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Homology of groups

A complex of left (or right) R-modules is a family

K• := {Kn, ∂
K
n }n∈Z

of left (or right) R-modules Kn and R-homomorphisms
∂Kn : Kn → Kn−1 such that for all n ∈ Z,

∂Kn ◦ ∂Kn+1 = 0.

Usually we show this complex as follow

K• : · · · −→ Kn+1
∂n+1−→ Kn

∂n−→ Kn−1 −→ · · ·

The n-th homology of this complex is defined as follow:

Hn(K•) := ker(∂Kn )/im(∂Kn+1)

We say K• is an exact sequence if Hn(K•) = 0 for any n.



A projective resolution of a R-module M is an exact sequence

P•
ε−→M : · · · −→ P1

∂1−→ P0
ε−→M −→ 0

where all Pi’s are projetive.

If P•
ε−→M is a projective resolution and N is any R-module, we

defined the Tor functor as follow

TorRn (M,N) := Hn(P• ⊗R N).

FACTS: (1) The definition of TorRn (M,N) is independent of a
choice of projective resolution P•

ε−→M , so it is well-defined.
Moreover

TorR0 (M,N) 'M ⊗R N.

(2) If M and N are abelian groups (Z-modules), then TorZ1 (M,N)
is a torsion group and TorZn(M,N) = 0 for all n ≥ 2.

(3) If M or N is torsion free, then TorZn(M,N) = 0 for all n > 0.



Let G be a group and let ZG be its (integral) group ring.

The n-th homology of G with coefficients in a ZG-module M is
defined as follow

Hn(G,M) := TorZGn (Z,M),

where Z is a trivial ZG-module, i.e. (
∑
ngg).m =

∑
ngm.

EXAMPLES:
(1) H0(G,M) 'MG := M/〈gm−m | g ∈ G,m ∈M〉.
In particular, H0(G,Z) ' Z.

(2) H1(G,Z) ' G/[G,G]. In particular, if G is abelian, then
H1(G,Z) ' G.

(3) In G ' Z/lZ, then Hn(G,M) is l-torsion.



(4) If G is abelian, then H2(G,Z) '
∧2

ZG and for any n ≥ 0 we
have an injective homomorphism∧n

ZG→ Hn(G,Z)

HOMOLOGY IS A FUNCTOR: Let M be a ZG-module and N a
ZH-module. If α : G→ H and f : M → N are homomorphism
such that

f(gm) = α(g)f(m), g ∈ G, m ∈M,

then (α, f) induce a homomorphism of group homology

Hn(α, f) : Hn(G,M) −→ Hn(H,N).

In particular, if M = Z is trivial ZG and ZH-modules, we have the
homomorphism

α∗ := Hn(α, idZ) : Hn(G,Z) −→ Hn(H,Z).



Third homology of perfect central extensions

An extension A
β
� G

α
� Q is called a perfect central extension if

G is perfect, i.e. G = [G,G], and A ⊆ Z(G).

The aim of this talk is to study the homomorphisms

β∗ : H3(A,Z)→ H3(G,Z)

and
α∗ : H3(G,Z)→ H3(Q,Z)

Clearly by the functoriality of the homology functor we have
im(β∗) ⊂ ker(α∗).

Our first main theorem is as follow



Theorem
Let A be a central subgroup of G and let A ⊆ G′ = [G,G]. Then
the image of H3(A,Z) in H3(G,Z) is 2-torsion. More precisely

im
(
H3(A,Z)→H3(G,Z)

)
=im

(
H1(Σ2,TorZ1 (2∞A, 2∞A))→H3(G,Z)

)
,

where 2∞A := {a ∈ A : there is n ∈ N such that a2n = 1} and
Σ2 = {1, σ} is symmetric group which σ is induced by the
involution ι : A×A→ A×A, (a, b) 7→ (b, a).

Sketch of proof:
(1) By a result of Suslin we have the exact sequence

0→
∧3

ZA→ H3(A,Z)→ TorZ1 (A,A)Σ2 → 0,



where the homomorphism on the right side is obtained from the
composition

H3(A,Z)
∆∗−→ H3(A×A,Z)→ TorZ1 (A,A).

Here ∆ is the diagonal map A→ A×A, a 7→ (a, a).

2) Since A ⊆ G′, the map A = H1(A,Z)→ H1(G,Z) = G/G′ is
trivial. From the commutative diagram

A×A A

A×G G,

µ

ρ
(0.1)

where µ and ρ are the usual multiplication maps, we obtain the
commutative diagram

H2(A,Z)⊗H1(A,Z) H3(A,Z)

H2(A,Z)⊗H1(G,Z) H3(G,Z).

=0

Thus the composition
∧3

ZA→ H3(A)→ H3(G) is trivial.



3) On the other hand, ∆ ◦ µ = idA×A.ι : A×A→ A×A induces
the map

id + σ : TorZ1 (A,A)→ TorZ1 (A,A),

and thus

H3(A×A,Z) H3(A×A,Z)

TorZ1 (A,A) TorZ1 (A,A),

(∆◦µ)∗

id+σ

is commutative.

This implies that the following diagram is commutative:

H3(A×A,Z) H3(A,Z)

TorZ1 (A,A) TorZ1 (A,A)Σ2 .

µ∗

id+σ



4) From the diagram (0.1) we obtain the commutative diagram

TorZ1 (A,A) TorZ1 (A,A)Σ2

H̃3(A×A,Z)/
⊕2

i=1Hi(A,Z)⊗H3−i(A,Z) H3(A,Z)/
∧3

ZA

H̃3(A×G,Z)/im(H1(A,Z)⊗H2(A,Z)) H3(G,Z)

TorZ1 (A,H1(G,Z))

=0

id+σ

α
'

µ∗

˜inc∗

β
'

inc∗

ρ∗

where

H̃3(A×A) := ker(H3(A×A)→ H3(A)⊕H3(A))

and

H̃3(A×G) := ker(H3(A×G)→ H3(A)⊕H3(G)).



5) Since TorZ1 (A,A)→ TorZ1 (A,H1(G,Z)) is trivial, the map
˜inc∗ ◦ α−1 is trivial. This shows that inc∗ ◦ β−1 ◦ (id + σ) is trivial.

Therefore the image of H3(A,Z) in H3(G,Z) is equal to the
image of

H1(Σ2,TorZ1 (A,A)) = TorZ1 (A,A)Σ2/(id + σ)(TorZ1 (A,A)).

6) Since TorZ1 (A,A) = TorZ1 (torA, torA), torA being the subgroup
of torsion elements of A.
and
since for any torsion abelian group B, B '

⊕
p prime p∞B, we have

the isomorphism

H1(Σ2,TorZ1 (A,A)) ' H1(Σ2,TorZ1 (2∞A, 2∞A)). �



Whitehead’s quadratic functor:

In the study of the kernel of β∗ : H3(G,Z)→ H3(Q,Z),
Whitehead’s quadratic functor plays a fundamental role.

We also will see that this functor is deeply related to the previous
theorem.

A function ψ : A→ B of (additive) abelian groups is called a
quadratic map if
(a) for any a ∈ A, ψ(a) = ψ(−a),
(b) the function A×A→ B, with

(a, b) 7→ ψ(a+ b)− ψ(a)− ψ(b)

is bilinear.



FACT: For each abelian group A, there is a universal quadratic
map

γ : A→ Γ(A)

such that if ψ : A→ B is a quadratic map, there is a unique
homomorphism Ψ : Γ(A)→ B such that Ψ ◦ γ = ψ.

Note that Γ is a functor from the category of abelian groups to
itself.

The functions
φ : A→ A/2, a 7→ ā

and
ψ : A→ A⊗Z A, a 7→ a⊗ a

are quadratic maps.



Thus, by the universal property of Γ, we get the canonical
homomorphisms

Φ : Γ(A)→ A/2, γ(a) 7→ ā

and
Ψ : Γ(A)→ A⊗Z A, γ(a) 7→ a⊗ a.

Clearly Φ is surjective and coker(Ψ) = H2(A,Z).

Furthermore we have the bilinear pairing

[ , ] : A⊗Z A→ Γ(A), [a, b] = γ(a+ b)− γ(a)− γ(b).

It is easy to see that for any a, b, c ∈ A,

[a, b] = [b, a], Φ[a, b] = 0,

Ψ[a, b] = a⊗ b+ b⊗ a, [a+ b, c] = [a, c] + [b, c].



Thus we get the exact sequences

Γ(A)→ A⊗Z A→ H2(A,Z)→ 0,

A⊗Z A
[ , ]−→ Γ(A)

Φ→ A/2→ 0,

Our second theorem extends the first exact sequence to the left.

Theorem
For any abelian group A, we have the exact sequence

0→ H1(Σ2,TorZ1 (2∞A, 2∞A))→ Γ(A)
Ψ→ A⊗Z A→ H2(A)→ 0,

where σ ∈ Σ2 is the natural involution on TorZ1 (2∞A, 2∞A).



Corollary

For any abelian group A we have the exact sequence

H1(Σ2,TorZ1 (2∞A, 2∞A))→ A/2
Ψ̄→ (A⊗Z A)σ → H2(A,Z)→ 0,

where (A⊗Z A)σ := (A⊗Z A)/〈a⊗ b+ b⊗ a : a, b ∈ A〉 and
Ψ̄(ā) = a⊗ a.

Eilenberg-Maclane in 1954 proved: For any abelian group A,

Γ(A) ' H4(K(A, 2),Z),

where K(A, 2) is the Eilenberg-Maclane space.



Third homology of H-groups:

A perfect group Q is called an H-group if K(Q, 1)+ is an
H-space, where K(Q, 1)+ is the plus construction of
BQ = K(Q, 1) with respect to Q.

Our third theorem is as follow:

Theorem
Let A� G� Q be a perfect central extension. If Q is an
H-group, then we have the exact sequence

A/2→ H3(G,Z)/ρ∗(A⊗Z H2(G,Z))→ H3(Q,Z)→ 0,

where A/2 satisfies in the exact sequence

H1(Σ2,TorZ1 (2∞A, 2∞A))→ A/2
Ψ̄→ (A⊗Z A)σ → H2(A,Z)→ 0.



Sketch of proof:
1) From the central extension and the fact that Q is perfect we
obtain the fibration of Eilenberg Maclane spaces

K(A, 1)→ K(G, 1)+ → K(Q, 1)+

2) From this we obtain the fibration

K(G, 1)+ → K(Q, 1)+ → K(A, 2)

Note that K(A, 2) is an H-space

3) We show that K(Q, 1)+ → K(A, 2) is an H-map.

4) Since the plus construction does not change the homology of
the space, from the Serre spectral sequence of the above fibration,
we obtain the exact sequence



H4(Q,Z)→H4(K(A, 2),Z)→H3(G,Z)/ρ∗(A⊗ZH2(G,Z))→H3(Q,Z)→0.

5) From the commutative diagram, up to homotopy, of H-spaces
and H-maps

BQ+ ×BQ+ BQ+

K(A, 2)×K(A, 2) K(A, 2),

we obtain the commutative diagram

H2(Q,Z)⊗Z H2(Q,Z) H4(Q,Z)

A⊗Z A H4(K(A, 2),Z).



6) Since G is perfect,

H2(Q,Z)→ A

is surjective. Thus the diagram implies that the elements
[a, b] ∈ H4(K(A, 2),Z) are in the image of H4(Q,Z).

This gives us the surjective map

A/2 ' H4(K(A, 2),Z)/H � H4(K(A, 2),Z)/im(H4(Q,Z)),

where H is generated by the elements

[a, b] ∈ Γ(A) = H4(K(A, 2),Z).

This together with previous Corollary prove the theorem.�



Thank You

Grazie


