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Notation

• Let G be a finite Chevalley group (think SLn(q)) defined in
characteristic p.

• Let k be a field of characteristic r > 0.
• Let B ≤ G be a Borel subgroup (think upper triangular).
• Let L := IndG

B k.
• If V is a kG-module, then V G := {v ∈ V | gv = v ∀g ∈ G}.
This may be viewed as HomG(k, V ).
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Preliminaries

Definition
A cochain complex C is a collection of modules Ci for i ∈ Z
with module homomorphisms ∂i : Ci → Ci+1 such that
∂i+1∂i = 0 for all i. Cochain complexes are often represented
as long sequences

· · · ∂i−2
−−−→ Ci−1 ∂i−1

−−−→ Ci ∂i

−→ Ci+1 ∂i+1
−−−→ · · · .

The ith cohomology of C is Hi(C) := ker ∂i/ Im ∂i−1.
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Preliminaries

Definition
A kG-module P is said to be projective if there exists φ such
that the following diagram commutes

P

N M 0

α
φ

β

Definition
Given a kG-module V , a projective resolution P of V is a
long exact sequence

· · · → P2 → P1 → P0 → V → 0

where each Pi is projective.
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What even is cohomology?

Definition
Let V and W be kG-modules, and take a projective
resolution P of V .

· · · → P2 → P1 → P0 → V → 0.

Now apply HomG(−, W ) to this projective resolution to
obtain the long exact sequence HomG(P , W ):

0 → HomG(P0, W ) → HomG(P1, W ) → HomG(P2, W ) → · · · .

We define Exti
G(V, W ) := Hi(HomG(P , W )), and define the

ith group cohomology Hi(G, V ) := Exti
G(k, V ). Note that

Ext0
G(V, W ) ∼= HomG(V, W ) and so H0(G, V ) = V G.
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Why should I care?

i) There is a 1–1 correspondence between Exti
R(M, N) and

i-extensions of M by N .
ii) There is a 1–1 correspondence between H1(G, V ) and

conjugacy classes of complements to V in V o G.
iii) There is a 1–1 correspondence between H2(G, V ) and

extensions of G by V with the given action of G on V .
iv) The Schur multiplier M(G) = H2(G,Q/Z) classifies central

extensions of perfect groups G. (quasisimple groups)
v) Can use H1 to determine the size of a minimal generating
set for groups V o G.

vi) and more…
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Some useful tools

Theorem (Shapiro’s Lemma)
Let H ≤ G, V be a kH-module and W a kG-module. Then

Exti
G(IndG

H V, W ) ∼= Exti
B(V, ResG

H W ).

When i = 0 this gives

HomG(IndG
H V, W ) ∼= HomB(V, ResG

H W ).
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What do we know?

Theorem (Parker–Stewart 2013)
Let G be a finite simple group of Lie type over k with Coxeter
number h. Let V be an irreducible kG-module. Then

dim H1(G, V ) ≤ max

z
⌊h3/6⌋
p

zp − 1
,
1
2

(h2(3h − 3)3)
h2
2


where zp = ⌊h3/6(1 + logp(h − 1))⌋.
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What do we know?

Theorem (Guralnick–Tiep 2011)
Let G be a finite Chevalley group of (twisted) rank e with Weyl
group W and let V be an irreducible kG-module, where
r ̸= p. Then

i) If V is not a composition factor of L, then H1(G, V ) = 0.
ii) If V B = 0, then dim H1(G, V ) ≤ 1 and there are at most

four distinct such modules with H1(G, V ) ̸= 0.
iii) There are at most |W | isomorphism classes of irreducible

kG-modules V with V B ̸= 0 and∑
V ∈Irrk G

dim V B dim H1(G, V ) ≤ |W | + e.
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What do we know?

Theorem (Guralnick–Kantor–Kassabov–Lubotzky 2007)
If G is a finite quasisimple group, V a kG-module, then
dim H2(G, V ) ≤ 17.5 dim V .
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What can we do?: An important step

Theorem (Guralnick–Tiep 2011)
If V is an irreducible kG-module such that V B = 0, we have
that H1(G, V ) is the multiplicity of V ∗ in the socle of L/LG.
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What can we do?: A generalisation

Theorem (S., 2018)
Let V be a kG-module with V B = 0, then

Hn(G, V ) ∼= Extn−1
G (V ∗, L/LG) ∼= Hn−1(G, V ⊗ L/LG).

In particular, when n = 1 we get

H1(G, V ) ∼= Ext0
G(V ∗, L/LG).
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The proof

Lemma (Guralnick–Tiep 2011)
Let A := Or′(B) and V a kG-module. Then the following are
equivalent:

i) V B ̸= 0,
ii) V A ̸= 0,
iii) B has trivial composition factors on V ,
iv) (V ∗)B ̸= 0.
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Let A := Or′(B) E B. We apply the Hochschild–Serre spectral
sequence to get
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Let A := Or′(B) E B. We apply the Hochschild–Serre spectral
sequence to get

dim Hn(B, V ) = 0.
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The proof

0 Extn−1
G (V ∗, L/k) Hn(G, V ) 0 · · ·∼
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Future/other work

• Determine cohomology of rank one groups. PSL2(q)
almost completed, PSU3(q) in progress, 2G2(q) afterwards.

• General result, bound on cohomology?
• Can we say anything useful for modules with V B ̸= 0?
(sort of)
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Thanks for listening!
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