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If {L(X) : A € A} is the set of all simple SL4 modules over an
algebraically closed field k of characteristic 2, what is the
structure of L(\) ®y L(n)?
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Diagram



Alperin Diagrams: An Overview

e Diagram for conveying submodule structure
e Defined in the 1980s, but often used loosely

e Only describes a small class of modules

Definition (Often)

An Alperin Diagram for module M is a quiver Q A L
with a lattice bijection § from the lattice of arrow I_|3 / C|f
closed subsets of @ to the lattice of submodules \ /
of M. A

e Vertices of quiver labeled with simple module
isomorphism classes

e Edges correspond to non-split extensions as
subquotients
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Alperin Diagrams: When They Fail and Alternatives

Problems:

e The requirement ¢ is a bijection is very strong

e Requires infinite quivers or only finitely many submodules

e Infinitely many submodules occur frequently (e.g. R &R
over R)

Possible Solutions:

e Drop surjectivity requirement on §
e Generalise diagrams based on certain classes of filtrations (e.g.
radical, socle, socle-isotypic, etc.)
e Require socle and radical series to be read off



Alperin Diagrams: Our Alternative

e An injective diagram, based on generated submodules,

annotated to give the socle and radical series
e Procedure for module M:
e Find n vectors {v;} where n is the composition length of M

such that,
e (vi)y=M
o (vi)=(vy) & i=]j

e (v;)/rad (v;) is simple
e Draw a line v; — v; if v; € rad (v;)\rad ?(v;) and
(vj)/rad 2(v;) < (v;)/rad *(v;) is not split
e Construct 0 to take the arrow-closure of v; to (v;), be lattice
and top preserving.
e Decorate with more vectors to highlight socle and radical
series and other submodule structure.

e Examples to come in the context of quasi-hereditary algebras



Quasi-Hereditary Algebras




Quasi-hereditary Algebras

Really a class of categories of modules

Simple modules L(\) labeled by poset (A, <)

Standard and costandard modules A(\) and V() for each
AeEAN

e Simple head (resp. socle) of L())

e All other factors L(u) for p < A

e Maximal such quotient of projective cover (resp. submodule of
injective hull) of L(\)

Indecomposable tilting modules (both A- and V-filtrations)
(M)



Rational (co)Modules of Algebraic Groups

A is the set of dominant weights

e Tuples of naturals
e < not lexicographical: depends on certain coroots

Each L(A), A(X), V(X) and T(A) have highest weight A.
e Contravariant dual

e Tilting modules contravariantly self-dual



Example of Alternative Alperin Diagram

The module A(3,0) of type G, over characteristic 2
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Example of Alternative Alperin Diagram

The module A(3,0) of type G, over characteristic 2



Tensor Products of Simples of SL,




Return to the question

If {L(X) : A € A} is the set of all simple SL4 modules over an
algebraically closed field k of characteristic 2, what is the
structure of L(\) @y L(u)?



Philosophy

e “Twisting” by the Frobenius automorphism of G allows us
to reduce to finitely many cases sometimes

e Write “base p"
A=D"pN  u=) Py
j=0 j=0

for p-restricted weights \; and p;

e Eg
(3,14,5) = (1,0,1) +2x (1,1,0)+22 x (0,1,1) +23x (0,1, 0)

e By the Steinburg tensor product theorem

L) @ L(p) = Q) (L) @ L)V

JENy

10
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Helpful Facts

Some restricted L(A) = V(X) = A(X) = T(N)

Tiling modules are closed under ®

In some cases, software can give form of A(\) (and V()\))

Structure of contravariant dual can be read off (halving the
amount of work)

Simple modules divide up into blocks

11



Example: SL, over characteristic 2

e 2-restricted weights are elements of {0,1}3

e Only cases not covered by symmetry (or trivial) are

001 ® 001 001 ®010 001 ® 011
001 ®100 001 ® 101 001 ® 110
001 ®111 010® 010 010011
010 ® 101 010®111 O0l11®011
011 ®101 011®110 Oll®111
101®101 101®111 111®111
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e Many cases are immediately tilting
e Two cases can be shown to be tilting

e The others are contravariantly self dual but not tilting
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Example of Calculation: 001 ® 111

e Characters gives composition factors
with multiplicites: 011#,112,1202,2013 in
one block 011

201

120 011

N

112 201

N
120 011
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011
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Example of Calculation: 001 ® 111

Characters gives composition factors
with multiplicites: 011#,112,1202,2013 in
one block
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contravariantly self-dual
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Extent of Calculations

001 ® 001 001 ®010 001011
001 ®100 001 ® 101 001 ® 110
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Extent of Calculations

001 ©® 001 001 ® 010 001 ® 011
001 ® 100 001 ®101 001 ® 110
001 ® 111 010® 010 010 ® 011
010 ® 101 010® 111 011 ® 011
011®101 011®110 011® 111
101 ® 101 101 ® 111 111 ® 111

e Can name all indecomposable summands

e Can give structure of all indecomposable summands
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Donkin’s Tilting Module Conjecture

Recall the Frobenius map, F

Let G; < G be the kernel of F

Simple modules of G; labeled by p-restricted \

Let p = 111, wo(abc) = (—c,—b,—a)

Let Q()\) be the projective cover of A\ as a G; module

Conjecture (Donkin’s Tilting Module)
For all p-restricted A,

T(2(p—1)p +wod)l6, = Q(N)

e True for p > 2h—2
e False (Bendel, Nakano, Pillen, and Sobaje '19) for type G,

over characteristic 2
15



Donkin’s Tilting Module Conjecture for SL, over characteristic

2

Theorem (Sobaje '18)
Donkin's conjecture holds for G iff

(L(p) @ L)Z™™ = @ T((p—Lp+ N @ L((p—1)p—A)
AEXy
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Donkin’s Tilting Module Conjecture for SL, over characteristic

2

Theorem (Sobaje '18)
Donkin's conjecture holds for G iff

(L(p) @ L)Z™™ = @ T((p—Lp+ N @ L((p—1)p—A)
AEXy

As both sides are tilting, this can be verified by characters

Corollary
Donkin’s conjecture holds for type As in characteristic 2.

16



Thank You

Questions?
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