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In the following we will discuss some relevant new results that have
been obtained since that time and would have played a role if they
were already known.

A. Products of generalized dihedral groups

B. Some results on finite factorized groups

C. Triply factorized groups and near-rings

D. Products of groups with finite rank



Main Problem

A group G is called factorized, if

G = AB = {ab | a ∈ A, b ∈ B}

is the product of two subgroups A and B of G .

What can be said about the structure of the factorized group
G if the structures of its subgroups A and B are known?

If possible there should be no additional requirements on the
group G .



A. Products of generalized dihedral groups

Theorem of N. Itô 1955 ([AFG], Theorem 2.1.1).

If the group G = AB is the product of two abelian subgroups
A and B, then G is metabelian.

Theorem of N.S. Chernikov 1981 ([AFG], Theorem 2.2.5).

If the group G = AB is the product of two central-by-finite
subgroups A and B, then G is soluble-by-finite.

It is unknown whether G must be metabelian-by-finite in this case.



Products of abelian-by-finite groups

In view of Itô’s theorem the following can be asked.

Question 3 in [AFG].

Let the group G = AB be the product of two
abelian-by-finite subgroups A and B. Is G always
soluble-by-finite or perhaps even metabelian-by-finite?

Yes, if G is linear (Ya. Sysak) or residually finite (J. Wilson)
(see [AFG], Theorem 2.3.4)

Question 3*.

Let G = AB. If A and B are abelian-by-(index 2), is G
soluble-by-finite?



Generalized dihedral groups

Recall that a group is dihedral if it is generated by two involutions.

Definition. A group G is generalized dihedral if it is of dihedral
type, i.e. G contains an abelian subgroup X of index 2 and an
involution a which inverts every element in X .

Then A = Xo <a> is the semi-direct product of an abelian
subgroup X and an involution a, so that xa = x−1 for each x ∈ X .

Clearly every (finite or infinite) dihedral group is also generalized
dihedral. A periodic generalized dihedral group is locally finite and
every finite subgroup is contained in a finite dihedral group.



Properties of generalized dihedral groups

Lemma. Let A be generalized dihedral. Then the following holds

1) every subgroup of X is normal in A;

2) if A is non-abelian, then every non-abelian normal subgroup of
A contains the derived subgroup A′ of A;

3) A′ = X 2 and so the commutator factor group A/A′ is an
elementary abelian 2-group;

4) the center of A coincides with the set of all involutions of X ;

5) the coset aX coincides with the set of all non-central
involutions of A;

6) two involutions a and b in A are conjugate if and only if
ab−1 ∈ X 2;

7) if A is non-abelian, then X is characteristic in A.



Products of generalized dihedral groups

Theorem (B.A., Ya.Sysak, J. Group Theory 16 (2013), 299-318).

(a) Let the group G = AB be the product of two subgroups
A and B, each of which is either abelian or generalized
dihedral. Then G is soluble.

(b) If, in addition, one of the two subgroups, B say, is
abelian, then the derived length of G does not exceed 5.



Products of two subgroups
which are (locally cyclic)-by-(index 2)

Corollary. Let the group G = AB be the product of two
subgroups A and B.

(a) If both A and B contain torsionfree locally cyclic
subgroups of index at most 2, then G is soluble and
metabelian-by-finite.

(b) If A and B are cyclic-by-(index 2), then G is
metacyclic-by-finite.



Some special cases

Let the group G = AB be the product of two generalized dihedral
subgroups A and B.

1. The second case of the corollary was first proved in
B.A., Ya. Sysak, Arch. Math. 90 (2008), 101-111.

2. The special case of the theorem when A and B are periodic
generalized dihedral was already treated in
B.A., A. Fransman, L. Kazarin, J. Alg. 350 (2012), 308-317.

3. If A and B are Chernikov groups and (abelian)-by-(index 2),
and one of the two is generalized dihedral, then G is a soluble
Chernikov group. This was shown in
B.A., L. Kazarin, Israel J. Math. 175 (2010), 363-389.



Remarks on the proof of the above Theorem

The proof of the above Theorem is elementary and almost only
uses computations with involutions. Extensive use is made by the
fact that every two involutions of a group generate a dihedral
subgroup.

A main idea of the proof is to show that

the normalizer in G of a non-trivial normal subgroup of one
of the factors A or B has a non-trivial intersection with the
other factor.

If this is not the case we may find commuting involutions in A and
B and produce a nontrivial abelian normal subgroup by other
computations.

It is easy to see that we may assume that |A ∩ B| ≤ 2.



B. Some results on finite factorized groups

Products of finite groups

by A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad,
Expositions in Mathematics 53, De Gruyter 2010

Theorem of H. Wielandt, O. Kegel ([AFG], Theorem 2.4.3).

If the finite group G = AB is the product of two nilpotent
subgroups A and B, then G is soluble.

Question 5 in [AFG].

Let the class of A be α and the class of B be β. Is the derived
length d(G ) of G bounded by a function of α and β?

d(G ) 6= α + β in general (J. Cossey and S. Stonehewer 1998).



Generalization of Kegel-Wielandt

Theorem of L. Kazarin 1979

If the finite group G = AB is the product of two subgroups A
and B, each of which possesses nilpotent subgroups of index
at most 2, then G is soluble.

Theorem (B.A., L. Kazarin, J.Alg. 311 (2007), 69-75).

Let the finite group G = AB be the product of a nilpotent
subgroup A and a subgroup B, then the normal closure of
the center Z of B is a soluble normal subgroup of G .
In particular, if Z 6= 1, then G contains a non-trivial abelian
normal subgroup.

Remark. The proof of this and the following theorem uses the
Classification of the Finite Simple Groups (CFSG).



Finite products of soluble groups

Theorem (L. Kazarin, Comm. Alg. 14 (1986), 1001-1066).

Let G = AB be a finite group, where A and B are soluble.
Then the composition factors of G are among the following
groups

L2(q), L3(q), L4(2), M11, PSp4(3), U3(8).

Theorem (L. Kazarin, A. Martinez-Pastor, M. Pérez-Ramos 2008).

Let π be a set of primes. If the finite group G = AB is the
product of two π-decomposable subgroups A = Aπ × Aπ′ and
B = Bπ × Bπ′, then AπBπ = BπAπ and this is a Hall
π-subgroup of G .



C. Triply factorized groups and near-rings

Many proofs concerning factorized groups reduce to the
consideration of a triply factorized group

G = AK = BK = AB, where A,B,K are subgroups of G ,

K is normal in G , A ∩ K = B ∩ K = 1.

Thus G = An K = B n K = AB.

Such groups can be constructed using radical rings
(see [AFG], Chapter 6).



Radical rings

Let R be an associative ring, not necessarily with identity element.
Then R forms a semi-group with identity element 0 under the
circle operation

a ◦ b = a + b + ab for all a, b ∈ R.

The group of all invertible elements in this semi-group is called the
adjoint group R◦ of R.

R is radical if R = R◦, i. e. R coincides with its Jacobson radical.

Let R be any ring embedded into a ring R1 with identity in an
arbitrary way. Then R is radical if and only if R + 1 is a subgroup
of the group of units of R1 and this group is isomorphic with R◦.



Construction of triply factorized groups

Construction. Let R be a radical ring, P a right ideal of R and
M = R/P as a right R-module.

The adjoint group A = R◦ operates on M via the rule
ma = m + ma for all a ∈ A and m ∈ M.

Consider the semidirect product G (M) = AnM and its subgroup

B = {am | m = a + P, a ∈ A}.

It is easy to see that

G = G (M) = AnM = B nM = AB

(see [AFG], Section 6.1). Note that here M is an abelian group.



Near-rings

Definition. A set (R,+, ·) with two binary operations, addition
and multiplication, is called a (left) near-ring if

1. (R,+) is a (not necessarily abelian) group,

2. (R, ·) is a semi-group,

3. x · (y + z) = x · y + x · z , for all x , y , z ∈ R.

If R contains a multiplicative identity 1, then R is a
near-ring with identity.

In this case of multiplicatively invertible elements of R is a group
R×. The additive group of R is written as R+.



Construction subgroups

Example. Let G be any group (written additively).

Let M(G ) = {α : G −→ G} the set of all mappings from G into G .
Then M(G ) is a near-ring under pointwise addition of mappings
and multiplication by composition.

Definition. Let R be a near-ring with 1. If the subgroup U of R+

satisfies (U + 1) ≤ R×, then U is admissible or a construction
subgroup of R. In this case (U + 1)U ⊆ U.

For instance, if R is a ring with 1, then the Jacobson radical is a
construction subgroup of R.



Construction of triply factorized groups using
near-rings

Theorem (P. Hubert, Comm. Alg. 32 (2004), 1229-1235).

Let R be a near-ring with identity and U be a construction
subgroup of R. Let N+ be a normal subgroup of U+ with
(U + 1)N ⊆ N. The group A = U + 1 operates on M = U+/N via
the rule

(u + N)(v+1) = (v + 1)−1u + N,

for all u, v ∈ U. In the semidirect product G = G (R,U) = AnM,
the subgroup

B = {((l + 1)−1, l + U), l ∈ R}

is a complement of M, such that G = AnM = B nM = AB.
Thus G is triply factorized by A,B, and M.
(Note that here M is not necessarily abelian.)



The Converse theorem

Theorem (P. Hubert, 2005). Let the group

G = AnM = B nM = AB

be triply factorized by two subgroups A and B and a normal
subgroup M of G , such that A ∩ B = 1.
Then there exists a near-ring R which contains a construction
subgroup U, such that G (R,U) ' G .

If A,B,M are abelian, then R may be chosen as a commutative
radical ring R ([AFG], Proposition 6.1.4).



Local near-rings

Definition. Let R be a near-ring with identity element and let LR
be the set of elements of R which are not right invertible. If LR is
a subgroup of R+, then R is called a local near-ring.

Remark. If R is a local ring, then LR is the Jacobson radical J(R).
In every local near-ring R, the subgroup LR is a construction
subgroup.

Question. Is LR in every local near-ring an ideal of R or at least a
normal subgroup of R+?



Examples of local near-rings

Lemma. Let N+ be any p-group with finite exponent. Then there
exists a local near-ring R such that L+R contains N+.

Theorem (B.A., P. Hubert, Ya. Sysak, J. Algebra 273, 2004,
700-717).

If R is a local near-ring, such that the group of units of R is a
dihedral group, then R is finite. Moreover, R+ is a p-group for
p = 2 or p = 3 and |R| ≤ 16.



D. Products of groups with finite rank

Definition. A group G has finite Prüfer rank if there exists a
natural number r such that every finitely generated subgroup of G
can be generated by r elements and r is minimal with this property.

Theorem (see [AFG], Theorems 4.6.12 and 4.3.5).
Let the soluble group G = AB be the product of two subgroups A
and B with finite Prüfer-rank r(A) resp. r(B).
Then G has finite Prüfer rank r(G ) which is bounded by a
polynomial function of r(A) und r(B).

Question. Is there such a linear function?

This question reduces to a problem about finite p-groups.



Finite Prüfer rank

Question. Let G = AB be a finite p-group. Is r(G ) bounded by a
linear function r(A) and r(B)?

B. Huppert has shown that for p > 3 every finite product of two
cyclic subgroups is metacyclic.

Theorem (B. A., L. Kazarin, Comm. Alg. 27 (1999), 3895-3907).

Let G = AB be a finite p-group

a) If A and B are metacyclic and p > 3, then r(G ) ≤ 4.

b) If r(A), r(B) ≤ r and p > 2, then

r(G ) ≤ 4r(dlog2 re+ 2)2.



Relation with Eggert’s conjecture

Special Question. Let G = AB be a finite p-group with A,B
abelian. Is r(G ) bounded by a linear function of r(A) and r(B)?

It turns out that this question has a positive answer if the following
conjecture on commutative nilpotent p-algebras is true.

Eggert’s conjecture

Let R be a finite dimensional commutative nilpotent p-algebra.
Let R(p) = 〈ap | a ∈ R〉, R(p) = 〈a | ap = 0, a ∈ R〉
Clearly R/R(p) ' R(p) and dimR(p) = r(R◦).

N. Eggert conjectured in 1979 that dimR ≥ p dimR(p).
He proved this if R = 〈x , y〉 and dimR(p) = 2.



Some remarks on Eggert’s conjecture

Eggert’s conjecture has been verified in many special cases,
for instance by R. Bautista (1976) and C. Stack (1996) for
dimR(p) ≤ 3 and B. A. and L. Kazarin (2003, 2008) for
dimR(p) ≤ 4.

Further results are for example by M. Korbelar (2010) for
R(p) = 〈x , y〉 and M. R. McLean (2004, 2006) for some graded
algebras.

A detailed account on Eggert’s conjecture can be found in:

G. M. Bergman, Thoughts on Eggert’s conjecture, Contemporary
Mathematics 609 (2014), 1-17.



Finite torsionfree rank

Definition. A group G has finite torsion-free rank if it has a
series of finite length whose factors are either periodic or infinite
cyclic. The number r0(G ) of infinite cyclic factors in such a series
is an invariant of G called its torsion-free rank.

Theorem (B.A., S. Franciosi, F. de Giovanni, 1991 [AFG], 4.1.8).
If the group G = AB with finite torsion-free rank is the product of
two subgroups A and B, then

r0(G ) ≤ r0(A) + r0(B)− r0(A ∩ B).

Question 8 in [AFG] Does the equality sign hold here?

This is true if G is soluble with finite abelian section rank (see
[AFG], 4.1.10).


