An elementary proof of Graham's theorem

Vicente Pérez Calabuig (Universitat de València)

Young Researches Algebra Conference 2017

Napoli, 24 May 2017

- An element $e \in S$ is said to be *idempotent* if $e^2 = e$. E(S) := { $e \in S$ idempotent}.
- Let e ∈ S idempotent. S_e denotes the maximal subgroup in S which has e as an identity element.
- For every subset $X \subseteq S$, $X^0 = X \cup \{0\}$ and $X^1 = X \cup \{1\}$.
- x ∈ S is regular (in the sense of von Neumann), if x ∈ xSx. A semigroup S is said to be regular if every element s ∈ S is regular.

- An element $e \in S$ is said to be *idempotent* if $e^2 = e$. E(S) := { $e \in S$ idempotent}.
- Let e ∈ S idempotent. S_e denotes the maximal subgroup in S which has e as an identity element.
- For every subset $X \subseteq S$, $X^0 = X \cup \{0\}$ and $X^1 = X \cup \{1\}$.
- x ∈ S is regular (in the sense of von Neumann), if x ∈ xSx. A semigroup S is said to be regular if every element s ∈ S is regular.

- An element $e \in S$ is said to be *idempotent* if $e^2 = e$. E(S) := { $e \in S$ idempotent}.
- Let e ∈ S idempotent. S_e denotes the maximal subgroup in S which has e as an identity element.
- For every subset $X \subseteq S$, $X^0 = X \cup \{0\}$ and $X^1 = X \cup \{1\}$.
- x ∈ S is regular (in the sense of von Neumann), if x ∈ xSx. A semigroup S is said to be regular if every element s ∈ S is regular.

- An element $e \in S$ is said to be *idempotent* if $e^2 = e$. E(S) := { $e \in S$ idempotent}.
- Let e ∈ S idempotent. S_e denotes the maximal subgroup in S which has e as an identity element.
- For every subset $X \subseteq S$, $X^0 = X \cup \{0\}$ and $X^1 = X \cup \{1\}$.
- x ∈ S is regular (in the sense of von Neumann), if x ∈ xSx. A semigroup S is said to be regular if every element s ∈ S is regular.

- An element $e \in S$ is said to be *idempotent* if $e^2 = e$. E(S) := { $e \in S$ idempotent}.
- Let e ∈ S idempotent. S_e denotes the maximal subgroup in S which has e as an identity element.
- For every subset $X \subseteq S$, $X^0 = X \cup \{0\}$ and $X^1 = X \cup \{1\}$.
- x ∈ S is regular (in the sense of von Neumann), if x ∈ xSx. A semigroup S is said to be regular if every element s ∈ S is regular.

Green Relations

The following equivalence relations introduced by Green are fundamental:

 $s \mathcal{R} t$ if and only if $sS^1 = tS^1$ $s \mathcal{L} t$ if and only if $S^1s = S^1t$ $s \mathcal{J} t$ if and only if $S^1sS^1 = S^1tS^1$

Given an element $u \in S$, we denote by R_u (L_u , J_u) the corresponding \mathcal{R} -class of u (\mathcal{L} , \mathcal{J} -class). Moreover, a \mathcal{K} -class ($\mathcal{K} = \mathcal{J}, \mathcal{L}, \mathcal{R}$), K, is said to be regular if it contains an idempotent, i.e. $K = K_e$ for $e \in E(S)$.

Proposition

Let S be a semigroup (not necessarily finite). Then:

- If S is regular, then $\langle E(S) \rangle$ is a regular subsemigroup of S.
- **2** If T is a regular subsemigroup of S. Then, $\mathcal{K}_T = \mathcal{K}_S \cap (T \times T)$, where $\mathcal{K} = \mathcal{L}$ or \mathcal{R} .
- W. Eberhart, C. Williams and L. Kinch, *Idempotent-generated regular semigroups*, J. Austral. Math. Soc. Ser. A, 15 (1973), 27–34.

D. Rees, *On semigroups*, Math. Proc. Cambridge Philos. Soc., 36 (1940), 387–400.

Definition

A semigroup S with zero is called 0-simple if SxS = S for all $0 \neq x \in S$.

Note that every 0-simple semigroup S has a unique non-zero \mathcal{J} -class, $S \setminus \{0\}$, i.e. $s \mathcal{J} t$ for all non-zero $s \neq t \in S$.

Proposition

Let *S* be a 0-simple semigroup. Then

• *S* is regular.

2 S_e is isomorphic to S_f for all $e, f \in E(S) \setminus \{0\}$.

D. Rees, *On semigroups*, Math. Proc. Cambridge Philos. Soc., 36 (1940), 387–400.

Definition

A semigroup S with zero is called 0-simple if SxS = S for all $0 \neq x \in S$.

Note that every 0-simple semigroup S has a unique non-zero \mathcal{J} -class, $S \setminus \{0\}$, i.e. $s \mathcal{J} t$ for all non-zero $s \neq t \in S$.

Proposition

Let S be a 0-simple semigroup. Then

■ S is regular.

2 S_e is isomorphic to S_f for all $e, f \in E(S) \setminus \{0\}$.

3 $S_e = (eSe) \setminus \{0\}$, for all $0 \neq e \in E(S)$.

D. Rees, *On semigroups*, Math. Proc. Cambridge Philos. Soc., 36 (1940), 387–400.

Definition

A semigroup S with zero is called 0-simple if SxS = S for all $0 \neq x \in S$.

Note that every 0-simple semigroup S has a unique non-zero \mathcal{J} -class, $S \setminus \{0\}$, i.e. $s \mathcal{J} t$ for all non-zero $s \neq t \in S$.

Proposition

Let S be a 0-simple semigroup. Then

- **1** *S* is regular.
- **2** S_e is isomorphic to S_f for all $e, f \in E(S) \setminus \{0\}$.
- $\ \, {\bf S}_e=(eSe)\setminus\{0\}, \ \, {\rm for \ all} \ \, 0\neq e\in {\sf E}(S).$

Let A, B be non-empty sets and let G be a group. A *Rees matrix* C is a map $C : B \times A \longrightarrow G^0$. We say that the Rees matrix is *regular* if every row and every column has a non-zero entry.

Rees matrix semigroup

The *Rees matrix semigroup* with sandwich matrix *C* is the semigroup $\mathcal{M}^0(G, A, B, C)$ with underlying set $(A \times G \times B) \cup \{0\}$ and the operation: $0 \cdot (a, g, b) = (a, g, b) \cdot 0 = 0$, and

$$(a,g,b)\cdot (a',g',b') = egin{cases} (a,gC(b,a')g',b') & ext{if } C(b,a')\in G, \ 0, & ext{if } C(b,a')=0, \end{cases}$$

for all $a, a' \in A$, $b, b' \in B$, $g \in G$.

The Rees matrix semigroup $\mathcal{M}^0(G, A, B, C)$ is regular if, and only if, the matric *C* is regular.

Let A, B be non-empty sets and let G be a group. A *Rees matrix* C is a map $C : B \times A \longrightarrow G^0$. We say that the Rees matrix is *regular* if every row and every column has a non-zero entry.

Rees matrix semigroup

The *Rees matrix semigroup* with sandwich matrix *C* is the semigroup $\mathcal{M}^0(G, A, B, C)$ with underlying set $(A \times G \times B) \cup \{0\}$ and the operation: $0 \cdot (a, g, b) = (a, g, b) \cdot 0 = 0$, and

$$(a,g,b)\cdot (a',g',b') = egin{cases} (a,gC(b,a')g',b') & ext{if } C(b,a')\in G, \ 0, & ext{if } C(b,a')=0, \end{cases}$$

for all $a, a' \in A$, $b, b' \in B$, $g \in G$.

The Rees matrix semigroup $\mathcal{M}^0(G, A, B, C)$ is regular if, and only if, the matric C is regular.

Rees' Theorem [Rees40]

Every regular Rees matrix semigroup is a 0-simple semigroup. Conversely, every 0-simple semigroup S is isomorphic to a regular Rees matrix semigroup $\mathcal{M}^0(G, A, B, C)$, where G is isomorphic to the maximal subgroups S_e , for all $e \neq 0$.

Given a regular \mathcal{J} -class J of a semigroup S, set $J^0 = J \cup \{0\}$ and the operation:

$$\text{for all } a, b \in J \quad a \cdot b = \begin{cases} ab, & \text{if } ab \in J, \\ 0, & \text{if } ab \notin J \end{cases}, \quad a \cdot 0 = 0 \cdot a = 0 \\ \end{cases}$$

Then, J^0 forms a 0-simple semigroup and:

 $J^0 \cong \mathcal{M}^0(G, A, B, C)$

where $G \cong S_e = (J^0)_e$, for all $e \in J$.

Rees' Theorem [Rees40]

Every regular Rees matrix semigroup is a 0-simple semigroup. Conversely, every 0-simple semigroup S is isomorphic to a regular Rees matrix semigroup $\mathcal{M}^0(G, A, B, C)$, where G is isomorphic to the maximal subgroups S_e , for all $e \neq 0$.

Given a regular \mathcal{J} -class J of a semigroup S, set $J^0 = J \cup \{0\}$ and the operation:

$$\text{for all } a,b\in J \quad a\cdot b = \begin{cases} ab, & \text{if } ab\in J, \\ 0, & \text{if } ab\notin J \end{cases}, \quad a\cdot 0 = 0\cdot a = 0 \\ \end{cases}$$

Then, J^0 forms a 0-simple semigroup and:

$$J^0 \cong \mathcal{M}^0(G, A, B, C)$$

where $G \cong S_e = (J^0)_e$, for all $e \in J$.

Graham's Theorem

Let S be a 0-simple semigroup. Then there exists an isomorphism $\psi: S \longrightarrow \mathcal{M}^0(G, A, B, C)$ such that:

$$C = \begin{array}{cccc} & A_1 & A_2 & \cdots & A_n \\ B_1 & C_1 & 0 & \cdots & 0 \\ B_2 & 0 & C_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B_n & 0 & 0 & \cdots & C_n \end{array}$$

where each matrix $C_i : B_i \times A_i \to G^0$ is regular and:

$$\langle \mathsf{E}(S) \rangle = \bigcup_{i=1}^{n} \mathcal{M}^{0}(G_{i}, A_{i}, B_{i}, C_{i})$$

where G_i is the subgroup of G generated by all non-zero entries of C_i , for i = 1, ..., n.

In the sequel, S will denote a 0-simple semigroup and $T := \langle E(S) \rangle$. We use:

Key Lemma 1, [Rees40, Lemmas 2.61, 2.62, 2.63]

For each pair of non-zero idempotents e and f of S, eSf is non-zero. Moreover, if $0 \neq x \in eSf$ and $0 \neq y \in fSg$, then $0 \neq xy \in (eSf)(fSg) = eSg$.

Key Lemma 2, [Rees40, Lemma 2.7]

Let $e, f \in E(S) \setminus \{0\}$. The sets eS and fS have either no non-zero elements in common or are identical. Similarly for the sets Se and Sf and, consequently, for the sets eSf and e'Sf'.

In the sequel, S will denote a 0-simple semigroup and $T := \langle E(S) \rangle$. We use:

Key Lemma 1, [Rees40, Lemmas 2.61, 2.62, 2.63]

For each pair of non-zero idempotents e and f of S, eSf is non-zero. Moreover, if $0 \neq x \in eSf$ and $0 \neq y \in fSg$, then $0 \neq xy \in (eSf)(fSg) = eSg$.

Key Lemma 2, [Rees40, Lemma 2.7]

Let $e, f \in E(S) \setminus \{0\}$. The sets eS and fS have either no non-zero elements in common or are identical. Similarly for the sets Se and Sf and, consequently, for the sets eSf and e'Sf'.

In the sequel, S will denote a 0-simple semigroup and $T := \langle E(S) \rangle$. We use:

Key Lemma 1, [Rees40, Lemmas 2.61, 2.62, 2.63]

For each pair of non-zero idempotents e and f of S, eSf is non-zero. Moreover, if $0 \neq x \in eSf$ and $0 \neq y \in fSg$, then $0 \neq xy \in (eSf)(fSg) = eSg$.

Key Lemma 2, [Rees40, Lemma 2.7]

Let $e, f \in E(S) \setminus \{0\}$. The sets eS and fS have either no non-zero elements in common or are identical. Similarly for the sets Se and Sf and, consequently, for the sets eSf and e'Sf'.

From wich we prove:

Corollary 1

Let $0 \neq ef \in T$ with $e, f \in E(S)$. Then $e \mathcal{R}_T ef \mathcal{L}_T f$. In particular, $e \mathcal{J}_T f \mathcal{J}_T(ef)$.

Corollary 2

Assume that $0 \neq e_1 \cdots e_r \in T$ for some $e_i \in E(S)$, $1 \leq i \leq r$. Then $e_1 \mathcal{J}_T \cdots \mathcal{J}_T e_r \mathcal{J}_T (e_1 \cdots e_r)$.

Vicente Pérez Calabuig

An elementary proof of Graham's theorem

Napoli, 24 May 2017

・ 同 ト ・ ヨ ト ・ ヨ

From wich we prove:

Corollary 1

Let $0 \neq ef \in T$ with $e, f \in E(S)$. Then $e \mathcal{R}_T ef \mathcal{L}_T f$. In particular, $e \mathcal{J}_T f \mathcal{J}_T(ef)$.

Corollary 2

Assume that $0 \neq e_1 \cdots e_r \in T$ for some $e_i \in E(S)$, $1 \leq i \leq r$. Then $e_1 \mathcal{J}_T \ldots \mathcal{J}_T e_r \mathcal{J}_T (e_1 \cdots e_r)$.

Rees' Theorem [Rees40]

Every regular Rees matrix semigroup is a 0-simple semigroup. Conversely, every 0-simple semigroup S is isomorphic to a regular Rees matrix semigroup $\mathcal{M}^0(G, A, B, C)$, where G is isomorphic to the maximal subgroups S_e , for all $e \neq 0$.

Given a regular \mathcal{J} -class J of a semigroup S, set $J^0 = J \cup \{0\}$ and the operation:

$$\text{for all } a, b \in J \quad a \cdot b = \begin{cases} ab, & \text{if } ab \in J, \\ 0, & \text{if } ab \notin J \end{cases}, \quad a \cdot 0 = 0 \cdot a = 0 \\ \end{cases}$$

Then, J^0 forms a 0-simple semigroup and:

 $J^0 \cong \mathcal{M}^0(G, A, B, C)$

where $G \cong S_e = (J^0)_e$, for all $e \in J$.

Graham's Theorem

Let S be a 0-simple semigroup. Then there exists an isomorphism $\psi: S \longrightarrow \mathcal{M}^0(G, A, B, C)$ such that:

$$C = \begin{array}{cccc} & A_1 & A_2 & \cdots & A_n \\ B_1 & C_1 & 0 & \cdots & 0 \\ B_2 & 0 & C_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B_n & 0 & 0 & \cdots & C_n \end{array}$$

where each matrix $C_i : B_i \times A_i \to G^0$ is regular and:

$$\langle \mathsf{E}(S) \rangle = \bigcup_{i=1}^{n} \mathcal{M}^{0}(G_{i}, A_{i}, B_{i}, C_{i})$$

where G_i is the subgroup of G generated by all non-zero entries of C_i , for i = 1, ..., n.

• Let $(J_T)_{e_1}, \ldots, (J_T)_{e_n}$ be the non-zero \mathcal{J} -classes in T, with $e_1, \ldots, e_n \in E(S)$. For each $k \in \{1, \ldots, n\}$, we write:

$$T^{(k)} = (J_T)^0_{e_k} \subseteq T$$

Corollary 1 ensures us that $T^{(k)}$ is a 0-simple subsemigroup of T.

② Since S is regular and using Key Lemma 2, we can write:

$$S = igcup_{i=1,j=1}^{m_1,m_2} r_i Sl_j$$
 where $r_i, l_j \in \mathsf{E}(S) \setminus \{0\}$,

with r_i, l_j such that $r_i Sl_j \cap r_{i'} Sl_{j'} = 0$ if $i \neq i'$ and $j \neq j'$. Let $r_1 = l_1 = e_1$.

• Set $A := \{1, ..., m_1\}$ and $B := \{1, ..., m_2\}$. For each $1 \le k \le n$, we define: $A_k := \{i \in A : r_i \mathcal{J}_T e_k\}$, $B_k := \{j \in B : l_j \mathcal{J}_T e_k\}$.

• Let $(J_T)_{e_1}, \ldots, (J_T)_{e_n}$ be the non-zero \mathcal{J} -classes in T, with $e_1, \ldots, e_n \in E(S)$. For each $k \in \{1, \ldots, n\}$, we write:

$$T^{(k)} = (J_T)^0_{e_k} \subseteq T$$

Corollary 1 ensures us that $T^{(k)}$ is a 0-simple subsemigroup of T.

② Since S is regular and using Key Lemma 2, we can write:

$$S = \bigcup_{i=1,j=1}^{m_1,m_2} r_i Sl_j$$
 where $r_i, l_j \in \mathsf{E}(S) \setminus \{0\}$,

with r_i, l_j such that $r_i Sl_j \cap r_{i'} Sl_{j'} = 0$ if $i \neq i'$ and $j \neq j'$. Let $r_1 = l_1 = e_1$.

● Set $A := \{1, ..., m_1\}$ and $B := \{1, ..., m_2\}$. For each $1 \le k \le n$, we define: $A_k := \{i \in A : r_i \mathcal{J}_T e_k\}$, $B_k := \{j \in B : l_j \mathcal{J}_T e_k\}$.

• Let $(J_T)_{e_1}, \ldots, (J_T)_{e_n}$ be the non-zero \mathcal{J} -classes in T, with $e_1, \ldots, e_n \in \mathsf{E}(S)$. For each $k \in \{1, \ldots, n\}$, we write:

$$T^{(k)} = (J_T)^0_{e_k} \subseteq T$$

Corollary 1 ensures us that $T^{(k)}$ is a 0-simple subsemigroup of T.

2 Since *S* is regular and using Key Lemma 2, we can write:

$$S = \bigcup_{i=1,j=1}^{m_1,m_2} r_i S I_j$$
 where $r_i, I_j \in \mathsf{E}(S) \setminus \{0\}$,

with r_i, l_j such that $r_i Sl_j \cap r_{i'} Sl_{j'} = 0$ if $i \neq i'$ and $j \neq j'$. Let $r_1 = l_1 = e_1$.

● Set $A := \{1, ..., m_1\}$ and $B := \{1, ..., m_2\}$. For each $1 \le k \le n$, we define: $A_k := \{i \in A : r_i \mathcal{J}_T e_k\}$, $B_k := \{j \in B : l_j \mathcal{J}_T e_k\}$.

• Let $(J_T)_{e_1}, \ldots, (J_T)_{e_n}$ be the non-zero \mathcal{J} -classes in T, with $e_1, \ldots, e_n \in \mathsf{E}(S)$. For each $k \in \{1, \ldots, n\}$, we write:

$$T^{(k)} = (J_T)^0_{e_k} \subseteq T$$

Corollary 1 ensures us that $T^{(k)}$ is a 0-simple subsemigroup of T.

2 Since *S* is regular and using Key Lemma 2, we can write:

$$S = \bigcup_{i=1,j=1}^{m_1,m_2} r_i S I_j$$
 where $r_i, I_j \in \mathsf{E}(S) \setminus \{0\}$,

with r_i, l_j such that $r_i Sl_j \cap r_{i'} Sl_{j'} = 0$ if $i \neq i'$ and $j \neq j'$. Let $r_1 = l_1 = e_1$.

③ Set
$$A := \{1, ..., m_1\}$$
 and $B := \{1, ..., m_2\}$. For each
1 ≤ k ≤ n, we define: $A_k := \{i \in A : r_i \mathcal{J}_T e_k\},$
 $B_k := \{j \in B : l_j \mathcal{J}_T e_k\}.$

• Let $k \in \{1, ..., n\}$. Applying Key Lemma 1 we have:

• There exist non-zero elements $x_{1k} \in e_1 Se_k$, $x_{k1} \in e_k Se_1$, such that for all $i \in A_k$, $j \in B_k$, we can take non-zero elements $\bar{p}_{ik} \in r_i T^{(k)}e_k$, $\bar{q}_{kj} \in e_k T^{(k)}l_j$, with

 $0 \neq x_{1k}\bar{q}_{kj} \in e_1SI_j, \quad 0 \neq \bar{p}_{ik}x_{k1} \in r_iSe_1$

(5) Then, for all $i \in A$ and $j \in B$, we define:

 $0 \neq p_{i1} := \bar{p}_{ik} x_{k1} \in r_i Se_1 \quad \text{if } i \in A_k, \\ 0 \neq q_{1j} := x_{1k} \bar{q}_{kj} \in e_1 Sl_j \quad \text{if } j \in B_k,$

• Let $k \in \{1, ..., n\}$. Applying Key Lemma 1 we have:

• There exist non-zero elements $x_{1k} \in e_1 Se_k$, $x_{k1} \in e_k Se_1$, such that for all $i \in A_k$, $j \in B_k$, we can take non-zero elements $\bar{p}_{ik} \in r_i T^{(k)}e_k$, $\bar{q}_{kj} \in e_k T^{(k)}l_j$, with

$$0 \neq x_{1k} \bar{q}_{kj} \in e_1 Sl_j, \quad 0 \neq \bar{p}_{ik} x_{k1} \in r_i Se_1$$

(5) Then, for all $i \in A$ and $j \in B$, we define:

 $0 \neq p_{i1} := \bar{p}_{ik} \times_{k1} \in r_i Se_1 \quad \text{if } i \in A_k, \\ 0 \neq q_{1j} := x_{1k} \bar{q}_{kj} \in e_1 Sl_j \quad \text{if } j \in B_k,$

• Let $k \in \{1, ..., n\}$. Applying Key Lemma 1 we have:

• There exist non-zero elements $x_{1k} \in e_1 Se_k$, $x_{k1} \in e_k Se_1$, such that for all $i \in A_k$, $j \in B_k$, we can take non-zero elements $\bar{p}_{ik} \in r_i T^{(k)}e_k$, $\bar{q}_{kj} \in e_k T^{(k)}l_j$, with

$$0 \neq x_{1k}\bar{q}_{kj} \in e_1SI_j, \quad 0 \neq \bar{p}_{ik}x_{k1} \in r_iSe_1$$

() Then, for all $i \in A$ and $j \in B$, we define:

$$\begin{array}{ll} 0 \neq p_{i1} := \bar{p}_{ik} x_{k1} \in r_i S e_1 & \text{if } i \in A_k, \\ 0 \neq q_{1j} := x_{1k} \bar{q}_{kj} \in e_1 S l_j & \text{if } j \in B_k, \end{array}$$

We have seen that the maximal subgroups S_e, for all 0 ≠ e ∈ E(S), are all isomorphic. Let G⁰ := e₁Se₁ = (S_{e1})⁰ and consider the Rees (B × A)-matrix given by:

$$egin{aligned} \mathcal{C}(j,i) &:= egin{cases} q_{1j} p_{i1} & ext{if } q_{1j} p_{i1}
eq 0 \ 0 & ext{otherwise} \end{aligned} \quad j \in B, i \in A \end{aligned}$$

The proof of Rees' Theorem in [Rees40] gives us an isomorphism

$$\psi: S \longrightarrow \mathcal{M}^0(G, A, B, C)$$

(3) By Corollary 1, if $j \in B_k$ and $i \in A_{k'}$ and $k \neq k'$, it follows that $l_j r_i = 0$. Therefore C(j, i) = 0 and then:

$$C = \begin{array}{c} A_{1} & A_{2} & \cdots & A_{n} \\ B_{1} & \begin{pmatrix} C_{1} & 0 & \cdots & 0 \\ 0 & C_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B_{n} & 0 & \cdots & C_{n} \end{pmatrix}$$

We have seen that the maximal subgroups S_e, for all 0 ≠ e ∈ E(S), are all isomorphic. Let G⁰ := e₁Se₁ = (S_{e1})⁰ and consider the Rees (B × A)-matrix given by:

$$egin{array}{ll} C(j,i) := egin{cases} q_{1j} p_{i1} & ext{if } q_{1j} p_{i1}
eq 0 \ 0 & ext{otherwise} \end{array} & j \in B, i \in A \end{array}$$

The proof of Rees' Theorem in [Rees40] gives us an isomorphism

$$\psi: S \longrightarrow \mathcal{M}^0(G, A, B, C)$$

(a) By Corollary 1, if $j \in B_k$ and $i \in A_{k'}$ and $k \neq k'$, it follows that $l_j r_i = 0$. Therefore C(j, i) = 0 and then:

$$C = \begin{array}{c} A_{1} & A_{2} & \cdots & A_{n} \\ B_{1} & \begin{pmatrix} C_{1} & 0 & \cdots & 0 \\ 0 & C_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B_{n} & 0 & 0 & \cdots & C_{n} \end{pmatrix}$$

We have seen that the maximal subgroups S_e, for all 0 ≠ e ∈ E(S), are all isomorphic. Let G⁰ := e₁Se₁ = (S_{e1})⁰ and consider the Rees (B × A)-matrix given by:

$$\mathcal{C}(j,i) := egin{cases} q_{1j} p_{i1} & ext{if } q_{1j} p_{i1}
eq 0 \ 0 & ext{otherwise} \end{cases} \hspace{0.5cm} j \in \mathcal{B}, i \in \mathcal{A}$$

The proof of Rees' Theorem in [Rees40] gives us an isomorphism

$$\psi: S \longrightarrow \mathcal{M}^0(G, A, B, C)$$

3 By Corollary 1, if $j \in B_k$ and $i \in A_{k'}$ and $k \neq k'$, it follows that $l_j r_i = 0$. Therefore C(j, i) = 0 and then:

$$C = \begin{array}{c} A_{1} & A_{2} & \cdots & A_{n} \\ B_{1} & \begin{pmatrix} C_{1} & 0 & \cdots & 0 \\ 0 & C_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B_{n} & 0 & 0 & \cdots & C_{n} \end{pmatrix}$$