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- Let G be a finite Chevalley group (think SL,(q)) defined in
characteristic p.

- Let k£ be a field of characteristic » > 0.

- Let B < G be a Borel subgroup (think upper triangular).

- Let £ := Ind§ k.

- If Vis a kG-module, then V& = {v € V | gv = vVg € G}.
This may be viewed as Homg(k, V).
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Preliminaries

Definition
A cochain complex C' is a collection of modules C* fori € Z
with module homomorphisms 8¢: C* — C**! such that
019" = 0 for all i. Cochain complexes are often represented
as long sequences

97, it 97 i Oy gl O

The it" cohomology of C' is H(C) := ker &'/ Im &~ 1.
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Definition

A kG-module P is said to be projective if there exists ¢ such
that the following diagram commutes

P
e 7 l
/// =
P
N2 um 0

Definition

Given a kG-module V, a projective resolution P of V' is a
long exact sequence

=P PP =V =0

where each P; is projective. .
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What even is cohomology?

Definition
Let V and W be kG-modules, and take a projective
resolution P of V.

o= PP FPh—=V =0

Now apply Homg(—, W) to this projective resolution to
obtain the long exact sequence Homg (P, W):

0 — Homg (P, W) — Homg (P, W) — Homg(Po, W) — -+ - .

We define Extl(V, W) := H'(Homg (P, W)), and define the
it group cohomology H(G, V') := Exti;(k, V). Note that
Ext%(V, W) = Homg(V, W) and so HY(G,V) = V&
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Why should | care?

i) There is a 1-1 correspondence between Ext’% (M, N) and
i-extensions of M by N.

ii) There is a 1-1 correspondence between H'(G, V) and
conjugacy classes of complementsto VinV x G.

iii) There is a 1-1 correspondence between H?(G, V) and
extensions of G by V with the given action of G on V.

iv) The Schur multiplier M(G) = H*(G,Q/Z) classifies central
extensions of perfect groups G. (quasisimple groups)

v) Can use H! to determine the size of a minimal generating
set for groups V x G.

vi) and more...
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Theorem (Shapiro’s Lemma)
Let H < G,V be a kH-module and W a kG-module. Then

Exts(Ind$ V, W) = Ext%(V, ResG W).
When i = 0 this gives

Homg (Ind% V, W) = Homp(V, Res% W).
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Some useful tools

Theorem (Hochschild-Serre spectral sequence)

Let N 4 G and let V be a kG-module. Then H*(G,V) is a
subquotient of

5 H(G/N,H/(N,V)).

i+j=n

In particular, dim H"(G, V) < ¥, ;_, dim H(G/N,H/ (N, V)).
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Some useful tools

Theorem (Long exact sequence in group cohomology)
Suppose we have an exact sequence

O—-V—->U—-W-—=0

of kG-modules. Then we also have an exact sequence in
cohomology

... — HYG,W) - B%G,V) - H3(G,U) —» BH(G,W) — - --
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Theorem (Parker-Stewart 2013)
Let G be a finite simple group of Lie type over k with Coxeter
number h. Let V' be an irreducible kG-module. Then

: 1 Zit’h3/6j Lo 3\ b2
dimH" (G, V) < max z _1,2(h (3h — 3)°) 2
P

where z, = [h?/6(1 +log,(h —1))].
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Theorem (Guralnick-Tiep 2011)

Let G be a finite Chevalley group of (twisted) rank e with Weyl
group W and let V be an irreducible kG-module, where
r # p. Then

i) If V is not a composition factor of £, then HY(G, V) = 0.

i) If VB =0, then dimH!(G, V) < 1 and there are at most
four distinct such modules with HY(G, V) # 0.

iii) There are at most |W| isomorphism classes of irreducible
kG-modules V with VB £ 0 and

> dimVPdimHY(G,V) < [W|+e.
Velrr, G

10
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Theorem (Guralnick-Kantor-Kassabov-Lubotzky 2007)
If G is a finite quasisimple group, V' a kG-module, then
dim H?(G,V) < 17.5dim V.

n
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What can we do?: An important step

Theorem (Guralnick-Tiep 2011)

If V is an irreducible kG-module such that VZ = 0, we have
that H' (G, V) is the multiplicity of V* in the socle of £/LC.

12
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In particular, when n = 1 we get

HY(G,V) = Homg(V*, £/L%).
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Lemma (Guralnick-Tiep 2011)

Let A:= O,/(B) and V a kG-module. Then the following are
equivalent:

i) VB £0,

i) VA#£o0,
1)

)

iii) B has trivial composition factors on V,

iv) (V*)B 0.



The proof

15



The proof

0= L% =L — L/LC =0

15



The proof

0 — L° = L — L/LC =0

15



The proof

0 o L L/LE —— 0

0 — Homg(V*, L") — Homg(V*,£) — Homg(V*,L/L%) —

15



The proof

0 L6 c £/Le

0 — Homg(V*, £L%) — Homg(V*,£) — Homg(V*,£L/L%) — Ex

15



The proof

0 — Homg(V*, £%) — Homg(V*,£) — Homg(V*,£L/L%) — Ex

15



The proof

0 — Homg(V*, ) — Homg(V*, L) — Homg(V*, L/ ) — Ex

15



The proof

0 — Homg(V*, ) — Homg(V* L) — Homg(V*, L/ ) — Ext(

15



The proof

0 — Homg(V* k) — Homg(V*, L) — Homg(V*,L/k) — Ext(

15



The proof

0 — — Homg(V*,£) — Homg(V*,L/k) — Extg(

15



The proof

0 — — Homg(V*,£) — Homg(V*, L/k) — Extd()

15



The proof

= — Homg(V*,£) — Homg(V*, L/k) — Extq(V* k) —

15



The proof

0 —  — Homg(V* L) — Homg(V*, L/k) — Exti(V*, k) — E

15



The proof

0 — Homg(V*,£) — Homg(V*, L/k) — BExti(V*, k) — Extd(V

15



The proof

0 — — Homg(V*, L/k) — Ext5(V*, k) — Extg(V

15



The proof

0 — — Homg(V*, L/k) — Extg(V*, k) — Extg(V

15



The proof

0 — — Homg(V*, L/k) — Exts(V* k) — Ext

15



The proof

0 — — Homg(V*, L/k) — Extg(V* k) — Extg(V?

15



The proof

= — Homg(V*,L/k) — Exty(V*, k) — Extg(V*, L) —

15



The proof

0 — | — Homg(V*, L/k) — BExti(V* k) — Extq(V* L) — --

15



The proof

0 — Homg(V*,L/k) — Exti(V* k) — Exti(V* L) — -

15



The proof

0 — — ExtE(V* k) — Extg(V* L) — -

15



The proof

0 — — ExtE(V* k) — Extg(V* L) — -

15



The proof

0 — Homg(V*, L/k) — — Extg(V* L) — -

15



The proof

0 — Homg(V*, L/k) — — Extg(V*, L) — -

15



The proof

0 — Homg(V*, L/k) — — Extg(V*5 L) — -

15



The proof

0 — Homg(V*, L/k) — — Extg(V*5 L) — -

15



The proof

0 — Homg(V*, L/k) — HY(G,V) — Ext&(V*, L) — ---

15



The proof

0 — Homg(V*, L/k) — HY(G,V) — e oo

15



The proof

0 — Homg(V*,L/k) — HYG,V) — ..

15



The proof

0 — Homg(V*,L/k) — HY(G,V) — o

15



The proof

0 — Homg(V*, L/k) — HY(G,V) — e

15



The proof

0 — Homg(V*, L/k) — HY(G,V) — R

15



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?
Let A := Or/(B)



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?
Let A == O,.(B) < B.



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get



The proof

What can we say about H*(B, V) (n > 1) when V5 = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get

dimH"(B,V) <) dimH'(B/A,H" (A, V))
=0



The proof

What can we say about H"(B, V) (n > 1) when VB = 0?

Let A := O,.(B) < B. We apply the Hochschild-Serre spectral
sequence to get
n—1

dimH"(B,V) < > dimH(B/A, H" '(A,V))+dim H"(B/A,V4).
1=0



The proof

What can we say about H"(B, V) (n > 1) when VB = 0?

Let A := O,.(B) < B. We apply the Hochschild-Serre spectral
sequence to get
n—1

dimH"(B,V) < > dim H(B/A, )+dim H"(B/A, V4).
1=0



The proof

What can we say about H"(B, V) (n > 1) when VB = 0?

Let A := O,.(B) < B. We apply the Hochschild-Serre spectral
sequence to get
n—1

dimH"(B,V) < > dimH(B/A, )+ dimH"(B/A, V).
=0



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get

dimH"(B,V) < 0+ dimH'(B/A,V4).



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get

dim H*(B,V) < dimH(B/A,V4).



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get

dimH"(B,V) < dimH(B/A, ).



The proof

What can we say about H*(B, V) (n > 1) when V5 = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get
dimH"(B,V) <



The proof

What can we say about H*(B, V) (n > 1) when VB = 0?

Let A := O,»(B) < B. We apply the Hochschild-Serre spectral
sequence to get
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- Determine cohomology of rank one groups. PSLa(q)
almost completed, PSUs(q) in progress, 2Go(q) afterwards.

- General result, bound on cohomology?

- Can we say anything useful for modules with VB £ 0?
(sort of)



Thanks for listening!



