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classes of locally nilpotent groups

m 91 the class of nilpotent groups.

m 91 the class of groups in which every subgroup is
subnormal

m F the class of Fitting groups: (x)¢ nilpotent for every
xeG

m 3 the class of Bear groups: (x) subnormal for every
x € G
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classes of locally nilpotent groups

m 91 the class of nilpotent groups.

m 91 the class of groups in which every subgroup is
subnormal

m F the class of Fitting groups: (x)¢ nilpotent for every
xeG

m 3 the class of Bear groups: (x) subnormal for every
x € G

e We have the following chain of proper inclusions:
NCcMNH CcFCB
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1-groups

carlo casolo classes of locally nilpotent groups



1-groups

work of W. Mohres, H. Smith, C. Brookes, C. and others:

m Iy -groups are soluble
m Torsion-free Ny-groups are nilpotent
m D1;-groups are metanilpotent

m periodic hypercentral or residually nilpotent 2t;-groups
are nilpotent
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1-groups

work of W. Mohres, H. Smith, C. Brookes, C. and others:

m Iy -groups are soluble
m Torsion-free Ny-groups are nilpotent
m D1;-groups are metanilpotent

m periodic hypercentral or residually nilpotent 2t;-groups
are nilpotent

Conjecture: Any 1;-group is nilpotent-by-(finite rank)
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1-groups

of course, all known examples of 91;-groups verify the conjecture.
Let T(G) denote the torsion subgroup of the locally nilpotent
group G.
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1-groups

of course, all known examples of 91;-groups verify the conjecture.
Let T(G) denote the torsion subgroup of the locally nilpotent
group G.

Theorem

Let G be a My-group such that

m G is periodic (C.), or

m 7(T(G)) is finite (H. Smith 2013)
then G is nilpotent-by-Cernikov.
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Fitting groups

Theorem (Puglisi, C.)
Let G be a countable group, which is either torsion-free or a
p-group. The following are equivalent

G is a Fitting group;

there exists a vector space V of countable dimension and
a series L of subspaces of V, such that G embeds in the
Hirsch-Plotkin radical of the stabilizer of L.
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try to understand, beyond 91;, some other - possibly
restricted - classes of Baer (Fitting) groups.

carlo casolo classes of locally nilpotent groups



relaxing subnormality

classical open questions: groups in which every subgroup is
ascendant (the normalizer condition) or descendant.
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relaxing subnormality

classical open questions: groups in which every subgroup is
ascendant (the normalizer condition) or descendant.

H < G is f-subnormal if there is a chain
H=Ho<H; <---<H,=G
such that H; < Hjy1 or |Hi11 @ Hi| < .

Theorem (Mainardis, C.)

Let G be a group in which every subgroup is f-subnormal. Then
m G is finite-by-soluble;
m if G is torsion-free then it is nilpotent;

m if G is periodic then it is finite-by-)1;.
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weakening D1;: some papers of F. de Giovanni
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weakening 91;: some papers of F. de Giovanni

m Groups with finitely many normalizers of non-subnormal
subgroups. (2007, with F. de Mari)

m Groups with dense subnormal subgroups (1999, with A.
Russo)

m Groups with finite conjugacy classes of non-subnormal
subgroups. (1998, with L. Kurdachenko, S. Franciosi)

m Groups with restrictions on non-subnormal subgroups.
(1997, with L. Kurdachenko, S. Franciosi)

m Groups satisfying the minimal condition on
non-subnormal subgroups. (1994, with S. Franciosi)

m On groups with many subnormal subgroups (1993, with
S. Franciosi)
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weakening 91;: some papers of F. de Giovanni

Groups with finitely many normalizers of non-subnormal
subgroups. (2007, with F. de Mari)

Groups with dense subnormal subgroups (1999, with A.
Russo)

Groups with finite conjugacy classes of non-subnormal
subgroups. (1998, with L. Kurdachenko, S. Franciosi)

Groups with restrictions on non-subnormal subgroups.
(1997, with L. Kurdachenko, S. Franciosi)

Groups satisfying the minimal condition on
non-subnormal subgroups. (1994, with S. Franciosi)

On groups with many subnormal subgroups (1993, with
S. Franciosi)

Groups whose non-subnormal subgroups have a transitive
normality relation. (2003, with A. Russo, G. Vincenzi)

carlo casolo classes of locally nilpotent groups



weakining 91;: a sample

A group G is said to have dense subnormal subgroups if for
every H < K < G either H is maximal in G or there exists a
subnormal subgroup S such that H < S < K.
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weakining 91;: a sample

A group G is said to have dense subnormal subgroups if for
every H < K < G either H is maximal in G or there exists a
subnormal subgroup S such that H < S < K.

Theorem (F. de Giovanni, A. Russo)

An infinite group with dense subnormal subgroups is a
N1-group.
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weakening 911 and nilpotency

Theorem (H. Smith)

Let G be a 9M-group in which every non-nilpotent subgroup is
subnormal.

m G is soluble.
m /f G is torsion-free, then G is nilpotent.

m /f G is locally finite then G is Nyi-by-finite; if, in addition,
G is Baer then G € N;.

Definition. G is a 9M-group if every non-nilpotent finitely generated
subgroup of G has a finite non-nilpotent homomorphic image.
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strengthening B

Say that a group G is

m Strongly Baer: every nilpotent subgroup of G is
subnormal

m Strongly Fitting: H® is nilpotent for every nilpotent
subgroup H of G
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strengthening B

Say that a group G is

m Strongly Baer: every nilpotent subgroup of G is
subnormal

m Strongly Fitting: H® is nilpotent for every nilpotent
subgroup H of G

fact: every My-group is strongly Fitting
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sB-groups

ohimé [alas]: these classes are not closed by quotients.
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sB-groups

ohimé [alas]: these classes are not closed by quotients.

example:

H a p-group of Heineken-Mohamed: A = H’ elementary
abelian and H/A = Cpeo.

K = CowrCpe = BCp (B the base group is infinite
elementary abelian).

In W =H x K let and G/(A x B) be the diagonal subgroup
in W/(A X B) ~ Cpoo X Cpoo.

Then G is a strongly Fitting group, but G/A ~ K is not even
strongly Baer.
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sB-groups

m McLain groups. Let Q be a totally ordered set, and K a
field; then the McLain group M(Q, K) is strongly Baer if
and only if Q is finite.
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sB-groups

m McLain groups. Let Q be a totally ordered set, and K a
field; then the McLain group M(Q, K) is strongly Baer if
and only if Q is finite.

m P.Hall generalized wreath powers. Let Q2 be a totally
ordered set with Q2| > 2, H a non-trivial transitive
permutation group on X. Then WrH® is a strongly Baer
group if and only if Q, X, H are finite, and H is a
p-group for some prime p.
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sB-groups

m McLain groups. Let Q be a totally ordered set, and K a
field; then the McLain group M(Q, K) is strongly Baer if
and only if Q is finite.

m P.Hall generalized wreath powers. Let Q2 be a totally
ordered set with Q2| > 2, H a non-trivial transitive
permutation group on X. Then WrH® is a strongly Baer
group if and only if Q, X, H are finite, and H is a
p-group for some prime p.

= Dark’s groups [Baer p-groups with no non-trivial normal
abelian subgroup] are not strongly Baer.
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finite exponent

Theorem (M&hres)

A periodic ;-group which is hypercentral or has finite
exponent is nilpotent.
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finite exponent

Theorem (M&hres)

A periodic t;-group which is hypercentral or has finite
exponent is nilpotent.

Lemma

Let the p-group G be the extension of an elementary abelian
group by an elementary abelian group. If G € Ny then it is
nilpotent.
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finite exponent

Theorem (M&hres)

A periodic t;-group which is hypercentral or has finite
exponent is nilpotent.

Lemma

Let the p-group G be the extension of an elementary abelian
group by an elementary abelian group. If G € Ny then it is
nilpotent.

for strongly Fitting groups this totally fails:
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Theorem (A. Martinelli)

Fixed a prime p, there exists a non-nilpotent metabelian
p-group G of finite exponent such that:

- for all d > 1, nilpotent subgroups of nilpotency class at most
d are subnormal of defect bounded by a function of d.

Such G is strongly Fitting, and may be constructed so that:
a) has trivial center; or

b) is an FC-group
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construction (b)

m A, A’ countably infinite elementary abelian p-groups;
a—a (a€A)

an isomorphism .

m In the restricted wreath product W = Awr A’ identify A
with the 1-component in the base group, and A" with the
complement; then take

] G=(ad e W|acA).
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There exist strongly Fitting groups of arbitrary finite nilpotent
length.
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There exist strongly Fitting groups of arbitrary finite nilpotent
length.

A torsion-free hypercentral strongly Baer group is soluble.
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