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An old conjecture

Conjecture (Netto, 1882)
Two random elements of Sn generate either An or Sn with
probability tending to 1 as n→∞.

In this talk, all sets/groups will be finite, and probability comes
from uniform distribution.
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Netto’s conjecture was proved almost a century later:

Theorem (Dixon, 1969)
Netto’s conjecture is true.
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Two related results

Theorem (Shalev, 1997)
Let x , y ∈ Sn be chosen at random. Then, the probability that
〈x , xy 〉 > An tends to 1 as n→∞.

This implies Dixon’s theorem, since 〈x , xy 〉 6 〈x , y〉.
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Two related results

Theorem (Babai-Hayes, 2006)
Let x ∈ Sn be fixed, and let y ∈ Sn be random. Then,
P(〈x , y〉 > An) = 1− o(1) if and only if x has o(n) fixed points.

All asymptotic symbols (little-o, big-O...) are understood with
respect to the limit n→∞.
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Combining the two results

Recall that f = Ω(g) if f (n) ≥ Cg(n) for all large enough n and
for C > 0 absolute constant.

Theorem (S. Eberhard, DG, 2019)
Let π ∈ Sn be fixed. For each j let cj denote the number of
j-cycles of π. Let π′ be a random conjugate of π.

1 P(〈π, π′〉 > An) = 1− o(1) if and only if c1 = o(n1/2) and
c2 = o(n).

2 P(〈π, π′〉 > An) = Ω(1) if and only if c1 = O(n1/2) and
c2 = n/2− Ω(n).
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The moral of the theorem is that the likelihood of 〈π, π′〉 > An is
completely characterized by counting fixed points and 2-cycles
of π.

The theorem implies Shalev’s theorem mentioned earlier.
Indeed:

1 Choose x ∈ Sn at random. We may do this by picking a
conjugacy class C with probability |C|/|Sn|, and by picking a
random element of C.

2 It is known that with high probability x , hence C, has very
few fixed points and very few 2-cycles. Now apply the
theorem.
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Why are 1 and 2 special numbers?

Lemma
Assume G acts transitively on a set Ω. Let π ∈ G be fixed, and
let π′ be a random conjugate of π. Assume π has k fixed points
on Ω. Then

P(fix(π) ∩ fix(π′) 6= ∅) 6 E(fix(π) ∩ fix(π′)) = k2/|Ω|.

We now apply this to some cases of interest to us.
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Why are 1 and 2 special numbers?

The natural action of Sn on n points.
Then k = c1, and k2/|Ω| = c2

1/n.
By the previous lemma, the probability that π and π′ have a
common fixed points is at most the expected number of
common fixed points, which is c2

1/n.
If 〈π, π′〉 > An, then certainly π and π′ do not fix a common
point.
Therefore we expect to need the condition c1 = o(n1/2).
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Why are 1 and 2 special numbers?

With very similar computations, one sees that:
The expected number of common fixed 2-sets of π and π′

is small if and only if c1 = o(n1/2) and c2 = o(n).
The expected number of common fixed 3-sets of π and π′

is small anyway!
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Some remarks on the “only if” part

Warning

So far we have proved nothing!

For the “only if” part, the fact that the expectation is large
does not imply that the probability is large!
(A little argument is sufficient for almost-sure generation.)
Regarding positive-probability generation, surprising (to
us) that if c2 = n/2− o(n), i,e., if π is close to be a product
of 2-cycles, then P(〈π, π′〉 > An)→ 0.
(Proof uses second moment method.)
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A brief sketch of proof of the “if” part

1 Proof divided with respect to transitive and intransitive
subgroups. Core of the proof is the intransitive case.

2 Define N to be the random variable which counts the
number of subsets of {1,2, . . . ,n} on which 〈π, π′〉 acts
transitively.

3 We show that if c1 = o(n1/2) and c2 = o(n) then
E(N) = o(1), hence 〈π, π′〉 is almost surely transitive.

4 We show that if c1 = O(n1/2) and c2 = n/2− Ω(n) then
E(N) = O(1).

5 We then use the method of moments to show the
Poisson-type approximation P(N = 0) = e−E(N) + o(1),
hence 〈π, π′〉 is transitive with positive probability.
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Applications

1 Whenever one picks random elements from a normal
subset of Sn, one can apply the theorem (a more general
version of it!)

2 For example, we answered to the following question: For
which integers m two random elements of order m
generate Sn with high (positive) probability?
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Theorem (S. Eberhard, DG, 2019)

Let m ∈ ord(Sn), and assume that either
1 m has a divisor d in the range 3 6 d 6 o(n1/2), or
2 m is even and there is at least one π ∈ Sn of order m with

o(n1/2) fixed points and o(n) 2-cycles.
Then two random elements of Sn of order m almost surely
generate at least An.

Theorem (S. Eberhard, DG, 2019)

Let m ∈ ord(Sn). Then two random elements of order m
generate at least An with probability bounded away from zero if
and only if

1 m is odd and there is at least one π ∈ Sn of order m with
O(n1/2) fixed points, or

2 m is even and not 2.
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Thank you!
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