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Precover and Cover class in Mod-R

Let C be a class of modules,

C ∈ C, M a module and f : C → M.
Then:
f is called a C-precover, if for every g : C ′ → M, where C ′ ∈ C,
there exists h : C ′ → C such that

C ′
h //

g
  

C

f
��

M

f is called C-cover if it is C-precover and if h : C → C and fh = f ,
then h is an isomorphism.
The class C is called covering if every module has a cover from C.
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Direct set

Direct set: If I is a set with relation ≤ (reflexive and binary
transitive), then < I ,≤> is called a direct set if every pair of
elements of I has an upper bound.
That is if i , j ∈ I , there exists k ≥ i , j



Direct system

Direct system: A direct system of class C is the pair < Ci , fij >
with the following properties:
1) I is a direct set.

2) fij : Ci → Cj , where i ≤ j and fii is identity.
3) fjk fij = fik , where i ≤ j ≤ k .
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Direct limit of direct system

A module X is called a direct limit for a direct system < Ci , fij >,
if for each i , there exists φi : Ci → X such that we have the
following commutative diagram:

Ci
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//
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Cj

φj
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AND if there exist a Y with gi : Ci → Y with commutative

diagram Ci
fij
//

gi
��

Cj

gj
��

Y



Direct limit of direct system

A module X is called a direct limit for a direct system < Ci , fij >,
if for each i , there exists φi : Ci → X such that we have the
following commutative diagram:

Ci
fij
//

φi ��

Cj

φj

��

X

AND if there exist a Y with gi : Ci → Y with commutative

diagram Ci
fij
//

gi
��

Cj

gj
��

Y



Direct limit of direct system

A module X is called a direct limit for a direct system < Ci , fij >,
if for each i , there exists φi : Ci → X such that we have the
following commutative diagram:

Ci
fij
//

φi ��

Cj

φj

��

X

AND if there exist a Y with gi : Ci → Y with commutative

diagram Ci
fij
//

gi
��

Cj

gj
��

Y



Direct limit of direct system

Then there is unique map h : X → Y such that

Ci
φi //

gi
  

X

h
��

Y

is commutative.



Projective and Flat

Projective module: A module is called projective if it is a direct
summand of a free module (that is direct sum of copies of R).

Flat module: A module is flat if it is a direct limit of a direct
sysytem of projectives.
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Right Perfect ring = Every Right module has projective
cover.

Theorem
Bass proved the following are equivalent:

I The class of projective right modules is a covering class.

I The class of projective right modules is closed under direct
limit.

I Flat right modules are projective.

Since every direct limit of flats is flats, it was a conjecture for years
if the class of flats is covering....
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Enochs’ conjecture (Open) and Flat cover conjecture
(Answered in 2001)

Two facts helped people to answer FCC.

1) Bican, Bashir and Enochs proved that the class of flat modules
is precovering.
2) Assume that C is a precover class which is also closed under
direct limit, then C is a covering class.
Using the above fact, Bican, Bashir and Enochs solved FCC.
Enochs conjecture: Is the converse of Fact (2) true? That means
is a covering class closed under direct limit?
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Enochs conjecture and S-strongly flat modules

If S is a module. Then:

S⊥ = {M|Ext1(S ,M) = 0}.
If B is a class of modules, then ⊥B = {M|Ext1(M,B) = 0 for
every B ∈ B}.
For every flat module S , consider the class ⊥(S⊥).
This class of modules lies between the class of projective modules
and that of flat modules. It is called the class of S-strongly flat
modules, denoted by SF .
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Some properties of SF

1) The class S-strongly flat is precovering.
2) SF contains projectives, and so this class is closed under direct
limit if and only if flats are S-strongly flat.
3) If Ext1(S ,S (I )) = 0, for any index set I , the class S-strongly
flat modules contains the modules which are direct summand of
extensions of free modules by some copies of S .
4) The main question is this when this class is a covering?
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The idea of such defination comes from?

If Q is the quotient field of domain R. In 2000, Jan Trlifaj called
the class ⊥(Q⊥) strongly flat. He left an open problem in his book:
When is the class of strongly flat modules a covering class?

In
2002, Bazzoni and Salce gave a complete answer to this problem.
Three years ago, Silvana, Fuch, Salce and Leonid generalized this
to the case that R is arbitrary commutative ring with total
quotient ring of S = Q. Last year, we generalized this to
noncommutative setting...
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Generalization to non-commutative ring

Assume that R is a ring (not necessary commutative ) and
f : R → S is ring homomorphism with the following properties:
(1) f is injective ( = one to one ).
(2) epimorphism in category of rings, that is for ring
homomorphisms g , h : S → T , gf = hf implies g = h.
(3) RS is flat.

So with this S , we have the class of S-strongly flat modules. When
this call is covering?
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Using some homological properties, we can see that if the
class strongly flat (here S is a left flat ring epimorphism of
R ) is covering,

then:

I S has to be a LEFT perfect ring.

I For every two sided ideal I of R that SI = S , the ring R/I has
to be a left perfect ring.

In commutative case the converse is true but in general not.
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Uniserial modules

Recall that a module U is uniserial if its submodules are
comparable with inclusion relation that is for every two submodules
U1 and U2 of U, either U1 ≤ U2 or U2 ≤ U1.

a domain R which is uniserial as right R-module is called right
chain domain. For such a domain I have classical quotient ring S
such that elements of S are in form rs−1 where r , s ∈ R and s is
nonzero. RS is flat and the inclusion is a ring bimorphism.
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R is right chain domain and S is its classical right quotient
ring

If the class of strongly flat modules is covering over right chain
domain R, then:

(1) R invariant, that is Rx = xR, for every x ∈ R.
(2) Flats are strongly flats.
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Thanks!


