Characters in π -separable and *p*-solvable groups

Nicola Grittini

Università degli Studi di Firenze

YRAC2019

The B_{π} -characters

メロト メタト メヨト メヨト

$\pi\text{-separable groups}$ and Hall $\pi\text{-subgroups}$

Let π be a set of primes and denote as π' the complement set of π . A natural number *n* is called a π -number if all its prime divisors are in π . For any $m \in \mathbb{N}$, m_{π} is the π -part of *m*, i.e., the maximal π -number dividing *m*.

Definition

A finite group G is called π -separable if, given a composition series

$$G = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_r = \{1\},\$$

then each factor group N_1/N_{i+1} is either a π -group or a π' -group, i.e., its order is either a π -number or a π' -number.

イロト イ団ト イヨト イヨ

π -separable groups and Hall π -subgroups

Let π be a set of primes and denote as π' the complement set of π . A natural number *n* is called a π -number if all its prime divisors are in π . For any $m \in \mathbb{N}$, m_{π} is the π -part of *m*, i.e., the maximal π -number dividing *m*.

Definition

A finite group G is called π -separable if, given a composition series

$$G = N_0 \rhd N_1 \rhd \dots \rhd N_r = \{1\},\$$

then each factor group N_1/N_{i+1} is either a π -group or a π' -group, i.e., its order is either a π -number or a π' -number.

Definition

A subgroup $H \leq G$ is called Hall π -subgroup of G if $|H| = |G|_{\pi}$.

If G is a π -separable group, then it has a Hall π -subgroup and two distinct Hall π -subgroups are conjugated.

Definition

Let G be a finite group. A character $\chi \in Irr(G)$ is called π -special if:

- both $\chi(1)$ and $o(\chi)$ are π -numbers,
- for any subnormal subgroup N of G and any irreducible constituent φ of χ_N , $o(\varphi)$ is a π -number.

Definition

Let G be a finite group. A character $\chi \in Irr(G)$ is called π -special if:

- both $\chi(1)$ and $o(\chi)$ are π -numbers,
- for any subnormal subgroup N of G and any irreducible constituent φ of χ_N , $o(\varphi)$ is a π -number.

Theorem (Gajendragadkar, 1979)

Let G be a π -separable group. If α is a π -special character of G and β is a π' -special character of G, then $\alpha\beta$ is an irreducible character of G and this factorization is unique.

Definition

If a character can be written as the product of a π -special and a π '-special character, we say that it is π -factorable.

Isaacs algorithm, 1982

Let G be a π -separable group and let $\chi \in Irr(G)$. Through the algorithm described by Isaacs in the article *Characters of* π -*Separable Groups*, one can associate to χ an unique (up to conjugation) pair (W, μ) such that:

• $W \leq G$ and $\mu \in Irr(W)$,

•
$$\mu^{G} = \chi$$
, and

• μ is π -factorable.

The pair (W, μ) is called a *nucleus* for χ .

Note that, as a consequence, every primitive character is π -factorable.

Isaacs algorithm, 1982

Let G be a π -separable group and let $\chi \in Irr(G)$. Through the algorithm described by Isaacs in the article *Characters of* π -*Separable Groups*, one can associate to χ an unique (up to conjugation) pair (W, μ) such that:

• $W \leq G$ and $\mu \in Irr(W)$,

•
$$\mu^{G} = \chi$$
, and

• μ is π -factorable.

The pair (W, μ) is called a *nucleus* for χ .

Note that, as a consequence, every primitive character is π -factorable.

Definition

Let $\chi \in Irr(G)$ and let (W, μ) a nucleus for χ . If μ is π -special, then χ is a B_{π} -character.

Character restriction and B_{π} -characters

Why should we care about these characters?

Theorem (Isaacs, 1974)

If G is p-solvable, there exists a canonically defined set of characters $B_{p'}(G)$ such that the restriction to p-regular elements realizes a bijection between $B_{p'}(G)$ and $IBr_p(G)$.

Character restriction and B_{π} -characters

Why should we care about these characters?

Theorem (Isaacs, 1974)

If G is p-solvable, there exists a canonically defined set of characters $B_{p'}(G)$ such that the restriction to p-regular elements realizes a bijection between $B_{p'}(G)$ and $IBr_p(G)$.

Let χ^* be the restriction of a character χ to π -elements, i.e. to elements such that their order is a π -number. For any $\chi \in \text{Char}(G)$, we say that χ^* is a π -partial character. A π -partial character χ^* is in $I_{\pi}(G)$ if it is *irreducible*, i.e., if it cannot be written as a sum of two other π -partial characters.

Character restriction and B_{π} -characters

Why should we care about these characters?

Theorem (Isaacs, 1974)

If G is p-solvable, there exists a canonically defined set of characters $B_{p'}(G)$ such that the restriction to p-regular elements realizes a bijection between $B_{p'}(G)$ and $IBr_p(G)$.

Let χ^* be the restriction of a character χ to π -elements, i.e. to elements such that their order is a π -number. For any $\chi \in \text{Char}(G)$, we say that χ^* is a π -partial character. A π -partial character χ^* is in $I_{\pi}(G)$ if it is *irreducible*, i.e., if it cannot be written as a sum of two other π -partial characters.

Theorem (*Isaacs, 1982*)

Let G be π -separable.

- The restriction to π-elements realizes a bijection B_π(G) → I_π(G).
- $|B_{\pi}(G)|$ is equal to the number of conjugacy classes of π -elements.
- The set l_π(G) of irreducible π-partial characters is a basis for the class functions on π-elements.

Fong characters

Let *H* be a Hall π -subgroup of *G*.

Theorem (Isaacs, 1982)

Let $\chi \in B_{\pi}(G)$, then

- a) if $\alpha \in Irr(H)$, then $\alpha(1) \ge [\chi_H, \alpha]\chi(1)_{\pi}$;
- b) χ_H has an irreducible constituent α such that $\alpha(1) = \chi(1)_{\pi}$;
- c) if α is as in b), then it is not an irreducible constituent of any other B_{π} -character different from χ .

Characters as in b) are called *Fong characters* associated with χ .

Fong characters

Let *H* be a Hall π -subgroup of *G*.

Theorem (Isaacs, 1982)

Let $\chi \in B_{\pi}(G)$, then

- a) if $\alpha \in Irr(H)$, then $\alpha(1) \ge [\chi_H, \alpha]\chi(1)_{\pi}$;
- b) χ_H has an irreducible constituent α such that $\alpha(1) = \chi(1)_{\pi}$;
- c) if α is as in b), then it is not an irreducible constituent of any other B_{π} -character different from χ .

Characters as in b) are called *Fong characters* associated with χ .

Theorem (Isaacs, 1984)

Let H be a Hall π -subgroup of a π -separable group G and let $\varphi \in Irr(H)$. If φ is primitive, then it is a Fong character associated with some character $\chi \in B_{\pi}(G)$. Moreover, $\eta \in Irr(H)$ is a Fong character associated with χ if and only if $\eta = \varphi^{g}$ for some $g \in N_{G}(H)$.

< □ > < □ > < □ > < □ > < □ >

Bounding the *p*-length

< □ > < □ > < □ > < □ > < □ >

If G is a p-solvable group, the p-length $\ell_p(G)$ of G is the minimal number of p-quotients in a normal p-series of G.

For $n \in \mathbb{N}$, we write \mathbb{Q}_n to denote the *n*-cyclotomic extension of \mathbb{Q} , i.e., an extension of \mathbb{Q} by a primitive *n*-root of unity.

< □ > < 同 > < 回 > < Ξ > < Ξ

If G is a p-solvable group, the p-length $\ell_p(G)$ of G is the minimal number of p-quotients in a normal p-series of G.

For $n \in \mathbb{N}$, we write \mathbb{Q}_n to denote the *n*-cyclotomic extension of \mathbb{Q} , i.e., an extension of \mathbb{Q} by a primitive *n*-root of unity. Let *G* be *p*-solvable.

- if p = 2, $\ell_2(G) \le |Irr_{2',\mathbb{Q}}(G)|$ (Navarro, Tiep, 2007);
- for any p, $\ell_p(G) \leq \log_2(\left|\operatorname{Irr}_{p',\mathbb{Q}_p}(G)\right|)$ (Tent, 2013).

< □ > < 同 > < 三 > < 三 >

If G is a p-solvable group, the p-length $\ell_p(G)$ of G is the minimal number of p-quotients in a normal p-series of G.

For $n \in \mathbb{N}$, we write \mathbb{Q}_n to denote the *n*-cyclotomic extension of \mathbb{Q} , i.e., an extension of \mathbb{Q} by a primitive *n*-root of unity. Let *G* be *p*-solvable.

• if p = 2, $\ell_2(G) \le |Irr_{2',\mathbb{Q}}(G)|$ (Navarro, Tiep, 2007);

• for any p, $\ell_p(G) \leq \log_2(|\operatorname{Irr}_{p',\mathbb{Q}_p}(G)|)$ (Tent, 2013).

Let $\operatorname{cd}_{p'}(G) = \{\chi(1) \mid \chi \in \operatorname{Irr}_{p'}(G)\}.$

Theorem (Giannelli, Rizo, Schaeffer Fry, 2019)

Let G be finite and p odd. If $|cd_{p'}(G)| = 2$, then G is solvable and $\ell_p(G) \leq 2$.

It is not difficult to prove that, if G is p-solvable, then $\ell_p(G) \leq |cd_{p'}(G)|$.

If G is a p-solvable group, the p-length $\ell_p(G)$ of G is the minimal number of p-quotients in a normal p-series of G.

For $n \in \mathbb{N}$, we write \mathbb{Q}_n to denote the *n*-cyclotomic extension of \mathbb{Q} , i.e., an extension of \mathbb{Q} by a primitive *n*-root of unity. Let *G* be *p*-solvable.

• if p = 2, $\ell_2(G) \le |Irr_{2',\mathbb{Q}}(G)|$ (Navarro, Tiep, 2007);

• for any p, $\ell_p(G) \leq \log_2(\left|\operatorname{Irr}_{p',\mathbb{Q}_p}(G)\right|)$ (Tent, 2013).

Let $\operatorname{cd}_{p'}(G) = \{\chi(1) \mid \chi \in \operatorname{Irr}_{p'}(G)\}.$

Theorem (Giannelli, Rizo, Schaeffer Fry, 2019)

Let G be finite and p odd. If $|cd_{p'}(G)| = 2$, then G is solvable and $\ell_p(G) \leq 2$.

It is not difficult to prove that, if G is p-solvable, then $\ell_p(G) \leq |cd_{p'}(G)|$.

Question

Let G be p-solvable. Is it true that $\ell_p(G) \leq |cd_{p',\mathbb{Q}_p}(G)|$?

Let G be p-solvable, P a Sylow p-subgroup of G, let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(P)$ be a Fong character associated with χ .

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$; if σ fixes λ , then it fixes χ .

If $\lambda^{\sigma} = \lambda$, then it is a Fong character associated with $\chi^{\sigma} \in B_{p}(G)$ and, thus, $\chi^{\sigma} = \chi$.

Let G be p-solvable, P a Sylow p-subgroup of G, let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(P)$ be a Fong character associated with χ .

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$; if σ fixes λ , then it fixes χ .

If $\lambda^{\sigma} = \lambda$, then it is a Fong character associated with $\chi^{\sigma} \in B_p(G)$ and, thus, $\chi^{\sigma} = \chi$.

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$ such that $o(\sigma) = p^a$. If σ fixes χ , it fixes λ .

Let G be p-solvable, P a Sylow p-subgroup of G, let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(P)$ be a Fong character associated with χ .

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$; if σ fixes λ , then it fixes χ .

If $\lambda^{\sigma} = \lambda$, then it is a Fong character associated with $\chi^{\sigma} \in B_{p}(G)$ and, thus, $\chi^{\sigma} = \chi$.

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$ such that $o(\sigma) = p^{a}$. If σ fixes χ , it fixes λ .

• If $\chi^{\sigma} = \chi$, then σ permutes the Fong characters of χ and $\chi_{P} = \sum_{i} \sum_{\lambda \in C_{i}} \lambda + \Delta$, with C_{i} orbits of σ and $p \mid \Delta(1)$.

Let G be p-solvable, P a Sylow p-subgroup of G, let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(P)$ be a Fong character associated with χ .

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$; if σ fixes λ , then it fixes χ .

If $\lambda^{\sigma} = \lambda$, then it is a Fong character associated with $\chi^{\sigma} \in B_p(G)$ and, thus, $\chi^{\sigma} = \chi$.

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$ such that $o(\sigma) = p^{a}$. If σ fixes χ , it fixes λ .

- If $\chi^{\sigma} = \chi$, then σ permutes the Fong characters of χ and $\chi_{P} = \sum_{i} \sum_{\lambda \in C_{i}} \lambda + \Delta$, with C_{i} orbits of σ and $p \mid \Delta(1)$.
- $\chi(1) = \sum_i |C_i| \lambda(1) + \Delta(1)$ and, if $|C_i| \neq 1$ for all *i*, then $p \mid \chi(1)$, a contradiction.

Let G be p-solvable, P a Sylow p-subgroup of G, let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(P)$ be a Fong character associated with χ .

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$; if σ fixes λ , then it fixes χ .

If $\lambda^{\sigma} = \lambda$, then it is a Fong character associated with $\chi^{\sigma} \in B_p(G)$ and, thus, $\chi^{\sigma} = \chi$.

Proposition

Let $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|}/\mathbb{Q})$ such that $o(\sigma) = p^{a}$. If σ fixes χ , it fixes λ .

- If $\chi^{\sigma} = \chi$, then σ permutes the Fong characters of χ and $\chi_{P} = \sum_{i} \sum_{\lambda \in C_{i}} \lambda + \Delta$, with C_{i} orbits of σ and $p \mid \Delta(1)$.
- $\chi(1) = \sum_i |C_i| \lambda(1) + \Delta(1)$ and, if $|C_i| \neq 1$ for all *i*, then $p \mid \chi(1)$, a contradiction.
- Since all the (primitive) Fong characters of χ are conjugated, one is fixed by σ iff all of them are.

Bound to the *p*-length

A B_p-character has values in $\mathbb{Q}_{|G|_p}$. Thus, a B_p-character has values in \mathbb{Q}_p if and only if it is fixed by every $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|_n}/\mathbb{Q}_p)$, which order is a *p*-power.

Corollary

Let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(G)$ be a Fong character associated with χ . Then, χ has values in \mathbb{Q}_p if and only if $o(\lambda) = p$.

Thus, we have a way to control both existence, degree and field of values of the B_p -characters.

Bound to the *p*-length

A B_p-character has values in $\mathbb{Q}_{|G|_p}$. Thus, a B_p-character has values in \mathbb{Q}_p if and only if it is fixed by every $\sigma \in \operatorname{Aut}(\mathbb{Q}_{|G|_n}/\mathbb{Q}_p)$, which order is a *p*-power.

Corollary

Let $\chi \in B_p(G) \cap Irr_{p'}(G)$ and let $\lambda \in Lin(G)$ be a Fong character associated with χ . Then, χ has values in \mathbb{Q}_p if and only if $o(\lambda) = p$.

Thus, we have a way to control both existence, degree and field of values of the $\mathsf{B}_p\text{-}\mathsf{characters}.$

Theorem

Let G be p-solvable and $\operatorname{cd}_{p',\mathbb{Q}_p}^{\mathsf{B}_p}(G) = \{\chi(1) \mid \chi \in \mathsf{B}_p(G) \cap \operatorname{Irr}_{p',\mathbb{Q}_p}(G)\}$, then $\ell_p(G) \leq \left|\operatorname{cd}_{p',\mathbb{Q}_p}^{\mathsf{B}_p}(G)\right|.$

Corollary

If G is a p-solvable group, $\ell_p(G) \leq |cd_{p',\mathbb{Q}_p}(G)|$.

Any questions?

< □ > < □ > < □ > < □ > < □ >

Thank you!

メロト メロト メヨト メヨト