On serial group rings of central extensions of simple groups

Andrei Kukharau

Siberian Federal University

kukharev.av@mail.ru

Naples, September 16 - 18, 2019

Let R be an associative ring with unity.

A (left) R-module M is called **uniserial** if the lattice of its submodules is totally ordered by inclusion.

Figure 1: M_1 is not uniserial, M_2 is uniserial, M_3 is simple

A ring R is called **serial**, if both the left regular module $_RR$ and the right regular module R_R are a direct sum of uniserial modules:

$$_{R}R = Re_{1} \oplus ... \oplus Re_{n}, \quad R_{R} = e_{1}R \oplus ... \oplus e_{n}R$$

(where $e_i = e_i^2$ is a primitive idempotent of R)

Suppose G is a finite group, F is a field of characteristic p > 0, FG is the group ring (group algebra) of G over F.

Theorem 1 (H. Maschke)

FG is semisimple $\Leftrightarrow p \nmid |G|$.

Moreover, if $p \nmid |G|$, then

$$FG = M_{n_1}(D_1) \oplus \ldots \oplus M_{n_k}(D_k),$$

where D_i is a finite dimensional division algebra over F.

Question. What is the structure of *FG* when *p* divides |G|?

Problem. To describe all pairs (F, G), such that the group ring FG is serial.

Theorem 2 (D.G. Higman)

If FG is serial, then a p-Sylow subgroup P of G is cyclic.

Theorem 3 (I. Murase)

If F is a field of characteristic p and G is a p-nilpotent finite group with a cyclic p-Sylow subgroup, then the group ring FG is serial.

Theorem 4 (K. Morita)

If F is an algebraically closed field of characteristic p and G is a p-solvable finite group with a cyclic p-Sylow subgroup, then the group ring FG is serial.

Theorem 5 (D. Eisenbud and P. Griffith)

Let F' be a subfield of F. Then the ring F'G iff FG is serial.

Theorem 6

If G is a p-nilpotent group with a cyclic p-Sylow subgroup, then FG is a principal ideal ring (and therefore it is serial).

In the decomposition $R_R = \bigoplus_{i=1} (e_i R)^{k_i}$, the number k_i is called the *multiplicity* of the projective module $P_i = e_i R$.

Theorem 7

Let G be a p-solvable group with a cyclic p-Sylow subgroup. Then the multiplicities of indecomposable projective modules in each block of FG coincide.

i.e. if $e_i R$ and $e_j R$ are in the same block of FG, then $k_i = k_j$.

Examples

Let F be a field of characteristic 3.

1. $FQ_8 = F \oplus F \oplus F \oplus F \oplus M_2(F)$.

2. $FSL(2,3) = M_3(F) \oplus V \oplus M_2(V)$, where $V = F[x]/(x^3)$ is a chain ring of length 3. $(SL(2,3) \text{ is a } p\text{-nilpotent group of order 24 with cyclic Sylow } p\text{-subgroup } P \cong C_3)$.

3. Let $G = 2.S_4^- \cong SL(2,3).C_2$ (the double covering of S_4). Then G is 3-solvable group of order 48, and $P \cong C_3$.

Proposition 8

The group ring FG is serial. Furthermore,

1) If $F = \mathbb{F}_3$, then $FG = M_3(F) \oplus M_3(F) \oplus B \oplus M_2(W)$, where B is the serial block

$$\begin{pmatrix} F[x] & F[x] \\ xF[x] & F[x] \end{pmatrix} / \begin{pmatrix} x^2 F[x] & xF[x] \\ x^2 F[x] & x^2 F[x] \end{pmatrix},$$

and $W = \mathbb{F}_9[y, \alpha]/(y^3)$ is the factor of the skew polynomial ring with the Frobenius automorphism $\lambda \mapsto \lambda^3$.

2) If $F = \mathbb{F}_9$, then $FG = M_3(F) \oplus M_3(F) \oplus B \oplus M_2(B)$.

Irr(G) is the set of irreducible ordinary characters of the group G; IBr(G) is the set of irreducible *p*-modular (Brauer) characters of the group G; Let $\chi \in Irr(G)$, and let $\hat{\chi}$ be a restriction of χ on the set of *p*'-elements.

$$\hat{\chi} = \sum_{\phi \in \mathrm{IBr}(G)} d_{\chi\phi}\phi.$$

Brauer graph is a undirected graph, whose vertex set is Irr(G), and whose set of edges is IBr(G). Two vertices χ, ψ are linked by an edge, if $\exists \phi \in IBr(G) : d_{\chi\phi} \neq 0, d_{\psi\phi} \neq 0$.

Exceptional vertex is a vertex which contains more then one character (from Irr(G)).

A connected component of the Brauer graph is called a *p*-block of *G*. If *F* is an algebraically closed field of characteristic *p*, then $\{p\text{-blocks of } G\} \longleftrightarrow \{b\text{locks of } FG\}.$

We call $\phi \in \operatorname{IBr}(G)$ liftable if there exist $\chi \in \operatorname{Irr}(G)$ such that $\hat{\chi} = \phi$.

Let F be an algebraically closed field of characteristic p.

Fact 9 (Janusz G.)

Let B be a p-block of G with (nontrivial) cyclic defect group. Then the following are equivalent:

a) every irreducible p-modular character of B is liftable;

b) the Brauer tree of B is a star with the exceptional vertex (if it exists) at the center;

c) B is serial.

Corollary 10

The group ring FG is serial if and only if the Brauer tree of any p-block of G is a star with the exceptional vertex at the center.

Example.
$$G = A_5$$
, $p = 5$

Let $G = A_5$ and p = 5.

	ϕ_3
χ5	1

 $\circ_{\chi_5=\phi_3}$

• the Brauer tree of any *p*-block of A₅ is a star (but the exceptional vertex is not at the center);

• FA_5 is not serial if charF = 5.

If $F = \mathbb{F}_5$, $R_R = P_1^5 \oplus P_2^3 \oplus P_3$, where

$$P_1 = (s_5)$$
, $P_2 = \begin{pmatrix} s_3 \\ s_1 \\ s_3 \end{pmatrix}$ and $P_3 = \begin{pmatrix} s_1 \\ s_3 \\ s_1 \end{pmatrix}$,

(S_i are simple modules).

Theorem 11

Let G be a finite simple group and let F be a field of characteristic p dividing the order of G. Then the group ring FG is serial if and only if one of the following holds. 1) $G = C_p$. 2) $G = PSL_2(q), q \neq 2$ or $G = PSL_3(q)$, where $q \equiv 2,5 \pmod{9}$, and p = 3. 3) $G = PSL_2(q)$ or $G = PSU_3(q^2)$, where p divides q - 1, and p > 2. 4) $G = Sz(q), q = 2^{2n+1}, n \ge 1$, where either p > 2 divides q - 1, or p = 5 divides $q + r + 1, r = 2^{n+1}$, but 25 does not divide this number. 5) $G = {}^2G_2(q^2), q^2 = 3^{2n+1}, n \ge 1$, where either p > 2 divides $q^2 - 1$, or p = 7 divides $q^2 + \sqrt{3}q + 1$, but 49 does not divide this number. 6) $G = M_{11}$ and p = 5. 7) $G = J_1$ and p = 3.

Example. $G = A_5 \cong PSL(2,4) \cong PSL(2,5), F = \mathbb{F}_3.$

Known fact. If *FG* is serial and $H \triangleleft G$, then F(G/H) is serial.

Open question. If *FG* is serial and $H \triangleleft G$, then *FH* is serial?

Fact 12 (H.I. Blau, N. Naehrig)

Suppose G is a non-p-solvable group with a nontrivial cyclic p-Sylow subgroup P, and F is a field of characteristic p.

Then G has a unique minimal normal subgroup K, such that $K \supseteq O_{p'}$. Moreover, $K \supset P$, and $H := K/O_{p'}$ is a simple non-abelian group.

Moreover, there is a normal series

$$1 \subseteq O_{p'}(G) \subseteq K \subseteq G.$$

Conjecture 13

FG is serial \iff FH is serial.

It is true if $|G| \leq 10^4$.

Let p = 7.

Let H = Sz(8), one of the Suzuki groups $Sz(2^{2n+1})$. The order of H is 29120. There is one serial 7-block and six simple 7-blocks of H.

o _____ ●_{m=3} _____ o

Let G = 2.Sz(8), the double cover of Sz(8). Then the principal block of G is serial, but there is a non-serial block.

Proposition 14

If char F = 7, then the ring FH is serial, but FG is not serial.

Problem 1. To find all pairs (F, G), where F is a field, and G is a finite group, such that the group ring FG is serial.

Problem 2. To find all pairs (p, G), where p is a prime number, and G is a finite group, such that the Brauer tree of each p-block of G is a star.

Problem 3. To find all pairs (S, G), where S is a ring, and G is a finite group, such that the group ring SG is serial.

THANKS FOR YOUR ATTENTION