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Some notation

Let G be a topological group:

I by H 6c G we denote a closed subgroup of G;
I by H 6o G we denote an open subgroup of G.
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Profinite groups

Definition
A profinite group is a compact Hausdorff totally disconnected
topological group.

I When we deal with subgroups of a profinite group, we will always
mean closed subgroups.

I By compactness, each open subgroup has finite index.
I In general we can consider a pro-C group G, where C is any class

of finite groups, requiring G/N ∈ C for any N /o G.
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Profinite groups

Theorem
A profinite group G is (topologically) isomorphic to the subgroup of∏

N/oGG/N given by those elements (gN)N/oG such that
πN,M (gN) = gM for any N,M /o G such that N 6M .

This subgroup is actually the inverse limit lim←−(G/N)N/oG.

Examples

I The group of p-adic integers, Zp = lim←−n
Z/pnZ is profinite.

In particular, Zp is a procylic pro-p group.
I The pro-p completion of the integers Ẑ =

∏
p Zp is profinite.

I The group GLn(Zp) = lim←−k
GLn

(
Z/pkZ

)
is a profinite group.
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Order of a profinite group and Sylow subgroups

Definition
Let G be a profinite group, let H 6c G. The index of H in G is

lcm
{

[G : NH]
∣∣∣ N /o G

}

The order of G is the index of the trivial subgroup in G.

Definition
A p-Sylow subgroup of a profinite group G is a maximal pro-p
subgroup.
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Noetherian profinite groups

Definition
A profinite group G is noetherian if any chain of closed subgroups
H0 6c H1 6c H2 6c . . . stabilizes in finitely many steps.

Examples

I Zp is noetherian.
I The Nottingham group over Fp is the group of formal power series
t+ t2Fp[[t]]. It is a pro-p group, but it is not noetherian.
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Rank of a profinite group

Denote by d(G) the minimal number of generators for a group G.

Definition
The rank of a profinite group G is one of the following equivalent
values:
I sup{d(H) | H 6c G}
I sup{d(H) | H 6c G, d(H) <∞}
I sup{d(H) | H 6o G}
I sup{rk(G/N) | N /o G}
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An open problem

Question
Does every noetherian pro-p group have finite rank?

Lubotzky - Mann, Powerful p-groups. II. p-adic analytic groups, 1987

The converse of this problem is true: in fact, a pro-p group is
noetherian if and only if every (closed) subgroup is finitely generated.
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Virtually pronilpotence

Theorem
A noetherian profinite group G is virtually pronilpotent.

Proof

I The identity element admits a fundamental system of
neighbourhoods consisting of a countable chain of open
characteristic subgroups, say {Hi 6char G}.

I We can prove that each Hi has a unique p-Sylow for any prime
dividing the order of Hi, so each Hi is pronilpotent.

I The theorem follows, having Hi finite index.
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Just-infiniteness

Definition
An infinite group is just-infinite if any non-trivial normal subgroup has
finite index.

Examples

I The group of integers is just-infinite.
I PSL(n,Z) is just-infinite.

Mennicke, Finite factor groups of the unimodular group, 1965

I The Nottingham group is a just-infinite pro-p group.
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Noetherianity and just-infiniteness

Theorem
A noetherian profinite group admits a just-infinite quotient.

For it, consider the non-empty family of normal subgroups with infinite
index: by noetherianity and Zorn’s lemma, it admits a maximal element
N0.
So, G/N0 is just-infinite.
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The Dichotomy Theorem

Definition
An infinite group is hereditarily just-infinite if all of its open subgroup is
just-infinite.

Dichotomy Theorem
A just-infinite profinite group is either a “branch group” or a finite
extension of a direct power of a hereditarily just-infinite group.

Wilson, On Just Infinite Abstract and Profinite Groups, 2000

What are branch groups? A complete mess! But we are not interested
in them...

Dario Villanis Ziani (Univ. of Florence) Noetherian profinite groups YRAC2019 14 / 16
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Just-infinite noetherian profinite groups

Fact
Branch groups are non-noetherian.

The proof relies on the fact that branch groups have a self-similar
structure.

Corollary
A just-infinite noetherian profinite group is a finite extension of a direct
power of a hereditarily just-infinite group.
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Just-infinite noetherian profinite groups

Theorem
Let G be a just-infinite profinite group that is not virtually abelian. Then
the following are equivalent:
I G is virtually pronilpotent;
I G is virtually pro-p;
I G has finitely many maximal open subgroups.

Reid, Subgroups of finite index and the just-infinite property, 2018

Corollary
Let G be a noetherian just-infinite profinite group that is not virtually
abelian. Then it is virtually pro-p.
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That’s all!

Thanks for your attention!
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