Permutable subgroups of groups

A. Ballester Bolinches¹

¹Universitat de València-Estudi General

Naples, 8th October, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

First definitions S-permutable embeddings Lattice properties π -permutability

Definitions

- If A, B ≤ G, A permutes with B when AB = BA, that is, AB is a subgroup of G.
- A is permutable or quasinormal in G if H permutes with all subgroups of G (Ore, 1939).

イロト イポト イヨト イヨト

3

First definitions S-permutable embeddings Lattice properties π -permutability

Lemma

Let \mathfrak{X} be a family of subgroups of a group G. If a subgroup A of G permutes with all subgroups $X \in \mathfrak{X}$, then it also permutes with their join $< \mathfrak{X} >$.

Therefore a subgroup *A* of a periodic group *G* is permutable in *G* if and only if *A* permutes with every *p*-subgroup of *G* for all $p \in \pi(G)$.

イロン 不同 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π -permutability

Let π a set of primes. A subgroup *A* of a periodic group *G* is called:

Definition

- π -permutable in *G* if *A* permutes with every *q*-subgroup of *G* for all $q \in \pi$.
- π -S-permutable or π -S-quasinormal in *G* if *A* permutes with every Sylow *q*-subgroup of *G* for all $q \in \pi$ (Kegel 1962).

イロン 不同 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π -permutability

If π is the set of all primes, then the π -permutable subgroups are just the permutable subgroups; the π -S-permutable subgroups are called S-permutable. In the case when $\pi = \pi(G) \setminus \pi(A)$, then *A* is called semipermutable (respectively, S-semipermutable) in *G* (Chen 1987).

イロト イポト イヨト イヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Theorem (Kegel (1962), Deskins (1963))

If A is an S-permutable subgroup of a finite group G, then A/A_G is contained in the Fitting subgroup of G/A_G . In particular, A is subnormal in G.

In particular, every permutable subgroup is subnormal (Ore, 1939).

イロト 不得 とくほ とくほとう

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Theorem (Maier and Schmid, 1973)

If A is a permutable subgroup of a finite group G, then A/A_G is contained in the hypercentre of G/A_G .

- There are examples of permutable subgroups *A* of finite groups *G* such that A/A_G is not abelian (Thompson, 1967).
- There is no bound for the nilpotency class of a core-free permutable subgroup (Bradway, Gross and Scott, 1971).
- There is no bound for the derived length of a core-free permutable subgroup (Stonehewer, 1974).

くロト (過) (目) (日)

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Definition (Carocca and Maier 1998)

A subgroup A of a group G is called hypercentrally embedded in G if A/A_G is contained in the hypercentre of G/A_G .

Every S-permutable subgroup of a finite group is hypercentrally embedded in *G*, but the converse is not true in general.

ヘロト ヘ戸ト ヘヨト ヘヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Theorem (Schmid, 1998)

Let A be an S-permutable subgroup of a finite soluble group G. Then A hypercentrally embedded in G if and only if A permutes with some system normaliser of G.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロト ヘアト ヘビト ヘビト

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Theorem (Stonehewer, 1972)

If A is a permutable subgroup of a group G, then A is ascendant in G. If G is finitely generated, then A is subnormal in G.

Kargapolov (1961) showed that S-permutable subgroups of locally finite groups do not have to be ascendant.

ヘロト ヘ戸ト ヘヨト ヘヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Theorem

Let A be an S-permutable subgroup of a periodic group. Then A is ascendant if:

- G is locally finite with min-p for all p (Robinson, Ischia 2010).
- G is hyperfinite (B-B, Kurdachenko, Otal and Pedraza, 2010).

イロト イポト イヨト イヨト

3

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Maier and Schmid's theorem does not hold in the general case (Busetto and Napolitani, 1992). For locally finite groups, we have:

Theorem (Celentani, Leone and Robinson, 2006)

If A is a permutable subgroup of a locally finite group G, then A/A_G is locally nilpotent, and their Sylow subgroups are finite provided that G has min-p for all primes p.

イロト 不得 とくほ とくほとう

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Theorem (Celentani, Leone and Robinson, 2006)

Let A be a permutable subgroup of a locally finite Kurdachenko group. Then A^G/A_G is finite and it is contained in a term of the upper central series of G/A_G of finite ordinal type.

ヘロン 人間 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Definitions (Asaad and Heliel, 2003)

- We say that 3 is a complete set of Sylow subgroups of a periodic group G if for each prime p ∈ π(G), G contains exactly a Sylow p-subgroup G_p of G.
- If 3 is a complete set of Sylow subgroups of a group *G*, we say that a subgroup *A* of a group *G* is 3-permutable if *A* permutes with all subgroups in 3.

ヘロト ヘアト ヘビト ヘビト

First definitions S-permutable embeddings Lattice properties π -permutability

If *G* is a periodic group, a complete set of Sylow subgroups of *G* composed of pairwise permutable subgroups G_p , *p* prime, is called a Sylow basis. The existence of Sylow basis characterises solubility in the finite universe.

イロト 不得 とくほ とくほとう

æ

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Theorem (Almestady, B-B, Esteban-Romero and Heliel, 2015)

Let A be a subnormal \mathfrak{Z} -permutable subgroup of a finite group G. Then A/A_G is is soluble. If \mathfrak{Z} is a Sylow basis, then A/A_G is nilpotent.

ヘロト ヘアト ヘビト ヘビト

First definitions S-permutable embeddings Lattice properties π -permutability

Theorem (B-B, Camp-Mora and Kurdachenko, 2014)

Let A be an S-permutable subgroup of a locally finite group G. If A is ascendant in G, then A^G/A_G is locally nilpotent.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロト 人間 ト ヘヨト ヘヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability S-permutable embeddings

Lemma

Let H and S be periodic subgroups of a group G. Suppose that H is an ascendant subgroup of G permuting with S. If π is a set of primes containing $\pi(S)$, then $O^{\pi}(H) = O^{\pi}(HS)$.

ヘロン 人間 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π-permutability

Theorem (see Doerk and Hawkes (1992), I, 4.29)

If 3 is a Sylow basis of the finite soluble group G, then the set of all 3-permutable subgroups of G is a lattice.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロト ヘアト ヘビト ヘビト

First definitions S-permutable embeddings Lattice properties π-permutability

Theorem (see Doerk and Hawkes (1992), I, 4.29)

If 3 is a Sylow basis of the finite soluble group G, then the set of all 3-permutable subgroups of G is a lattice.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロト ヘアト ヘビト ヘビト

First definitions S-permutable embeddings Lattice properties π-permutability

Theorem (Almestady, B-B, Esteban-Romero and Heliel, 2015)

If \mathfrak{Z} is a complete set of Sylow subgroups of a finite group *G*, then the set of all subnormal \mathfrak{Z} -permutable subgroups of *G* is a sublattice of the lattice of all subgroups of *G*.

イロン 不同 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π-permutability

Theorem

Let p be a prime and U and V subgroups of a finite group G. If U and V permute with a Sylow p-subgroup G_p of G and U is subnormal in G, then $U \cap V$ permutes with G_p .

イロト イポト イヨト イヨト

First definitions S-permutable embeddings Lattice properties π-permutability

Corollary (Kegel, 1962)

S-permutable subgroups of a finite group G form a sublattice of the subgroup lattice of G.

According to a result of Dixon, Kegel's lattice result also holds for radical locally finite groups with $\min-p$ for all p. We do not know whether

- 3-permutable subgroups is a sublattice of the subgroup lattice of a finite *G*, even in finite soluble groups.
- Kegel's result holds for locally finite groups.

ヘロト ヘアト ヘビト ヘビト

First definitions S-permutable embeddings Lattice properties π -permutability

Definition

A group *G* is called a T_0 -group if the Frattini factor group $G/\Phi(G)$ is a T-group, that is, a group in which normality is a transitive relation.

A. Ballester-Bolinches Permutable subgroups of groups

イロト 不得 とくほと くほとう

3

First definitions S-permutable embeddings Lattice properties π-permutability

Permutability

Theorem (B-B, Beidleman, Esteban-Romero and Ragland, 2014)

Let G be a group with nilpotent residual L, $\pi = \pi(L)$. Let θ_1 (respectively θ_2) denote the set of all primes p in $\theta = \pi'$ such that G has a non-cyclic (respectively cyclic) Sylow p-subgroup. Then every maximal subgroup of G is S-semipermutable if and only if G satisfies the following:

- 1. G is a T_0 -group.
- 2. L is a nilpotent Hall subgroup of G.
- 3. If $p \in \pi$ and P is a Sylow p-subgroup of G, then a maximal subgroup of P is normal in G.

ヘロト 人間 ト ヘヨト ヘヨト

э

First definitions S-permutable embeddings Lattice properties π -permutability

- 5. Let *p* and *q* be distinct primes with $p \in \theta_1$ and $q \in \theta$. Further, let *P* be a Sylow *p*-subgroup of *G* and *Q* a Sylow *q*-subgroup of *G*. Then [P, Q] = 1.
- Let *p* and *q* be distinct primes with *p* ∈ θ₂ and *q* ∈ θ.
 Further, let *P* be a Sylow *p*-subgroup of *G*, *Q* a Sylow *q*-subgroup of *G* and *M* the maximal subgroup of *P*. Then *QM* = *MQ* is a nilpotent subgroup of *G*.

ヘロン 人間 とくほ とくほ とう

1

First definitions S-permutable embeddings Lattice properties π -permutability

Definition

Let p be a prime. A group G is p-supersoluble if there exists a series of normal subgroups of G

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_r = G$$

such that the factor group G_i/G_{i-1} is cyclic of order p or a p'-group for $1 \le i \le r$.

A group G is supersoluble if and only if G is p-supersoluble for all primes p.

イロト イポト イヨト イヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Theorem (Berkovich and Isaacs, 2014)

Let p be a prime and $e \ge 3$. Assume that a Sylow p-subgroup of a group G is non-cyclic with order exceeding p^e . If every non-cyclic subgroup of G of order p^e is S-semipermutable in G, then G is p-supersoluble.

ヘロト 人間 ト ヘヨト ヘヨト

First definitions S-permutable embeddings Lattice properties π-permutability

Theorem (Isaacs, 2014)

Let π be a set of primes. The normal closure A^G of an *S*-semipermutable π -subgroup A of a group G contains a nilpotent π -complement, and all π -complements are conjugate. Also, if π consists of a single prime, A^G is soluble. As a consequence, if A is a nilpotent Hall subgroup of G and A is *S*-semipermutable, then A^G is soluble.

ヘロト 人間 ト ヘヨト ヘヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Theorem (B-B, Li, Su and Xie, 2014)

Let π and ρ be sets of primes. If A be a π -S-permutable ρ -subgroup of a group G, then $A^G/O_\rho(A^G)$ has nilpotent Hall π -subgroups.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロン 人間 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π -permutability

Lemma (Wielandt)

Let G be a group and let A and B be subgroups of G such that $AB^g = B^g A$ for all $g \in G$. Then [A, B] is subnormal in G.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロト 人間 とくほとくほとう

First definitions S-permutable embeddings Lattice properties π -permutability

Theorem (B-B, Li, Su and Xie, 2014)

If A is a nilpotent π -S-permutable subgroup of a group G, then $O^{\pi'}(A^G)$ is soluble.

A. Ballester-Bolinches Permutable subgroups of groups

イロン 不得 とくほ とくほ とうほ

First definitions S-permutable embeddings Lattice properties π -permutability

Corollary

If A is a nilpotent ρ -subgroup of a group G and A is S-semipermutable in G, then $O^{\rho}(A^{G})$ is soluble. In particular, the normal closure of every nilpotent S-semipermutable subgroup of G of odd order is soluble.

ヘロト 人間 ト ヘヨト ヘヨト

First definitions S-permutable embeddings Lattice properties π -permutability

Theorem (Isaacs, 2014)

Let A be a subgroup of odd order of a finite group G. If A permutes with every 2-subgroup of G, then A^G is of odd order.

A. Ballester-Bolinches Permutable subgroups of groups

イロト イポト イヨト イヨト

First definitions S-permutable embeddings Lattice properties π-permutability

Theorem (B-B, Li, Su and Xie, 2014)

Suppose that p is a prime such that (p - 1, |G|) = 1. Let A be a p'-subgroup of a finite group G, and assume that A is permutable with every p-subgroup of G. Then A^G is a p'-group.

A. Ballester-Bolinches Permutable subgroups of groups

ヘロン 人間 とくほ とくほ とう

First definitions S-permutable embeddings Lattice properties π -permutability

Permutability

Theorem (B-B, Li, Su and Xie, 2014)

Let p be a prime and let A be a p'-subgroup of a finite group G. Assume that A permutes with every p-subgroup of G. Then every chief factor of A^G whose order is divisible by p is simple and isomorphic to one of the following groups:

3
$$PSL(n,q)$$
, $n > 2$ prime, $p = \frac{q^n - 1}{q - 1}$, or $PSL(2, 11)$, $p = 11$,

•
$$M_{23}$$
, $p = 23$, or M_{11} , $p = 11$.

If, moreover, A^G is p-soluble, then all p-chief factors are A^G -isomorphic when regarded as A^G -modules by conjugation.

First definitions S-permutable embeddings Lattice properties π -permutability

Corollary (B-B, Li, Su and Xie, 2014)

Let p be a prime and let A be a p'-subgroup of a finite G. Assume that A is permutable with every p-subgroup of G. If A^G is p-soluble, then $A^G/O_{p'}(A^G)$ is a soluble PST-group and either $A^G/O_{p'}(A^G)$ is nilpotent or the Sylow p-subgroups of A^G are abelian.

ヘロト ヘアト ヘビト ヘビト