An identity having b-generalized skew derivations on multilinear polynomials

BALCHAND PRAJAPATI

INDIA

September, 2019

Balchand Prajapati

www.aud.ac.in

E. C. Posner, 1957

- Thm 1 In a prime ring of characteristics not 2, if the iterate of two derivations is a derivation, then one of them is zero;
- Thm 2 If d is a derivation of a prime ring such that, for all elements x of the ring, xd(x) d(x)x is central, then either the ring is commutative or d is zero.

Definitions:

- A. Derivation d on a ring R is an additive mapping satisfying d(xy) = d(x)y + xdy for all $x, y \in R$.
- B. Skew derivation d associated with an automorphism α on a ring R is an additive mapping satisfying $d(xy) = d(x)y + \alpha(x)dy$ for all $x, y \in R$.
- C. An additive mapping G from a ring R to R is said to be generalized derivation associated with a derivation d if G(xy) = G(x)y + xd(y), for all $x, y \in R$.
- D. An additive mapping G from a ring R to R is said to be generalized skew derivation associated with a skew derivation d and an automorphism α if $G(xy) = G(x)y + \alpha(x)d(y)$, for all $x, y \in R$.

・ロト ・聞ト ・ヨト ・ヨト

Examples:

- 1. Ordinary Derivative on polynomial ring is a derivation.
- 2. The mapping $I_a(x) = [a, x]$ for all x, is a derivation, called inner derivation.
- 3. The mapping G(x) = x + dx, for all x, is a generalized derivation.
- 4. The mapping $G(x) = ax + \alpha(x)b$ for all x, is generalized skew derivation called generalized skew inner derivation.

イロト イポト イヨト イヨト

For a prime ring R we have its maximal right ring of quotients which is called **Utumi's ring of quotients** U. The center of U, denoted by C, is said to be extended centroid of R.

- E. Let $b \in U$. An additive mapping G from a ring R to R is said to be b-generalized skew derivation associated with a linear map $d: R \to R$ and an automorphism α of R if $G(xy) = G(x)y + b\alpha(x)d(y)$, for all $x, y \in R$.
- **Example:** The mapping $G : R \to R$ defined as $G(x) = ax + b\alpha(x)u$, for all $x \in R$ and for some $a, u \in R$ is a *b*-generalized skew derivation.

イロト イポト イヨト イヨト

De Filippis, Vincenzo; Wei, Feng, 2017

- Let R be a prime ring, $\alpha \in Aut(R)$, $0 \neq b \in U$ and $G: R \to R$ be a *b*-generalized skew derivation associated with a linear map $d: R \to R$ then d becomes a skew derivation associated with automorphism α .
- Above b-generalized skew derivation G can be uniquely extended to U and assumes the form G(x) = ax + bd(x), a ∈ U.

(日) (同) (三) (

Multilinear Polynomial

▶ Let $\mathbb{Z}\langle X \rangle$ be the free algebra on the set $X = \{x_1, x_2, \ldots\}$ over \mathbb{Z} . Let $f = f(x_1, \ldots, x_n) \in \mathbb{Z}\langle X \rangle$ be a polynomial. Let R be a ring and $\phi \neq S \subset R$. We say that f is a polynomial identity on S if $f(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in S$. A polynomial $f = f(x_1, \ldots, x_n) \in \mathbb{Z}\langle X \rangle$ is said to be multilinear if it is linear in every $x_i, 1 \leq i \leq n$.

< ロト < 同ト < ヨト < ヨト

Polynomial Identity, derivation and ring

- 1. I, R and U satisfy the same generalized polynomial identity with coefficients in U, [Chuang [2]].
- 2. I, R and U satisfy the same differential identity with coefficients in U, [Lee [3]].
- 3. Let R be a prime ring and $\alpha \in Aut(R)$ be an outer automorphism of R. If $\Phi(x_i, \alpha(x_i))$ is a generalized polynomial identity for R then R also satisfies the non trivial generalized polynomial identity $\Phi(x_i, y_i)$, where x_i and y_i are distinct indeterminates, [Kharchenko [4]].

(日) (同) (三) (3)

Polynomial Identity, derivation and ring

4. If $f(x_i, d(x_i), \alpha(x_i))$ is a generalized polynomial identity for a prime ring R, d is an outer skew derivation and α is an outer automorphism of R then R also satisfies the generalized polynomial identity $f(x_i, y_i, z_i)$, where x_i, y_i, z_i are distinct indeterminates, [Chuang and Lee [5]].

Main Theorem

Let R be a prime ring of char $\neq 2$ with center Z(R) and F, G be b-generalized skew derivations on R. Let U be Utumi quotient ring of R with extended centroid C and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over C which is not central valued on R. Suppose that $P \notin Z(R)$ s. t.

$$[P, [F(f(r)), f(r)]] = [G(f(r)), f(r)]$$

for all $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$, then one of the following holds: (1) $\exists \lambda, \mu \in C$ s. t. $F(x) = \lambda x$, $G(x) = \mu x \forall x \in \mathbb{R}$, (2) $\exists a, b \in U, \lambda, \mu \in C$ s. t. $F(x) = ax + \lambda x + xa$, $G(x) = bx + \mu x + xb \forall x \in \mathbb{R}$ and $f(x_1, \ldots, x_n)^2$ is central valued on \mathbb{R} .

Balchand Prajapati

www.aud.ac.in

Let R be a prime ring of char $\neq 2$ with center Z(R) and F be *b*-generalized skew derivations on R. Let U be Utumi quotient ring of R with extended centroid C and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over C which is not central valued on R s. t.

$$[F(f(r)), f(r)] \in Z(R)$$

・ロト ・聞ト ・ヨト ・ヨト

www.aud.ac.in

for all $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$, then one of the following holds: (1) $\exists \lambda \in C \text{ s. t. } F(x) = \lambda x \forall x \in R$, (2) $\exists a \in U, \lambda \in C \text{ s. t. } F(x) = ax + \lambda x + xa \forall x \in R$ and $f(x_1, \ldots, x_n)^2$ is central valued on R.

Balchand Prajapati

Let R be a prime ring of characteristic different from 2 and d be a skew derivation on R such that $[d(x), x] \in Z(R)$ for all $x \in R$, then either d = 0 or R is a commutative ring.

Corollary 3

Let R be a prime ring of characteristic different from 2 and α be an automorphism on R such that $[\alpha(x), x] \in Z(R)$ for all $x \in R$, then either α is an identity automorphism or R is a commutative ring.

References:

- Posner, E. C. Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093–1100.
- 2. Chuang, C. L. GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103, 3 (1988), 723-728.
- Lee, T. K. Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica. 20, 1 (1992) 27–38.
- 4. Kharchenko, V. K. Generalized identities with automorphisms, Algebra and Logic. 14, 2 (1975) 132–148..
- 5. Chuang, C. L. and Lee, T. K. Identities with a single skew derivation, J. Algebra. 288, 1 (2005) 59–77.

・ロト ・回ト ・回ト ・回

Thank You

Balchand Prajapati

▲日マ 4個マ 4回マ 4回マ 4回マ 4回マ

www.aud.ac.in