classes of locally nilpotent groups

carlo casolo

Napoli - 7 ottobre 2015 in honour of Francesco de Giovanni

carlo casolo classes of locally nilpotent groups

・ 同 ト ・ ヨ ト ・ ヨ ト …

classes of locally nilpotent groups

- \mathfrak{N} the class of nilpotent groups.
- \U03c0 1

 the class of groups in which every subgroup is
 subnormal
- \mathcal{F} the class of Fitting groups: $\langle x \rangle^G$ nilpotent for every $x \in G$
- \mathcal{B} the class of Bear groups: $\langle x \rangle$ subnormal for every $x \in G$

イロト イポト イヨト イヨト

classes of locally nilpotent groups

- \mathfrak{N} the class of nilpotent groups.
- \U03c0 1

 the class of groups in which every subgroup is
 subnormal
- \mathcal{F} the class of Fitting groups: $\langle x \rangle^G$ nilpotent for every $x \in G$
- \mathcal{B} the class of Bear groups: $\langle x \rangle$ subnormal for every $x \in G$
- We have the following chain of proper inclusions: $\mathfrak{N}\subset\mathfrak{N}_1\subset\mathcal{F}\subset\mathcal{B}$

イロト イポト イヨト イヨト

$\mathfrak{N}_1\text{-}\mathsf{groups}$

carlo casolo classes of locally nilpotent groups

<ロ> (四) (四) (三) (三) (三) (三)

work of W. Möhres, H. Smith, C. Brookes, C. and others:

- \mathfrak{N}_1 -groups are soluble
- Torsion-free 𝔑₁-groups are nilpotent
- \mathfrak{N}_1 -groups are metanilpotent
- periodic hypercentral or residually nilpotent \$\mathcal{N}_1\$-groups are nilpotent

work of W. Möhres, H. Smith, C. Brookes, C. and others:

- \mathfrak{N}_1 -groups are soluble
- Torsion-free 𝔑₁-groups are nilpotent
- \mathfrak{N}_1 -groups are metanilpotent
- periodic hypercentral or residually nilpotent \$\mathcal{N}_1\$-groups are nilpotent

Conjecture: Any \mathfrak{N}_1 -group is nilpotent-by-(finite rank)

・ロト ・ 同ト ・ ヨト ・ ヨト - -

of course, all known examples of \mathfrak{N}_1 -groups verify the conjecture. Let $\mathcal{T}(G)$ denote the torsion subgroup of the locally nilpotent group G.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

of course, all known examples of \mathfrak{N}_1 -groups verify the conjecture. Let $\mathcal{T}(G)$ denote the torsion subgroup of the locally nilpotent group G.

Theorem

Let G be a 𝔑₁-group such that
G is periodic (C.), or
π(T(G)) is finite (H. Smith 2013)
then G is nilpotent-by-Cernikov.

Theorem (Puglisi, C.)

Let G be a countable group, which is either torsion-free or a p-group. The following are equivalent

- **1** *G* is a Fitting group;
- there exists a vector space V of countable dimension and a series L of subspaces of V, such that G embeds in the Hirsch-Plotkin radical of the stabilizer of L.

・ 同 ト ・ ヨ ト ・ ヨ ト …

try to understand, beyond \mathfrak{N}_1 , some other - possibly restricted - classes of Baer (Fitting) groups.

relaxing subnormality

classical open questions: groups in which every subgroup is ascendant (*the normalizer condition*) or descendant.

relaxing subnormality

classical open questions: groups in which every subgroup is ascendant (*the normalizer condition*) or descendant.

 $H \leq G$ is f-subnormal if there is a chain $H = H_0 \leq H_1 \leq \cdots \leq H_n = G$ such that $H_i \leq H_{i+1}$ or $|H_{i+1} : H_i| < \infty$.

Theorem (Mainardis, C.)

Let G be a group in which every subgroup is ${\mathfrak f}\text{-subnormal}.$ Then

- G is finite-by-soluble;
- if G is torsion-free then it is nilpotent;
- if G is periodic then it is finite-by- \mathfrak{N}_1 .

weakening \mathfrak{N}_1 : some papers of F. de Giovanni

carlo casolo classes of locally nilpotent groups

▲御▶ ▲理≯ ▲理≯

э

weakening \mathfrak{N}_1 : some papers of F. de Giovanni

- Groups with finitely many normalizers of non-subnormal subgroups. (2007, with F. de Mari)
- Groups with dense subnormal subgroups (1999, with A. Russo)
- Groups with finite conjugacy classes of non-subnormal subgroups. (1998, with L. Kurdachenko, S. Franciosi)
- Groups with restrictions on non-subnormal subgroups. (1997, with L. Kurdachenko, S. Franciosi)
- Groups satisfying the minimal condition on non-subnormal subgroups. (1994, with S. Franciosi)
- On groups with many subnormal subgroups (1993, with S. Franciosi)

weakening \mathfrak{N}_1 : some papers of F. de Giovanni

- Groups with finitely many normalizers of non-subnormal subgroups. (2007, with F. de Mari)
- Groups with dense subnormal subgroups (1999, with A. Russo)
- Groups with finite conjugacy classes of non-subnormal subgroups. (1998, with L. Kurdachenko, S. Franciosi)
- Groups with restrictions on non-subnormal subgroups. (1997, with L. Kurdachenko, S. Franciosi)
- Groups satisfying the minimal condition on non-subnormal subgroups. (1994, with S. Franciosi)
- On groups with many subnormal subgroups (1993, with S. Franciosi)
- Groups whose non-subnormal subgroups have a transitive normality relation. (2003, with A. Russo, G. Vincenzi)

A group G is said to have *dense* subnormal subgroups if for every $H < K \leq G$ either H is maximal in G or there exists a subnormal subgroup S such that $H \leq S \leq K$.

イロト イポト イヨト イヨト

A group G is said to have *dense* subnormal subgroups if for every $H < K \leq G$ either H is maximal in G or there exists a subnormal subgroup S such that $H \leq S \leq K$.

Theorem (F. de Giovanni, A. Russo)

An infinite group with dense subnormal subgroups is a $\mathfrak{N}_1\text{-}\mathsf{group}.$

イロト イポト イヨト イヨト

Theorem (H. Smith)

Let G be a \mathfrak{M} -group in which every non-nilpotent subgroup is subnormal.

- G is soluble.
- If G is torsion-free, then G is nilpotent.
- If G is locally finite then G is \mathfrak{N}_1 -by-finite; if, in addition, G is Baer then $G \in \mathfrak{N}_1$.

Definition. G is a \mathfrak{M} -group if every non-nilpotent finitely generated subgroup of G has a finite non-nilpotent homomorphic image.

< ロ > < 同 > < 回 > < 回 > < 回 > <

strengthening ${\mathcal B}$

Say that a group ${\it G}$ is

Strongly Baer: every nilpotent subgroup of G is subnormal

Strongly Fitting: H^G is nilpotent for every nilpotent subgroup H of G

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

strengthening ${\mathcal B}$

Say that a group ${\it G}$ is

Strongly Baer: every nilpotent subgroup of G is subnormal

Strongly Fitting: H^G is nilpotent for every nilpotent subgroup H of G

fact: every $\mathfrak{N}_1\text{-}group$ is strongly Fitting

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ohimè [alas]: these classes are not closed by quotients.

ohimè [alas]: these classes are not closed by quotients.

example:

H a *p*-group of Heineken-Mohamed: A = H' elementary abelian and $H/A = C_{p^{\infty}}$.

 $K = C_p wr C_{p^{\infty}} = BC_{p^{\infty}}$ (B the base group is infinite elementary abelian).

In $W = H \times K$ let and $G/(A \times B)$ be the diagonal subgroup in $W/(A \times B) \simeq C_{p^{\infty}} \times C_{p^{\infty}}$.

Then G is a strongly Fitting group, but $G/A \simeq K$ is not even strongly Baer.

s \mathcal{B} -groups

McLain groups. Let Ω be a totally ordered set, and K a field; then the McLain group M(Ω, K) is strongly Baer if and only if Ω is finite.

< ロ > < 同 > < 回 > < 回 > < 回 > <

s \mathcal{B} -groups

- McLain groups. Let Ω be a totally ordered set, and K a field; then the McLain group M(Ω, K) is strongly Baer if and only if Ω is finite.
- P.Hall generalized wreath powers. Let Ω be a totally ordered set with |Ω| ≥ 2, H a non-trivial transitive permutation group on X. Then WrH^Ω is a strongly Baer group if and only if Ω, X, H are finite, and H is a p-group for some prime p.

s \mathcal{B} -groups

- McLain groups. Let Ω be a totally ordered set, and K a field; then the McLain group M(Ω, K) is strongly Baer if and only if Ω is finite.
- P.Hall generalized wreath powers. Let Ω be a totally ordered set with |Ω| ≥ 2, H a non-trivial transitive permutation group on X. Then WrH^Ω is a strongly Baer group if and only if Ω, X, H are finite, and H is a *p*-group for some prime *p*.
- ⇒ Dark's groups [Baer p-groups with no non-trivial normal abelian subgroup] are not strongly Baer.

イロト イポト イヨト イヨト

finite exponent

Theorem (Möhres)

A periodic \mathfrak{N}_1 -group which is hypercentral or has finite exponent is nilpotent.

< ロ > < 同 > < 回 > < 回 > < 回 > <

finite exponent

Theorem (Möhres)

A periodic \mathfrak{N}_1 -group which is hypercentral or has finite exponent is nilpotent.

Lemma

Let the p-group G be the extension of an elementary abelian group by an elementary abelian group. If $G \in \mathfrak{N}_1$ then it is nilpotent.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (Möhres)

A periodic \mathfrak{N}_1 -group which is hypercentral or has finite exponent is nilpotent.

Lemma

Let the p-group G be the extension of an elementary abelian group by an elementary abelian group. If $G \in \mathfrak{N}_1$ then it is nilpotent.

for strongly Fitting groups this totally fails:

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Theorem (A. Martinelli)

Fixed a prime p, there exists a non-nilpotent metabelian p-group G of finite exponent such that:

- for all $d \ge 1$, nilpotent subgroups of nilpotency class at most d are subnormal of defect bounded by a function of d.

Such G is strongly Fitting, and may be constructed so that:

a) has trivial center; or

b) is an FC-group

ヘロト 人間ト ヘヨト ヘヨト

construction (b)

■ *A*, *A*′ countably infinite elementary abelian *p*-groups;

$$a\mapsto a'~~(a\in A)$$

an isomorphism .

In the restricted wreath product W = A wr A' identify A with the 1-component in the base group, and A' with the complement; then take

$$G = \langle aa' \in W \mid a \in A \rangle.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem

There exist strongly Fitting groups of arbitrary finite nilpotent length.

A D > A D >

프 (프)

э

Theorem

There exist strongly Fitting groups of arbitrary finite nilpotent length.

Theorem

A torsion-free hypercentral strongly Baer group is soluble.

carlo casolo classes of locally nilpotent groups

(日)