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Coarse space in the sense of Roe

According to Roe [Memoirs AMS, 2003], a coarse space is a pair
(X , E), where X is a set and E ⊆ P(X × X ) a coarse structure on
it, which means that

(D) ∆X := {(x , x) | x ∈ X} ∈ E ;
(I1) E is closed under passage to subsets;
(I2) E is closed under finite unions;

(U1) if E ∈ E , then E−1 := {(y , x) ∈ X × X | (x , y) ∈ E} ∈ E ;
(U2) if E ,F ∈ E , then

E ◦F := {(x , y) ∈ X×X | ∃z ∈ X s.t. (x , z) ∈ E , (z , y) ∈ F}.
(I1) and (I2) say that E is an ideal of X × X . Replacing (I1) and
(I2) with their dual properties (F1) and (F2) (saying that E is a
filter of X × X ) the four properties (F1), (F2), (U1) and (U2)
describe precisely a uniformity on X .
A uniformity can be equivalently described by means of uniform
covers, i.e., the families {E [x ] : x ∈ X}, E ∈ E , where
E [x ] = {y ∈ Y : (x , y) ∈ E} and
E [A] = {y ∈ Y : x ∈ A, (x , y) ∈ E} for A ⊆ X .
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Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Definition (Banakh, Protasov, Math. Studies, vol. 11, 2003)

A ball structure is a triple B = (X ,P,B) where X and P are
non-empty sets (called support and set of radii respectively) of the
ball structure, and, for every x ∈ X and α ∈ P, B(x , α) is a subset
of X containing x , called ball of center x and radius α.

For a ball structure (X ,P,B), x ∈ X , α ∈ P and A ⊆ X , we put

B∗(x , α) := {y ∈ X | x ∈ B(y , α)} B(A, α) :=
⋃
x∈A

B(x , α).

A ball structure (X ,P,B) is said to be

upper symmetric if, for any α, β ∈ P, there exist α′, β′ ∈ P
such that, for every x ∈ X , B(x , α) ⊆ B∗(x , α′) and
B∗(x , β) ⊆ B(x , β′);

upper multiplicative if, for any α, β ∈ P there exists a γ ∈ P
such that for every x ∈ X , B(B(x , α), β) ⊆ B(x , γ).

A ballean is an upper symmetric and upper multiplicative ball
structure.

Dikran Dikranjan Coarse Structures on Infinite Groups



Balleans and coarse spaces are two faces of the same coin, since
they are actually equivalent constructions:

Remark

Let X be a non-empty set.

If E is a coarse structure on X , then BE = (X , E ,BE), where
BE(x ,E ) := {x} ∪ E [x ] for every x ∈ E and E ∈ E , is a
ballean.

If (X ,P,B) is a ballean, consider the family EB of all subsets
E of X × X such that there exists an α ∈ P with
E ⊆ Eα =

⋃
x∈X{(x , y) | y ∈ B(x , α)}. Then (X , EB) is a

coarse structure.

This correspondence defines a bijection between coarse spaces
ballean structures and ballean structures on X .

A ballean B=(X ,P,B) is said to be connected if for all x , y ∈X
there exists an α∈P such that y ∈B(x , α), i.e., X × X =

⋃
E∈E E .

A coarse structure E on a set X is said to be large scale connected
if there is an entourage E ∈E such that X × X =

⋃
n E ◦ . . . ◦ E︸ ︷︷ ︸.
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Example

1) Let X be a set and J be a base of an ideal on X (i.e., if
I1, I1 ∈ J then I1 ∪ I2 ⊆ I for some I ∈ J ). If x ∈ X and I ∈ J ,
we define the ball BJ (x , I ) of center x and radius I to be

BJ (x , I ) :=

{
I if x ∈ I ,

{x} otherwise.

(X ,J ,BJ ) is a ballean.
The complements of the elements of J form a filter base ϕ on X .
This is why the ballean (X ,J ,BJ ) was defined as filter ballean
and widely studied by the Ukraine School. It is connected iff the
filter ϕ is not fixed.
2) Let (X , τ) be a topological space. The family C(X ) of all
compact subsets of X is a base of an ideal. The ballean
(X , C(X ),BC(X )) is called compact ballean. It is always connected.
3) For a metric space (X , d) the metric ballean is defined by
(X ,R+,B(x , r)), where B(x , r) is the usual d-ball for r ∈ R+.
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The word metric on a finitely generated group

For a group G = 〈S〉, with a finite set of generators S = S−1, the
Cayley graph Γ = Γ(G , S) has as vertex sets the elements of a
group G and as edges all pairs (g , gg1), with g ∈ G and g1 ∈ S .
Given an element g of G, its word norm |g | with respect to the
generating set S is the shortest length of a word over S whose
evaluation is equal to g. The word metric with respect to S is
defined by dS (g , h) = |g−1h|. This gives a left invariant metric dS

on Γ with finite balls (i.e., the metric dS is proper)

B(g ,R) = {h ∈ G : dS (g , h) ≤ R}, g ∈ G , R ∈ R+.

The growth of their size is one of the main topics in of the
geometric group theory (Milnor’s problems, Gromov’s theorem).

Generally every graph Γ = (V ,E ) has a metric defined by the
shortest path between two vertexes v1, v2 ∈ V . Hence, every graph
carries a natural ballean structure.
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Maps between coarse spaces

We say that two maps f , g : S → (X , E) from a set to a coarse
space are close (f ∼ g) if {(f (x), g(x)) | x ∈ S} ∈ E .

Definition

Let (X , EX ) and (Y , EY ) be two coarse spaces and f : X → Y a
map. Then f is :
(a) bornological if (f × f )(E ) ∈ EY for all E ∈ EX ;
(b) a coarse embedding if f is bornological and
(f −1 × f −1)(E ) ∈ EX for all E ∈ EY ;
(c) a coarse equivalence if f is bornological and there exists a
bornological map g : Y → X such that g ◦ f ∼ idX and
f ◦ g ∼ idY ; g is called a coarse inverse of f .

L ⊆ (X , E) is large if R[L] = X for some R ∈ E .

Proposition

A map f : (X , EX )→ (Y , EY ) between coarse spaces is a coarse
equivalence iff f is a coarse embedding and f (X ) is large in Y .
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Maps between metric spaces (balleans)

A map f : (X ,P,B)→ (Y ,P ′,B ′) between two balleans is
bornological when for every R ∈ P there exists S ∈ P ′ such that
f (B(x ,R)) ⊆ B(f (x),S).
In case of metric balleans, i.e., when (X , d) and (Y , d ′) are metric
spaces, this means that there exists an increasing function
ρ : R+ → R+ with limx→∞ ρ(x) =∞, such that
d ′(f (x), f (y)) ≤ ρ(d(x , y)) for all x , y ∈ X . In case
ρ(x) = Cx + A is linear, f is called generalized Lipschitzian.
Similarly, f is a coarse embedding if there exists also an increasing
function ρ− : R+ → R+ with limx→∞ ρ−(x) =∞

ρ−(d(x , y)) ≤ d ′(f (x), f (y))) ≤ ρ(d(x , y)).

The map f is a quasi-isometry if ρ, ρ− can be chosen to be linear.
The spaces (X , d) and (Y , d ′) are quasi-isometric, if there exists a
quasi-isometry f : X → Y and C > 0 such that Y = B(f (X ),C ).
Example. If G = 〈S〉 = 〈S1〉 with S ,S1 finite and symmetric, then
(G , dS ) and (G , dS1) are quasi-isometric.
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For G = 〈S〉 as before and n ∈ N let γS (n) = |BS (eG , n)|. The
function γS : N→ N is called growth function of G with respect to
S . For an infinite group G , the growth function γS is monotone
increasing, that is, γS (n) < γS (n + 1) for every n ∈ N.
For two maps γ, γ′ : N→ N let:

γ � γ′ if there exist n0,C ∈ N+ with γ(n) ≤ γ′(Cn) for all
n ≥ n0

γ ∼ γ′ if γ � γ′ and γ′ � γ.

Call (the equivalence class of) γ : N→ N
(a) polynomial if γ(n) � nd for some d ∈ N+;

(b) exponential if γ(n) ∼ 2n;

(c) intermediate if γ(n) � nd for every d ∈ N+ and γ(n) ≺ 2n.

Depending on the type of growth of γS the group G = 〈S〉 is said
to be of polynomial, exponential or intermediate growth rate. This
does nor depend on S as G = 〈S〉 = 〈S1〉 yields that (G , dS ) and
(G , dS1) are quasi-isometric, so γS ∼ γS1 . Gromov proved in 1981
that the groups of polynomial growth are nilpotent(-by-finite).
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The coarse category

The objects of the coarse category PreCoarse are coarse spaces
and its morphisms are the bornological maps. We consider also the
quotient category Coarse := PreCoarse/ ∼.

Theorem (epimorphisms in Coarse)

Let X and Y be two coarse spaces and h : X → Y a bornological
map. Then the following are equivalent:
1) f (X ) is large in Y ;
2) for every pair of bornological maps f , g : X → Y , if

f �f (X )∼ g �f (X ) then f , g are close.
3) h is a epimorphism in Coarse.

Theorem (monomorphism in Coarse)

Let X and Y be two coarse spaces and h : X → Y a bornological
map. Then the following are equivalent:
1) h is a coarse embedding;
2) for every pair of bornological maps f , g : Z → X , if

h ◦ f ∼ h ◦ g, then f ∼ g; i.e., h is a monomorphism in Coarse.
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Asymptotic dimension for course spaces

Let B = (X ,P,B) be a ballean and U be a family of subsets of X :
(a) U is said to be α-disjoint for some α ∈ P if every ball B(x , α)
intersects at most one member of U ;
(b) U is said to be uniformly bounded if there exists a β ∈ P such
that U ⊆ B(x , β) for all U ∈ U and x ∈ U.

Definition

Let B = (X ,P,B) be a ballean. Given an n ∈ N, we put
asdimB ≤ n if, for every α ∈ P, there exists a uniformely bounded
covering U = U0 ∪ · · · ∪Un of X such that Ui is α-disjoint for
each i = 0, . . . , n.
We denote by asdimB the minimal n such that asdimB ≤ n, if it
exists, otherwise we put asdimB =∞.

The asymptotic dimension is actually invariant under coarse
equivalences.
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Coarse structures on groups

Definition

Let G be a group. A coarse structure E on G is compatible, if
GE = {(gx , gy) : (x , y) ∈ E} ∈ E for all E ∈ E .

Definition (Banah, Protasov (2006), Nicas, Rosenthal (2012))

Let G be a group. A group ideal for G is a family F ⊆ P(G ) s.t.
i) there is an non-empty element F ∈ F ;
ii) F is closed under finite unions and taking subsets;
iii) for every F1,F2 ∈ F , F1F2 := {gh ∈ G | g ∈ F1, h ∈ F2} ∈ F ;
iv) for each F ∈ F , F−1 := {g−1 ∈ G | g ∈ F} ∈ F .

If F is a group ideal, then it gives a compatible coarse structure on
G by EF := {E ⊆ G × G | ∃F ∈ F : E ⊆ G (F × F )}.
If E is a compatible coarse structure on G , then
F = {π(E ) : E ∈ E} is a group ideal (where π(x , y) = y−1x is the
shear map).
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Example (of connected group ideals)

1) Ffin is the collection of all the finite subsets of G . It generates
the group-finite coarse structure used by Dranishnikov and
Smith in [Fundam. Math. 2006]

2) [Nicas-Rosenthal (2012)] If G is a topological group,
C(G ) := {K ⊆ G | K is compact} generates EC(G) the
group-compact coarse structure.

3) [Hernàndez-Protasov (2011)] If G is a topological group,
B(G ) := {B ⊆ G | B is bounded} generates EC(G) the
group-bounded coarse structure.

4) If d is a left-invariant metric on a group G ,
Fd := {Bd (eG ,R) | R > 0} generates Ed , the metric coarse
structure.

Theorem (Smith 2006)

Every countable group admits a proper left-invariant metric and
any two such metrics are coarsely equivalent and discrete.

A metric is proper if all closed bounded sets are compact.
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Asymptotic dimension of discrete groups

The main aims of geometric group theory is the classification of
the groups up to quasi-isometry or coarse equivalence.

Theorem (Dranishnikov-Smith: Fundam. Math. 2006)

(a) If G is a countable group then
asdim G = sup{asdim F : F a finitely generated subgroup of G}.
(b) If N is a normal subgroup of G, then
asdim G ≤ asdim N + asdim G/N.
(c) For abelian groups, asdim G = r0(G ), the free rank of G.
(d) For soluble groups asdim(G ) ≤ h(G ), the Hirsch lenght of G.
Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim Γ = 1, so all non-abelian free groups have
asdim F = 1 (as Γ(F ) is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

If A and B are finitely generated groups (one of them being
non-trivial), such that asdim(A) = n and asdim(B) ≤ n, then
asdim(A ∗ B) = max{1, n}.
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(c) For abelian groups, asdim G = r0(G ), the free rank of G.
(d) For soluble groups asdim(G ) ≤ h(G ), the Hirsch lenght of G.
Equality holds for (virtually) polycylic groups.

Every tree Γ has asdim Γ = 1, so all non-abelian free groups have
asdim F = 1 (as Γ(F ) is a tree). More generally one has

Theorem (Bell, Dranishnikov, Keesling: Fundam. Math. 2004)

If A and B are finitely generated groups (one of them being
non-trivial), such that asdim(A) = n and asdim(B) ≤ n, then
asdim(A ∗ B) = max{1, n}.
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Classification of the countable abelian groups up to coarse
equivalence

Theorem (Banakh, Higes, Zarichnyi Trans. AMS 2010)

For two countable abelian groups G and H endowed with proper
left-invariant metrics, the following three statements are equivalent:
(1) G and H are coarsely equivalent.
(2) asdim G = asdim H and G and H are both large-scale
connected or both not large-scale connected.
(3) r0(G ) = r0(H) and G and H are either both finitely generated
or both infinitely generated.

Consequently, an abelian group G with r0(G ) = n <∞ is coarsely
equivalent to Zn or to Zn × (Q/Z) depending on whether G is
finitely generated or not.

Theorem (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

A countable group G is bijectively coarsely equivalent to an abelian
group provided G is abelian-by-finite or locally finite-by-abelian.
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A finitely generated subgroup H of a finitely generated group G is
undistorted, if the inclusion H ↪→ G is a quasi-isometric embedding
with respect to any word metrics on H and G . A countable group
G is said to be undistorted if G can be written as the union
G =

⋃
n∈N Gn of an increasing sequence (Gn) of finitely generated

subgroups such that each group Gn is undistorted in Gn+1.

Theorem

If a countable group G is coarsely equivalent to a countable abelian
group. Then
(1) G is locally nilpotent-by-finite;
(2) G is locally abelian-by-finite if and only if G is undistorted;
(3) G is locally finite-by-abelian if and only if G is undistorted and
locally finite-by-nilpotent.

From the above theorems one gets:

Corollary (Banakh, Higes, Zarichnyi: Trans. AMS 2010)

Two countable locally finite-by-abelian groups G,H are coarsely
equivalent if and only if asdim(G ) = asdim(H) and the groups
G ,H are either both finitely generated or both are inf. generated.
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Linear coarse structures

Now we consider some group ideals of purely algebraic nature.

Definition

A compatible coarse structure E on a group G is said to be linear if
its group ideal has a base B composed of subgroups of G .

Clearly, a linear coarse structure on G is connected when B
contains all finitely generated subgroups.

Theorem

Let (G ,F) be a group endowed with a linear coarse structure.
Then asdim(G ,F) = 0.

Proof. Let B be a base for F which is guaranteed by the
definition. Then for every K ∈ B (it is enough to test these), the
partition U := {xK | x ∈ G} shows that asdim(G ,F) = 0.

Theorem (Petrenko-Protasov 2012)

A group G endowed with a coarse structure is linear iff asdim G =0.
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Let i(·) be a cardinal invariant for abelian groups, i.e. i(G ) = i(H)
if G ∼= H (e.g., cardinality, free-rank, p-rank, etc.).
It is said to be:

subadditive if i(H + K ) ≤ i(H) + i(K ) for all H,K subgroups
of the same abelian group G ;

bounded if i(G ) ≤ |G | for each abelian group G .

Example

Let G be an abelian group, κ an infinite cardinal, i a subadditive
cardinal invariant s.t. i(H) < κ for each finitely generated
subgroup H of G . Then Bi ,κ := {H ≤ G | i(H) < κ} is a base for
a connected group ideal Fi ,κ on G .

If i is also monotone w.r.t. quotients and f : G → H is a map of
abelian groups, then the map (G ,FG

i ,κ)→ (H,FH
i ,κ) is

bornological, if f is a homomorphism;

a coarse equivalence, if f is an isomorphism.
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On a problem of Banakh, Chervak and Lyaskovska

For a coarse space (X , E) a subset S of X is small if, for each large
subset L of X , L \ S is still large.
We have two ideals
S(X , E), the family of all the small subsets of (X , E), and
D<(X , E) := {A ⊆ X | asdim(A, E|A) < asdim(X , E)}.
Lemma (T. Banakh, O. Chervak, N. Lyaskovska (2013))

If G is a topological group, then D<(G , C(G )) ⊆ S(G , C(G )).

Problem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

Detect coarse spaces X for which S(X ) = D<(X ).

Theorem (T. Banakh, O. Chervak, N. Lyaskovska (2013))

For a LCA group G the following conditions are equivalent:
1) D<(G , C(G )) = S(G , C(G ));
2) G is compactly generated;
3) G is coarsely equivalent to Rn for some n ≥ 0.
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If G is an abelian group endowed with the linear coarse structure
Fi ,κ and F ∈ Bi ,κ, then B(A,G (F × F )) = A + F for each subset
A of G .

Proposition

Let i be a cardinal invariant which is subadditive. For an abelian
group G with i(G ) ≥ κ, where κ is an infinite cardianal, we have
[G ]<ω0 ⊆ S(G ,Fi ,κ). If i is bounded, then [G ]<κ ⊆ S(G ,Fi ,κ).

Proof of the finite case

Let S be a finite subset and A a large one in G . Let F ∈ Fi ,κ s.t.
G = A + F . Then there exists a point a ∈ A \ S ; in fact otherwise
G = 〈S〉+ F ∈ Fi ,κ. Thus we can conclude
G = (A \ S) + (〈a− S〉+ F ), where a− S := {a− s | s ∈ S}, and
the second addend belongs to Fi ,κ.

Since asdim(G ,Fi ,κ) = 0, one has D<(G ,Fi ,κ) = {∅}. This
produces a huge amount of examples of coarse spaces (X , E) with
D<(X , E) ( S(X , E).
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Asymptotic dimension of LCA groups

For a topological group (G , τ), we let asdim G := asdim(G , C(G )).
Ĝ will denote the Pontryagin dual of G , namely the group of all
continuous characters G → T endowed with the compact open
topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim G = dim Ĝ and
asdim Ĝ = dim G .

The Bohr modification G + of a topological group G is the
topological group G + with support G equipped with the initial
topology of the family of all continuous homomorphisms G → K ,
where K is a compact group. Following J. von Neumann’s
terminology, G is MAP (maximally almost periodic) if G + is
Hausdroff, MinAP (minimally almost periodic), if G + is indiscrete.

Definition

A Glicksberg group is a MAP abelian topological group (G , τ) with
C(G ) = C(G +). Dikran Dikranjan Coarse Structures on Infinite Groups
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Ĝ will denote the Pontryagin dual of G , namely the group of all
continuous characters G → T endowed with the compact open
topology.

Theorem (A. Nicas, D. Rosenthal (2013))

Let G be a LCA group. Then asdim G = dim Ĝ and
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C(G ) = C(G +). Dikran Dikranjan Coarse Structures on Infinite Groups



Remark

If G is a Glicksberg group, then idG : G → G + is a coarse
equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim G = asdim G +.

The class of Glicksberg groups is large enough. Glicksberg proved
that every LCA group is Glicksberg (1962). Banaszczyk extended
this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim G = asdim G + = dim Ĝ .

For a MinAP abelian group G we have asdim G + = 0, thus the
inequality asdim G ≥ asdim G + = 0 holds.

Question. When asdim G ≥ asdim G + for a topological group G ?
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For a MinAP abelian group G we have asdim G + = 0, thus the
inequality asdim G ≥ asdim G + = 0 holds.

Question. When asdim G ≥ asdim G + for a topological group G ?

Dikran Dikranjan Coarse Structures on Infinite Groups



Remark

If G is a Glicksberg group, then idG : G → G + is a coarse
equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim G = asdim G +.

The class of Glicksberg groups is large enough. Glicksberg proved
that every LCA group is Glicksberg (1962). Banaszczyk extended
this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim G = asdim G + = dim Ĝ .
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For a MinAP abelian group G we have asdim G + = 0, thus the
inequality asdim G ≥ asdim G + = 0 holds.

Question. When asdim G ≥ asdim G + for a topological group G ?

Dikran Dikranjan Coarse Structures on Infinite Groups



Remark

If G is a Glicksberg group, then idG : G → G + is a coarse
equivalence.

Since asdim is coarse invariant, we obtain:

Proposition

If G is a Glicksberg group, then asdim G = asdim G +.

The class of Glicksberg groups is large enough. Glicksberg proved
that every LCA group is Glicksberg (1962). Banaszczyk extended
this result by showing that all nuclear groups are Glicksberg.

Corollary

If G is LCA, then asdim G = asdim G + = dim Ĝ .
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