}$ then f,g are close. 3) h is a epimorphism in **Coarse**.

Theorem (monomorphism in **Coarse**)

Let X and Y be two coarse spaces and h: X → Y a bornological map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f,g: Z → X, if h ∘ f ~ h ∘ g, then f ~ g; i.e., h is a monomorphism in Coarse.

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ; (b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x, \beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$.

We denote by asdim \mathcal{B} the minimal *n* such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ; (b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x, \beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$.

We denote by asdim \mathcal{B} the minimal *n* such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ;

(b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x,\beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$.

We denote by asdim \mathcal{B} the minimal *n* such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ; (b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x, \beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$.

We denote by asdim \mathcal{B} the minimal *n* such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

The asymptotic dimension is actually invariant under coarse equivalences.

A B > A B >

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ; (b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x, \beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$.

We denote by asdim \mathcal{B} the minimal *n* such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

The asymptotic dimension is actually invariant under coarse equivalences.

A B M A B M

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ; (b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x, \beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$. We denote by asdim \mathcal{B} the minimal n such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

The asymptotic dimension is actually invariant under coarse equivalences.

A B + A B +

Let $\mathcal{B} = (X, P, B)$ be a ballean and \mathscr{U} be a family of subsets of X: (a) \mathscr{U} is said to be α -disjoint for some $\alpha \in P$ if every ball $B(x, \alpha)$ intersects at most one member of \mathscr{U} ; (b) \mathscr{U} is said to be uniformly bounded if there exists a $\beta \in P$ such that $U \subseteq B(x, \beta)$ for all $U \in \mathscr{U}$ and $x \in U$.

Definition

Let $\mathcal{B} = (X, P, B)$ be a ballean. Given an $n \in \mathbb{N}$, we put asdim $\mathcal{B} \leq n$ if, for every $\alpha \in P$, there exists a uniformely bounded covering $\mathscr{U} = \mathscr{U}_0 \cup \cdots \cup \mathscr{U}_n$ of X such that \mathscr{U}_i is α -disjoint for each $i = 0, \ldots, n$. We denote by asdim \mathcal{B} the minimal n such that asdim $\mathcal{B} \leq n$, if it exists, otherwise we put asdim $\mathcal{B} = \infty$.

Let G be a group. A coarse structure \mathcal{E} on G is compatible, if $GE = \{(gx, gy) : (x, y) \in E\} \in \mathcal{E}$ for all $E \in \mathcal{E}$.

Definition (Banah, Protasov (2006), Nicas, Rosenthal (2012))

Let G be a group. A group ideal for G is a family F ⊆ P(G) s.t.
i) there is an non-empty element F ∈ F;
ii) F is closed under finite unions and taking subsets;
iii) for every F₁, F₂ ∈ F, F₁F₂ := {gh ∈ G | g ∈ F₁, h ∈ F₂} ∈ F;

iv) for each $F\in \mathcal{F}$, $F^{-1}:=\{g^{-1}\in G\mid g\in F\}\in \mathcal{F}.$

Let G be a group. A coarse structure \mathcal{E} on G is compatible, if $GE = \{(gx, gy) : (x, y) \in E\} \in \mathcal{E}$ for all $E \in \mathcal{E}$.

Definition (Banah, Protasov (2006), Nicas, Rosenthal (2012))

Let G be a group. A group ideal for G is a family $\mathcal{F} \subseteq \mathcal{P}(G)$ s.t. i) there is an non-empty element $F \in \mathcal{F}$; ii) \mathcal{F} is closed under finite unions and taking subsets; iii) for every $F_1, F_2 \in \mathcal{F}, F_1F_2 := \{gh \in G \mid g \in F_1, h \in F_2\} \in \mathcal{F}$; iv) for each $F \in \mathcal{F}, F^{-1} := \{g^{-1} \in G \mid g \in F\} \in \mathcal{F}$.

Let G be a group. A coarse structure \mathcal{E} on G is compatible, if $GE = \{(gx, gy) : (x, y) \in E\} \in \mathcal{E}$ for all $E \in \mathcal{E}$.

Definition (Banah, Protasov (2006), Nicas, Rosenthal (2012))

Let G be a group. A group ideal for G is a family $\mathcal{F} \subseteq \mathcal{P}(G)$ s.t. i) there is an non-empty element $F \in \mathcal{F}$;

ii) \mathcal{F} is closed under finite unions and taking subsets;

iii) for every $F_1, F_2 \in \mathcal{F}, F_1F_2 := \{gh \in G \mid g \in F_1, h \in F_2\} \in \mathcal{F};$ iv) for each $F \in \mathcal{F}, F^{-1} := \{g^{-1} \in G \mid g \in F\} \in \mathcal{F}.$

Let G be a group. A coarse structure \mathcal{E} on G is compatible, if $GE = \{(gx, gy) : (x, y) \in E\} \in \mathcal{E}$ for all $E \in \mathcal{E}$.

Definition (Banah, Protasov (2006), Nicas, Rosenthal (2012))

Let G be a group. A group ideal for G is a family $\mathcal{F} \subseteq \mathcal{P}(G)$ s.t. i) there is an non-empty element $F \in \mathcal{F}$; ii) \mathcal{F} is closed under finite unions and taking subsets; iii) for every $F_1, F_2 \in \mathcal{F}, F_1F_2 := \{gh \in G \mid g \in F_1, h \in F_2\} \in \mathcal{F}$; iv) for each $F \in \mathcal{F}, F^{-1} := \{g^{-1} \in G \mid g \in F\} \in \mathcal{F}$.

Let G be a group. A coarse structure \mathcal{E} on G is compatible, if $GE = \{(gx, gy) : (x, y) \in E\} \in \mathcal{E}$ for all $E \in \mathcal{E}$.

Definition (Banah, Protasov (2006), Nicas, Rosenthal (2012))

Let G be a group. A group ideal for G is a family $\mathcal{F} \subseteq \mathcal{P}(G)$ s.t. i) there is an non-empty element $F \in \mathcal{F}$; ii) \mathcal{F} is closed under finite unions and taking subsets; iii) for every $F_1, F_2 \in \mathcal{F}, F_1F_2 := \{gh \in G \mid g \in F_1, h \in F_2\} \in \mathcal{F}$; iv) for each $F \in \mathcal{F}, F^{-1} := \{g^{-1} \in G \mid g \in F\} \in \mathcal{F}$.

- *F_{fin}* is the collection of all the finite subsets of *G*. It generates the group-finite coarse structure used by Dranishnikov and Smith in [Fundam. Math. 2006]
- 2) [Nicas-Rosenthal (2012)] If G is a topological group,
 C(G) := {K ⊆ G | K is compact} generates E_{C(G)} the group-compact coarse structure.
- 3) [Hernàndez-Protasov (2011)] If G is a topological group,
 B(G) := {B ⊆ G | B is bounded} generates E_{C(G)} the group-bounded coarse structure.
- 4) If d is a left-invariant metric on a group G,
 𝓕_d := {B_d(e_G, R) | R > 0} generates 𝔅_d, the metric coarse structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets aをとの前りすぼく くまく きょうえの Dikran Dikranian Coarse Structures on Infinite Groups

- *F_{fin}* is the collection of all the finite subsets of *G*. It generates the group-finite coarse structure used by Dranishnikov and Smith in [Fundam. Math. 2006]
- 2) [Nicas-Rosenthal (2012)] If G is a topological group, $C(G) := \{K \subseteq G \mid K \text{ is compact}\}$ generates $\mathcal{E}_{C(G)}$ the group-compact coarse structure.
- [Hernàndez-Protasov (2011)] If G is a topological group,
 B(G) := {B ⊆ G | B is bounded} generates E_{C(G)} the group-bounded coarse structure.
- 4) If d is a left-invariant metric on a group G,
 𝓕_d := {B_d(e_G, R) | R > 0} generates 𝔅_d, the metric coarse structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets aをとの前りすでは、イミン き つへの Dikran Dikranjan Coarse Structures on Infinite Groups

- *F_{fin}* is the collection of all the finite subsets of *G*. It generates the group-finite coarse structure used by Dranishnikov and Smith in [Fundam. Math. 2006]
- 2) [Nicas-Rosenthal (2012)] If G is a topological group, $C(G) := \{K \subseteq G \mid K \text{ is compact}\}\ \text{generates } \mathcal{E}_{C(G)}\ \text{the}$ group-compact coarse structure.
- [Hernàndez-Protasov (2011)] If G is a topological group,
 B(G) := {B ⊆ G | B is bounded} generates E_{C(G)} the group-bounded coarse structure.
- 4) If d is a left-invariant metric on a group G,
 𝓕_d := {B_d(e_G, R) | R > 0} generates 𝔅_d, the metric coarse structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets a ゆくとう かくつ Dikran Dikranian Coarse Structures on Infinite Groups

- *F_{fin}* is the collection of all the finite subsets of *G*. It generates the group-finite coarse structure used by Dranishnikov and Smith in [Fundam. Math. 2006]
- 2) [Nicas-Rosenthal (2012)] If G is a topological group, $C(G) := \{K \subseteq G \mid K \text{ is compact}\}$ generates $\mathcal{E}_{C(G)}$ the group-compact coarse structure.
- [Hernàndez-Protasov (2011)] If G is a topological group,
 B(G) := {B ⊆ G | B is bounded} generates E_{C(G)} the group-bounded coarse structure.
- 4) If d is a left-invariant metric on a group G,
 𝓕_d := {B_d(e_G, R) | R > 0} generates 𝔅_d, the metric coarse structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets a Perco の pikran Dikranian Coarse Structures on Infinite Groups

- *F_{fin}* is the collection of all the finite subsets of *G*. It generates the group-finite coarse structure used by Dranishnikov and Smith in [Fundam. Math. 2006]
- 2) [Nicas-Rosenthal (2012)] If G is a topological group, $C(G) := \{K \subseteq G \mid K \text{ is compact}\}$ generates $\mathcal{E}_{C(G)}$ the group-compact coarse structure.
- [Hernàndez-Protasov (2011)] If G is a topological group,
 B(G) := {B ⊆ G | B is bounded} generates E_{C(G)} the group-bounded coarse structure.
- 4) If d is a left-invariant metric on a group G,
 𝓕_d := {B_d(e_G, R) | R > 0} generates 𝔅_d, the metric coarse structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets aをとの作りすぼく イミン ミークへの Dikran Dikranian Coarse Structures on Infinite Groups

- *F_{fin}* is the collection of all the finite subsets of *G*. It generates the group-finite coarse structure used by Dranishnikov and Smith in [Fundam. Math. 2006]
- 2) [Nicas-Rosenthal (2012)] If G is a topological group, $C(G) := \{K \subseteq G \mid K \text{ is compact}\}$ generates $\mathcal{E}_{C(G)}$ the group-compact coarse structure.
- [Hernàndez-Protasov (2011)] If G is a topological group,
 B(G) := {B ⊆ G | B is bounded} generates E_{C(G)} the group-bounded coarse structure.
- 4) If d is a left-invariant metric on a group G,
 𝓕_d := {B_d(e_G, R) | R > 0} generates 𝔅_d, the metric coarse structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets are compact.

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then asdim $G = \sup\{\text{asdim } F : F \text{ a finitely generated subgroup of } G\}$. (b) If N is a normal subgroup of G, then asdim $G \leq \operatorname{asdim } N + \operatorname{asdim } G/N$. (c) For abelian groups, $\operatorname{asdim } G = r_0(G)$, the free rank of G. (d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G.

Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then asdim $G = \sup\{ \operatorname{asdim} F : F \text{ a finitely generated subgroup of } G \}$. (b) If N is a normal subgroup of G, then asdim $G \leq \operatorname{asdim} N + \operatorname{asdim} G/N$. (c) For abelian groups, asdim $G = r_0(G)$, the free rank of G. (d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G.

Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then
asdim G = sup{asdim F : F a finitely generated subgroup of G}
(b) If N is a normal subgroup of G, then
asdim G < asdim N + asdim G/N.

(c) For abelian groups, asdim $G = r_0(G)$, the free rank of G. (d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then

asdim $G = \sup\{asdim F : F a finitely generated subgroup of G\}$.

(b) If N is a normal subgroup of G, then

asdim $G \leq asdim N + asdim G/N$.

(c) For abelian groups, asdim $G = r_0(G)$, the free rank of G.

(d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then

asdim $G = \sup\{\text{asdim } F : F \text{ a finitely generated subgroup of } G\}$. (b) If N is a normal subgroup of G, then asdim $G \leq \operatorname{asdim } N + \operatorname{asdim } G/N$.

(c) For abelian groups, asdim $G = r_0(G)$, the free rank of G. (d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then

asdim $G = \sup\{\text{asdim } F : F \text{ a finitely generated subgroup of } G\}$.

(b) If N is a normal subgroup of G, then

asdim $G \leq \operatorname{asdim} N + \operatorname{asdim} G/N$.

(c) For abelian groups, asdim $G = r_0(G)$, the free rank of G.

(d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then asdim $G = \sup\{\text{asdim } F : F \text{ a finitely generated subgroup of } G\}$. (b) If N is a normal subgroup of G, then asdim $G \leq \operatorname{asdim } N + \operatorname{asdim } G/N$. (c) For abelian groups, asdim $G = r_0(G)$, the free rank of G.

(d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then

asdim $G = \sup\{asdim F : F a finitely generated subgroup of G\}.$ (b) If N is a normal subgroup of G, then

asdim $G \leq \operatorname{asdim} N + \operatorname{asdim} G/N$.

(c) For abelian groups, asdim $G = r_0(G)$, the free rank of G. (d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

The main aims of geometric group theory is the classification of the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then

asdim $G = \sup\{asdim F : F a finitely generated subgroup of G\}.$ (b) If N is a normal subgroup of G, then

asdim $G \leq \operatorname{asdim} N + \operatorname{asdim} G/N$.

(c) For abelian groups, asdim $G = r_0(G)$, the free rank of G. (d) For soluble groups $\operatorname{asdim}(G) \leq h(G)$, the Hirsch lenght of G. Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim $\Gamma = 1$, so all non-abelian free groups have asdim F = 1 (as $\Gamma(F)$ is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

Classification of the countable abelian groups up to coarse equivalence

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent.

(2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected.

(3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

A countable group G is bijectively coarsely equivalent to an abelian group provided G is abelian-by-finite or locally finite-by-abelian.

Classification of the countable abelian groups up to coarse equivalence

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent. (2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected. (3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

A countable group G is bijectively coarsely equivalent to an abelian group provided G is abelian-by-finite or locally finite-by-abelian.
Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent.

(2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected.

(3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent.

(2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected.

(3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent. (2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected. (3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent. (2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected. (3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent. (2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected. (3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper left-invariant metrics, the following three statements are equivalent: (1) G and H are coarsely equivalent. (2) asdim G = asdim H and G and H are both large-scale connected or both not large-scale connected. (3) $r_0(G) = r_0(H)$ and G and H are either both finitely generated or both infinitely generated.

Consequently, an abelian group G with $r_0(G) = n < \infty$ is coarsely equivalent to \mathbb{Z}^n or to $\mathbb{Z}^n \times (\mathbb{Q}/\mathbb{Z})$ depending on whether G is finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;
 (3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;
 (3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;
 (3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;
(3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;

(3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;

(3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;

(3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Theorem

If a countable group G is coarsely equivalent to a countable abelian group. Then

(1) G is locally nilpotent-by-finite;

(2) G is locally abelian-by-finite if and only if G is undistorted;

(3) G is locally finite-by-abelian if and only if G is undistorted and locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Two countable locally finite-by-abelian groups G,H are coarsely equivalent if and only if asdim(G) = asdim(H) and the groups G,H are either both finitely generated or both are inf. generated.

Dikran Dikranjan

Definition

A compatible coarse structure \mathcal{E} on a group G is said to be linear if its group ideal has a base \mathcal{B} composed of subgroups of G.

Clearly, a linear coarse structure on G is connected when \mathcal{B} contains all finitely generated subgroups.

Theorem

Let (G, \mathcal{F}) be a group endowed with a linear coarse structure. Then $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Proof. Let \mathcal{B} be a base for \mathcal{F} which is guaranteed by the definition. Then for every $K \in \mathcal{B}$ (it is enough to test these), the partition $\mathscr{U} := \{xK \mid x \in G\}$ shows that $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Theorem (Petrenko-Protasov 2012)

Definition

A compatible coarse structure \mathcal{E} on a group G is said to be linear if its group ideal has a base \mathcal{B} composed of subgroups of G.

Clearly, a linear coarse structure on G is connected when \mathcal{B} contains all finitely generated subgroups.

Theorem

Let (G, \mathcal{F}) be a group endowed with a linear coarse structure. Then $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Proof. Let \mathcal{B} be a base for \mathcal{F} which is guaranteed by the definition. Then for every $K \in \mathcal{B}$ (it is enough to test these), the partition $\mathscr{U} := \{xK \mid x \in G\}$ shows that $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Theorem (Petrenko-Protasov 2012)

Definition

A compatible coarse structure \mathcal{E} on a group G is said to be linear if its group ideal has a base \mathcal{B} composed of subgroups of G.

Clearly, a linear coarse structure on G is connected when \mathcal{B} contains all finitely generated subgroups.

Theorem

Let (G, \mathcal{F}) be a group endowed with a linear coarse structure. Then $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Proof. Let \mathcal{B} be a base for \mathcal{F} which is guaranteed by the definition. Then for every $K \in \mathcal{B}$ (it is enough to test these), the partition $\mathscr{U} := \{xK \mid x \in G\}$ shows that $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Theorem (Petrenko-Protasov 2012)

Definition

A compatible coarse structure \mathcal{E} on a group G is said to be linear if its group ideal has a base \mathcal{B} composed of subgroups of G.

Clearly, a linear coarse structure on G is connected when \mathcal{B} contains all finitely generated subgroups.

Theorem

Let (G, \mathcal{F}) be a group endowed with a linear coarse structure. Then $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Proof. Let \mathcal{B} be a base for \mathcal{F} which is guaranteed by the definition. Then for every $K \in \mathcal{B}$ (it is enough to test these), the partition $\mathscr{U} := \{xK \mid x \in G\}$ shows that $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Theorem (Petrenko-Protasov 2012)

Definition

A compatible coarse structure \mathcal{E} on a group G is said to be linear if its group ideal has a base \mathcal{B} composed of subgroups of G.

Clearly, a linear coarse structure on G is connected when \mathcal{B} contains all finitely generated subgroups.

Theorem

Let (G, \mathcal{F}) be a group endowed with a linear coarse structure. Then $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Proof. Let \mathcal{B} be a base for \mathcal{F} which is guaranteed by the definition. Then for every $K \in \mathcal{B}$ (it is enough to test these), the partition $\mathscr{U} := \{xK \mid x \in G\}$ shows that $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Theorem (Petrenko-Protasov 2012)

Definition

A compatible coarse structure \mathcal{E} on a group G is said to be linear if its group ideal has a base \mathcal{B} composed of subgroups of G.

Clearly, a linear coarse structure on G is connected when \mathcal{B} contains all finitely generated subgroups.

Theorem

Let (G, \mathcal{F}) be a group endowed with a linear coarse structure. Then $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Proof. Let \mathcal{B} be a base for \mathcal{F} which is guaranteed by the definition. Then for every $K \in \mathcal{B}$ (it is enough to test these), the partition $\mathcal{U} := \{xK \mid x \in G\}$ shows that $\operatorname{asdim}(G, \mathcal{F}) = 0$.

Theorem (Petrenko-Protasov 2012)

- subadditive if i(H + K) ≤ i(H) + i(K) for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \leq G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if f is an isomorphism.

- subadditive if i(H + K) ≤ i(H) + i(K) for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \leq G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if *f* is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \leq G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if *f* is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, i a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \leq G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if *f* is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \le G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if *f* is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \le G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if f is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \le G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if f is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \leq G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if f is a homomorphism;
- a coarse equivalence, if f is an isomorphism.

- subadditive if $i(H + K) \le i(H) + i(K)$ for all H, K subgroups of the same abelian group G;
- bounded if $i(G) \leq |G|$ for each abelian group G.

Example

Let G be an abelian group, κ an infinite cardinal, *i* a subadditive cardinal invariant s.t. $i(H) < \kappa$ for each finitely generated subgroup H of G. Then $\mathcal{B}_{i,\kappa} := \{H \leq G \mid i(H) < \kappa\}$ is a base for a connected group ideal $\mathcal{F}_{i,\kappa}$ on G.

- bornological, if *f* is a homomorphism;
- a coarse equivalence, if f is an isomorphism.

For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X, \mathcal{E})$, the family of all the small subsets of (X, \mathcal{E}) , and $\mathcal{D}_{\leq}(X, \mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A, \mathcal{E}|_A) < \operatorname{asdim}(X, \mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{\leq}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

For a coarse space (X, \mathcal{E}) a subset S of X is small if, for each large subset L of X, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X, \mathcal{E})$, the family of all the small subsets of (X, \mathcal{E}) , and $\mathcal{D}_{\leq}(X, \mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A, \mathcal{E}|_{A}) < \operatorname{asdim}(X, \mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{\leq}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X, \mathcal{E})$, the family of all the small subsets of (X, \mathcal{E}) , and $\mathcal{D}_{\leq}(X, \mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A, \mathcal{E}|_A) < \operatorname{asdim}(X, \mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{\leq}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

For a coarse space (X, \mathcal{E}) a subset S of X is small if, for each large subset L of X, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X,\mathcal{E})$, the family of all the small subsets of (X,\mathcal{E}) , and

 $\mathcal{D}_{<}(X,\mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A,\mathcal{E}|_{A}) < \operatorname{asdim}(X,\mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{\leq}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013)

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

For a coarse space (X, \mathcal{E}) a subset S of X is small if, for each large subset L of X, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X,\mathcal{E})$, the family of all the small subsets of (X,\mathcal{E}) , and $\mathcal{D}_{\leq}(X,\mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A,\mathcal{E}|_A) < \operatorname{asdim}(X,\mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{\leq}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X, \mathcal{E})$, the family of all the small subsets of (X, \mathcal{E}) , and $\mathcal{D}_{\leq}(X, \mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A, \mathcal{E}|_A) < \operatorname{asdim}(X, \mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{\leq}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X,\mathcal{E})$, the family of all the small subsets of (X,\mathcal{E}) , and $\mathcal{D}_{\leq}(X,\mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A,\mathcal{E}|_A) < \operatorname{asdim}(X,\mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{<}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;
For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X,\mathcal{E})$, the family of all the small subsets of (X,\mathcal{E}) , and $\mathcal{D}_{\leq}(X,\mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A,\mathcal{E}|_A) < \operatorname{asdim}(X,\mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{<}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent:

1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

3) G is coarsely equivalent to \mathbb{R}^n for some $n \ge 0$.

For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X,\mathcal{E})$, the family of all the small subsets of (X,\mathcal{E}) , and $\mathcal{D}_{\leq}(X,\mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A,\mathcal{E}|_A) < \operatorname{asdim}(X,\mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{<}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

G is compactly generated;

3) G is coarsely equivalent to \mathbb{R}^n for some $n \ge 0$.

For a coarse space (X, \mathcal{E}) a subset *S* of *X* is small if, for each large subset *L* of *X*, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X, \mathcal{E})$, the family of all the small subsets of (X, \mathcal{E}) , and $\mathcal{D}_{\leq}(X, \mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A, \mathcal{E}|_A) < \operatorname{asdim}(X, \mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{<}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

2) G is compactly generated;

) G is coarsely equivalent to \mathbb{R}^n for some $n \ge 0$.

For a coarse space (X, \mathcal{E}) a subset S of X is small if, for each large subset L of X, $L \setminus S$ is still large.

We have two ideals

 $\mathcal{S}(X, \mathcal{E})$, the family of all the small subsets of (X, \mathcal{E}) , and $\mathcal{D}_{\leq}(X, \mathcal{E}) := \{A \subseteq X \mid \operatorname{asdim}(A, \mathcal{E}|_A) < \operatorname{asdim}(X, \mathcal{E})\}.$

Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then $\mathcal{D}_{<}(G, \mathcal{C}(G)) \subseteq \mathcal{S}(G, \mathcal{C}(G))$.

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which $S(X) = D_{<}(X)$.

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent: 1) $\mathcal{D}_{<}(G, \mathcal{C}(G)) = \mathcal{S}(G, \mathcal{C}(G));$

- 2) G is compactly generated;
- 3) G is coarsely equivalent to \mathbb{R}^n for some $n \ge 0$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let *S* be a finite subset and *A* a large one in *G*. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let *S* be a finite subset and *A* a large one in *G*. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let *S* be a finite subset and *A* a large one in *G*. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let *S* be a finite subset and *A* a large one in *G*. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let *S* be a finite subset and *A* a large one in *G*. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let S be a finite subset and A a large one in G. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

Proposition

Let *i* be a cardinal invariant which is subadditive. For an abelian group *G* with $i(G) \ge \kappa$, where κ is an infinite cardianal, we have $[G]^{<\omega_0} \subseteq S(G, \mathcal{F}_{i,\kappa})$. If *i* is bounded, then $[G]^{<\kappa} \subseteq S(G, \mathcal{F}_{i,\kappa})$.

Proof of the finite case

Let S be a finite subset and A a large one in G. Let $F \in \mathcal{F}_{i,\kappa}$ s.t. G = A + F. Then there exists a point $a \in A \setminus S$; in fact otherwise $G = \langle S \rangle + F \in \mathcal{F}_{i,\kappa}$. Thus we can conclude $G = (A \setminus S) + (\langle a - S \rangle + F)$, where $a - S := \{a - s \mid s \in S\}$, and the second addend belongs to $\mathcal{F}_{i,\kappa}$.

For a topological group (G, τ) , we let asdim $G := \operatorname{asdim}(G, C(G))$. \widehat{G} will denote the Pontryagin dual of G, namely the group of all continuous characters $G \to \mathbb{T}$ endowed with the compact open topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim $G = \dim \widehat{G}$ and asdim $\widehat{G} = \dim G$.

The Bohr modification G^+ of a topological group G is the topological group G^+ with support G equipped with the initial topology of the family of all continuous homomorphisms $G \to K$, where K is a compact group. Following J. von Neumann's terminology, G is MAP (maximally almost periodic) if G^+ is Hausdroff, MinAP (minimally almost periodic), if G^+ is indiscrete.

Definition

For a topological group (G, τ) , we let asdim $G := \operatorname{asdim}(G, C(G))$.

 \widehat{G} will denote the Pontryagin dual of G, namely the group of all continuous characters $G \to \mathbb{T}$ endowed with the compact open topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim $G = \dim \widehat{G}$ and asdim $\widehat{G} = \dim G$.

The Bohr modification G^+ of a topological group G is the topological group G^+ with support G equipped with the initial topology of the family of all continuous homomorphisms $G \to K$, where K is a compact group. Following J. von Neumann's terminology, G is MAP (maximally almost periodic) if G^+ is Hausdroff, MinAP (minimally almost periodic), if G^+ is indiscrete.

Definition

For a topological group (G, τ) , we let asdim $G := \operatorname{asdim}(G, C(G))$. \widehat{G} will denote the Pontryagin dual of G, namely the group of all continuous characters $G \to \mathbb{T}$ endowed with the compact open topology.

Theorem (A. Nicas, D. Rosenthal (2013)]

Let G be a LCA group. Then asdim $G = \dim \widehat{G}$ and asdim $\widehat{G} = \dim G$.

The Bohr modification G^+ of a topological group G is the topological group G^+ with support G equipped with the initial topology of the family of all continuous homomorphisms $G \to K$, where K is a compact group. Following J. von Neumann's terminology, G is MAP (maximally almost periodic) if G^+ is Hausdroff, MinAP (minimally almost periodic), if G^+ is indiscrete.

Definition

For a topological group (G, τ) , we let asdim $G := \operatorname{asdim}(G, C(G))$. \widehat{G} will denote the Pontryagin dual of G, namely the group of all continuous characters $G \to \mathbb{T}$ endowed with the compact open topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim $G = \dim \widehat{G}$ and asdim $\widehat{G} = \dim G$.

The Bohr modification G^+ of a topological group G is the topological group G^+ with support G equipped with the initial topology of the family of all continuous homomorphisms $G \to K$, where K is a compact group. Following J. von Neumann's terminology, G is MAP (maximally almost periodic) if G^+ is Hausdroff, MinAP (minimally almost periodic), if G^+ is indiscrete.

Definition

For a topological group (G, τ) , we let asdim $G := \operatorname{asdim}(G, C(G))$. \widehat{G} will denote the Pontryagin dual of G, namely the group of all continuous characters $G \to \mathbb{T}$ endowed with the compact open topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim $G = \dim \widehat{G}$ and asdim $\widehat{G} = \dim G$.

The Bohr modification G^+ of a topological group G is the topological group G^+ with support G equipped with the initial topology of the family of all continuous homomorphisms $G \to K$, where K is a compact group. Following J. von Neumann's terminology, G is MAP (maximally almost periodic) if G^+ is Hausdroff, MinAP (minimally almost periodic), if G^+ is indiscrete.

Definition

For a topological group (G, τ) , we let asdim $G := \operatorname{asdim}(G, C(G))$. \widehat{G} will denote the Pontryagin dual of G, namely the group of all continuous characters $G \to \mathbb{T}$ endowed with the compact open topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim $G = \dim \widehat{G}$ and asdim $\widehat{G} = \dim G$.

The Bohr modification G^+ of a topological group G is the topological group G^+ with support G equipped with the initial topology of the family of all continuous homomorphisms $G \to K$, where K is a compact group. Following J. von Neumann's terminology, G is MAP (maximally almost periodic) if G^+ is Hausdroff, MinAP (minimally almost periodic), if G^+ is indiscrete.

Definition

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = asdim G^+ = dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge$ asdim $G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = asdim G^+ = dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge$ asdim $G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = asdim G^+ = dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge$ asdim $G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = asdim G^+ = dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge$ asdim $G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = asdim G^+ = dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge a$ sdim $G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim
$$G=$$
 asdim $G^+=$ dim \widehat{G} .

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge a$ sdim $G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = \operatorname{asdim} G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = \operatorname{asdim} G^+ = \dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge asdim G^+ = 0$ holds.

If G is a Glicksberg group, then $id_G \colon G \to G^+$ is a coarse equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim $G = asdim G^+$.

The class of Glicksberg groups is large enough. Glicksberg proved that every LCA group is Glicksberg (1962). Banaszczyk extended this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim $G = \operatorname{asdim} G^+ = \dim \widehat{G}$.

For a MinAP abelian group G we have asdim $G^+ = 0$, thus the inequality asdim $G \ge asdim G^+ = 0$ holds.

Question. When asdim $G \ge \operatorname{asdim} G^+$ for a topological group G?